Lecture outline

* Nearest-neighbor search in low dimensions
— kd-trees

 Nearest-neighbor search in high dimensions
— LSH

e Applications to data mining

Definition

e Given: a set X of n points in RY

* Nearest neighbor: for any query point geR®
return the point xeX minimizing D(x,q)

e Intuition: Find the point in X that is the closest
toq

Motivation

Learning: Nearest neighbor rule
Databases: Retrieval
Data mining: Clustering

Donald Knuth in vol.3 of The Art of Computer
Programming called it the post-office
problem, referring to the application of
assigning a resident to the nearest-post office

Nearest-neighbor rule

7)

2

{

MNIST dataset

L.__T._.___.._.-_._....._...._..P ...J_.
Ly] . AR L AR AN T
; J Pk o ol o o o vl 0 el o el ey T B
LN LEL R LE L L ;_.._2_..“1.1......._...5_...&.-__
r}L1.q__.q_..«ni_.“ o g o _"._.q.m....m:i..nl._..___;ll..._..._._n_

:1;&&1&}11111113;::;; _1";:
. olr] JEJRJJRAJJ;AAanJaaq
I__.._.-.n_.-n._.ﬂ.n-.n...u.__..u.a_-...__-;__..— [-._._......_..—..__.11. =1
....__.m_q.__l..._..d_..ﬂ.n.r..__..._r.r_.n_. N nm
.L.;J#aﬂ1111 : L U - |
;:uﬂ+aﬂfﬁ:-Anﬂ::$AJ i Talale
1112211111111;:ﬂ:J}JJJQJJJ&
.-._m .wu.ﬂ...ﬁ_l.r .._L _J.I.r P .| . - ...1&.:.#1_4..—-..5-.‘..&‘ &

Lo] B eloed B) ol =g

Lhﬁxﬁilddjﬂiﬂll

e Eale
L B 5

LLA;J::Jii
O s T LT

Methods for computing NN

e Linear scan: O(nd) time

e This is pretty much all what is known for exact
algorithms with theoretical guarantees

* |n practice:
— kd-trees work “wel

|II M

in “low-medium” dimensions

2-dimensional kd-trees

A data structure to support range queries in
RZ

— Not the most efficient solution in theory

— Everyone uses it in practice

Preprocessing time: O(nlogn)
Space complexity: O(n)
Query time: O(n/2+k)

2-dimensional kd-trees

e Algorithm:
— Choose x or y coordinate (alternate)

— Choose the median of the coordinate; this defines a
horizontal or vertical line

— Recurse on both sides
e We get a binary tree:

— Size O(n)

— Depth O(logn)

— Construction time O(nlogn)

Construction of kd-trees

-
= P10

1 L Ps

P3 ®:

Construction of kd-trees

74 Pao
. Ps

® P10
P2

M @ s

P3 ® s

Construction of kd-trees

P4

Ps

M

P2

pPa

Construction of kd-trees

£q l
1 Po
P s]
L]
- P10
/o P2
—i
pPr {q
L]
P ipﬁ
L]
P3 xpﬂ

Construction of kd-trees

ly
Pg.
4
L Ds]
o
- P1o
s P2
—
pr {q
—_—
m] Ps
Pa @

The complete kd-tree

fy
|] pq.
P4 s 1] :
o
P10
fo P2
—
pr £y
S ——
P ®,
]
Pa 9 s

Region of node v

I3)
::fi’?lm'l
SN
'
/!
o
(£3)
. : s l}_ _:-': Y.
. . ‘E
v
. * ’ / ‘\
/

Region(v) : the subtree rooted at v stores the points in
black dots

Searching in kd-trees

e Range-searching in 2-d

— Given a set of n points, build a data structure that
for any query rectangle R reports all pointin R

kd-tree: range queries

* Recursive procedure starting from v = root
e Search (v,R)
— If vis a leaf, then report the point stored in v if it
liesin R
— Otherwise, if Reg(v) is contained in R, report all
points in the subtree(v)

— Otherwise:
* |f Reg(left(v)) intersects R, then Search(left(v),R)
 |f Reg(right(v)) intersects R, then Search(right(v),R)

Query time analysis

e We will show that Search takes at most
O(n'/2+P) time, where P is the number
of reported points

— The total time needed to report all
points in all sub-trees is O(P)

— We just need to bound the number of
nodes v such that region(v) intersects R
but is not contained in R (i.e., boundary
of R intersects the boundary of
region(v))

— gross overestimation: bound the
number of region(v) which are crossed
by any of the 4 horizontal/vertical lines

Query time (Cont’d)

 Q(n): max number of regions in an n-point kd-tree intersecting a

(say, vertical) line?
/

 If € intersects region(v) (due to vertical line splitting), then after
two levels it intersects 2 regions (due to 2 vertical splitting lines)

e The number of regions intersecting € is Q(n)=2+2Q(n/4) 2>
Q(n)=(n'?)

d-dimensional kd-trees

A data structure to support range queries in R

Preprocessing time: O(nlogn)
Space complexity: O(n)
Query time: O(n11/d+k)

Construction of the d-dimensional
kd-trees

The construction algorithm is similar as in 2-d

At the root we split the set of points into two subsets
of same size by a hyperplane vertical to x,-axis

At the children of the root, the partition is based on
the second coordinate: x,-coordinate

At depth d, we start all over again by partitioning on
the first coordinate

The recursion stops until there is only one point left,
which is stored as a leaf

Locality-sensitive hashing (LSH)

e Idea: Construct hash functions h: R¢=> U such
that for any pair of points p,q:

— If D(p,q)<r, then Pr[h(p)=h(q)] is high
— If D(p,qg)=cr, then Pr[h(p)=h(q)] is small

* Then, we can solve the “approximate NN”
problem by hashing

 LSH is a general framework; for a given D we
need to find the right h

Approximate Nearest Neighbor

e Given a set of points X in R and query point
qeRY c-Approximate r-Nearest Neighbor
search returns:

— Returns p€P, D(p,q) < r
— Returns NO if there is no p’€X, D(p’,q) < cr

Locality-Sensitive Hashing (LSH)

e Afamily H of functions h: R9>U is called
(P,,P,,r,cr)-sensitive if for any p,q:
— if D(p,q)<r, then Pr[h(p)=h(q)] = P1
— If D(p,q)2 cr, then Pr[h(p)=h(q)] < P2

e P1>P2
e Example: Hamming distance

— LSH functions: h(p)=p,, i.e., the i-th bit of p
— Probabilities: Pr[h(p)=h(q)]=1-D(p,q)/d

Algorithm -- preprocessing

* 8(p) = <h,(p),h,(p),....h(p)>
* Preprocessing

— Select g,,8,,-..,8,
— For all peX hash p to buckets g,(p),...,g,(p)

— Since the number of possible buckets might be large we
only maintain the non empty ones

* Running time?

Algorithm -- query

e Query q:

— Retrieve the points from buckets g,(q),g,(q),..., g.(q) and
let points retrieved be x,...,X

 If D(x;,q)<r report it
e Otherwise report that there does not exist such a NN

— Answer the query based on the retrieved points
— Time O(dL)

Applications of LSH in data mining

e Numerous....

Applications

Find pages with similar sets of words (for
clustering or classification)

Find users in Netflix data that watch similar
movies

Find movies with similar sets of users

Find images of related things

How would you do it?

* Finding very similar items might be
computationally demanding task

 We can relax our requirement to finding
somewhat similar items

Running example: comparing
documents

e Documents have common text, but no
common topic

e Easy special cases:

— Identical documents
— Fully contained documents (letter by letter)

e General case:

— Many small pieces of one document appear out of
order in another. What do we do then?

Finding similar documents

* Given a collection of documents, find pairs of
documents that have lots of text in common
— |dentify mirror sites or web pages
— Plagiarism
— Similar news articles

Key steps

e Shingling: convert documents (news articles,
emails, etc) to sets

e LSH: convert large sets to small signatures,
while preserving the similarity

e Compare the signatures instead of the actual
documents

Shingles

* A k-shingle (or k-gram) is a sequence of k
characters that appears in a document

e |f doc = abcab and k=3, then 2-singles: {ab, bc,
ca}

 Represent a document by a set of k-shingles

Assumption

* Documents that have similar sets of k-shingles
are similar: same text appears in the two
documents; the position of the text does not

matter

 What should be the value of k?
— What would large or small k mean?

Data model: sets

e Data points are represented as sets (i.e., sets
of shingles)

e Similar data points have large intersections in
their sets

— Think of documents and shingles
— Customers and products
— Users and movies

Similarity measures for sets

* Now we have a set representation of the data
e Jaccard coefficient

e A, Bsets (subsets of some, large, universe U)

ANB

sIm(A, B) =
() AU B

Find similar objects using the
Jaccard similarity

e Naive method?

 Problems with the naive method?
— There are too many objects
— Each object consists of too many sets

Speedingup the naive method

Represent every object by a signature
(summary of the object)

Examine pairs of sighatures rather than pairs
of objects

Find all similar pairs of signatures

Check point: check that objects with similar
signatures are actually similar

Still problems

e Comparing large number of sighatures with
each other may take too much time (although
it takes less space)

* The method can produce pairs of objects that
might not be similar (false positives). The
check point needs to be enforced

Creating signatures

* For object x, signature of x (sign(x)) is much
smaller (in space) than x

e For objects x, y it should hold that sim(x,y) is
almost the same as sim(sing(x),sign(y))

Intuition behind Jaccard similarity

 Consider two objects: x,y

 x v
a 1 1
b 1 0
C 0 1
d 0O O

e a: # of rows of form same as a
e sim(x,y)=a /(a+b+c)

A type of signatures -- minhashes

e Randomly permute the rows x|y |
a 1 1
b 1 O
* h(x): first row (in permuted data) ¢ o 1
d O O

in which column x has an 1

e Use several (e.g., 100) independent
hash functions to design a signature

a
b
C
d

“Surprising” property

 The probability (over all permutations of
rows) that h(x)=h(y) is the same as sim(x,y)

* Both of them are a/(a+b+c)

e SO7

— The similarity of signatures is the fraction of the
hash functions on which they agree

Minhash algorithm

* Pick k (e.g., 100) permutations of the rows
* Think of sign(x) as a new vector

e Let sign(x)[i]: in the i-th permutation, the
index of the first row that has 1 for object x

0

1

1

1

a2 3 X
0

0

1

1

Example of minhash signatures

1

a2 3 X
0

* Input matrix

1212

1

0

0

4

a2 3 X
1

0

1

1

Example of minhash signatures

1

a2 3 X
0

* Input matrix

2 103 1

1

0
0

0
0

3

a2 3 X
1

1

0

1

1

Example of minhash signatures

1

a2 3 X
0

* Input matrix

3113 1

* Input matrix

-mmm

N o0 o A W N R

Example of minhash signatures

R r O O O ¥

o ©O B B B O O

R -, O O O O ¥

O O Fkr KL R, R, O

12 [x3 [Xa
1 2 2

(x1,x2)
(x1,x3)
(x1,x4)
(x2,x3)
(x2,x4)
(x3,x4)

0.75 2/3
1/7 0
0 0
0.75 1
0 0

Is it now feasible?

Assume a billion rows

Hard to pick a random permutation of
1...billion

Even representing a random permutation
requires 1 billion entries!!!

How about accessing rows in permuted
order?

®

Being more practical

* Approximating row permutations: pick k=100
(?) hash functions (hy,...,h,)

for each row r will become the
smallest value of

for each column c PN
ifchaslinrowr column has in

row ;i.e., gives
for each hash fu order of rows for th

if h.(r) is a smalle __permutation.
M (i,c) = h;(r);

Example of minhash signatures

* Input matrix

i e
1 1 0
e i e
1 0 1
3 1 1
2 2 0
4 1 0
5 0 1

h(r)=r+1 mod>5
g(r)=2r+1mod>5

	Lecture outline
	Definition
	Motivation
	Nearest-neighbor rule
	MNIST dataset “2”
	Methods for computing NN
	2-dimensional kd-trees
	2-dimensional kd-trees
	Construction of kd-trees
	Construction of kd-trees
	Construction of kd-trees
	Construction of kd-trees
	Construction of kd-trees
	The complete kd-tree
	Region of node v
	Searching in kd-trees
	kd-tree: range queries
	Query time analysis
	Query time (Cont’d)
	d-dimensional kd-trees
	Construction of the d-dimensional kd-trees
	Locality-sensitive hashing (LSH)
	Approximate Nearest Neighbor
	Locality-Sensitive Hashing (LSH)
	Algorithm -- preprocessing
	Algorithm -- query
	Applications of LSH in data mining
	Applications
	How would you do it?	
	Running example: comparing documents
	Finding similar documents
	Key steps
	Shingles
	Assumption
	Data model: sets
	Similarity measures for sets
	Find similar objects using the Jaccard similarity
	Speedingup the naïve method
	Still problems
	Creating signatures
	Intuition behind Jaccard similarity
	A type of signatures -- minhashes
	“Surprising” property
	Minhash algorithm
	Example of minhash signatures
	Example of minhash signatures
	Example of minhash signatures
	Example of minhash signatures
	Is it now feasible?
	Being more practical
	Example of minhash signatures

