Recommendation Systems

Thanks to: Anand Rajaraman, Jeffrey D. Ullman
Items

Products, web sites, blogs, news items, …
Search

Items

Products, web sites, blogs, news items, …
Search

Recommendations

Items

Products, web sites, blogs, news items, …
From Scarcity to Abundance
From Scarcity to Abundance

- Shelf space is a scarce commodity for traditional retailers
- Also: TV networks, movie theaters, …
From Scarcity to Abundance

- Shelf space is a scarce commodity for traditional retailers

- Also: TV networks, movie theaters,…

- The web enables near-zero-cost dissemination of information about products

- From scarcity to abundance
From Scarcity to Abundance

- Shelf space is a scarce commodity for traditional retailers

- Also: TV networks, movie theaters, ...

- The web enables near-zero-cost dissemination of information about products

- From scarcity to abundance

- More choice necessitates better filters

- Recommendation engines
Recommendation Types
Recommendation Types

- Editorial
Recommendation Types

- Editorial
- Simple aggregates
- Top 10, Most Popular, Recent Uploads
Recommendation Types

- Editorial
- Simple aggregates
 - Top 10, Most Popular, Recent Uploads
- Tailored to individual users
 - Amazon, Netflix, …
Formal Model

• $C = \text{set of Customers}$

• $S = \text{set of Items}$

• Utility function $u: C \times S \rightarrow R$

• $R = \text{set of ratings}$

• R is a totally ordered set

• e.g., 0-5 stars, real number in [0,1]
<table>
<thead>
<tr>
<th></th>
<th>King Kong</th>
<th>LOTR</th>
<th>Matrix</th>
<th>Nacho Libre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>1</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bob</td>
<td>0.5</td>
<td></td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Carol</td>
<td>0.2</td>
<td>1</td>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td>David</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Key Problems
Key Problems

• Gathering “known” ratings for matrix
Key Problems

• Gathering “known” ratings for matrix

• Extrapolate unknown ratings from known ratings

• Mainly interested in high unknown ratings
Key Problems

- Gathering “known” ratings for matrix
- Extrapolate unknown ratings from known ratings
 - Mainly interested in high unknown ratings
- Evaluating extrapolation methods
Gathering Ratings
Gathering Ratings

• Explicit

 • Ask people to rate items

 • Doesn’t work well in practice – people can’t be bothered
Gathering Ratings

• Explicit
 • Ask people to rate items
 • Doesn’t work well in practice – people can’t be bothered

• Implicit
 • Learn ratings from user actions
 • e.g., purchase implies high rating
 • What about low ratings?
Extrapolating Utilities
Extrapolating Utilities

- Key problem: matrix U is sparse
 - most people have not rated most items
Extrapolating Utilities

• Key problem: matrix U is sparse
 • most people have not rated most items

• Three approaches
 • Content-based
 • Collaborative
 • Hybrid
Content-based recommendations
Content-based recommendations

• Main idea: recommend items to customer C similar to previous items rated highly by C
Content-based recommendations

- Main idea: recommend items to customer C similar to previous items rated highly by C

- Movie recommendations
 - recommend movies with same actor(s), director, genre, …
Content-based recommendations

- Main idea: recommend items to customer C similar to previous items rated highly by C

- Movie recommendations
 - recommend movies with same actor(s), director, genre, ...

- Websites, blogs, news
 - recommend other sites with “similar” content
Plan of Action
Plan of Action

likes

Item profiles
Plan of Action

User profile

Item profiles

Red
Circles
Triangles

likes

build
Plan of Action

Item profiles

User profile

likes

match

Red
Circles

Triangles

build
Plan of Action

recommend

Item profiles

likes
build

match

User profile

Red
Circles
Triangles

Sunday, December 8, 13
Item Profiles
Item Profiles

- For each item, create an item profile
Item Profiles

• For each item, create an item profile

• Profile is a set of features

 • movies: author, title, actor, director,…

 • text: set of “important” words in document
Item Profiles

• For each item, create an item profile

• Profile is a set of features
 - movies: author, title, actor, director,…
 - text: set of “important” words in document

• How to pick important words?
 - Usual heuristic is TF-IDF (Term Frequency times Inverse Doc Frequency)
TF.IDF

\[f_{ij} = \text{frequency of term } t_i \text{ in document } d_j \]

\[TF_{ij} = \frac{f_{ij}}{\max_k f_{kj}} \]

\[n_i = \text{number of docs that mention term } i \]

\[N = \text{total number of docs} \]

\[IDF_i = \log \frac{N}{n_i} \]

TF.IDF score \(w_{ij} = TF_{ij} \times IDF_i \)

Doc profile = set of words with highest TF.IDF scores, together with their scores
User profiles and prediction
User profiles and prediction

- User profile possibilities:
User profiles and prediction

- User profile possibilities:
 - Weighted average of rated item profiles
User profiles and prediction

• User profile possibilities:
 • Weighted average of rated item profiles
 • Variation: weight by difference from average rating for item ...
User profiles and prediction

- User profile possibilities:
 - Weighted average of rated item profiles
 - Variation: weight by difference from average rating for item ...

- Prediction heuristic
User profiles and prediction

- User profile possibilities:
 - Weighted average of rated item profiles
 - Variation: weight by difference from average rating for item...

- Prediction heuristic

 - Given user profile \(\mathbf{c} \) and item profile \(\mathbf{s} \), estimate \(u(\mathbf{c}, \mathbf{s}) = \cos(\mathbf{c}, \mathbf{s}) = \frac{\mathbf{c} \cdot \mathbf{s}}{|\mathbf{c}| |\mathbf{s}|} \)
User profiles and prediction

- User profile possibilities:
 - Weighted average of rated item profiles
 - Variation: weight by difference from average rating for item ...

- Prediction heuristic
 - Given user profile \(\mathbf{c} \) and item profile \(\mathbf{s} \), estimate \(u(\mathbf{c}, \mathbf{s}) = \cos(\mathbf{c}, \mathbf{s}) = \frac{\mathbf{c} \cdot \mathbf{s}}{|\mathbf{c}||\mathbf{s}|} \)
 - Need efficient method to find items with high utility: later
Model-based approaches
Model-based approaches

• For each user, learn a classifier that classifies items into rating classes
 • liked by user and not liked by user
 • e.g., Bayesian,
Model-based approaches

• For each user, learn a classifier that classifies items into rating classes
 • liked by user and not liked by user
 • e.g., Bayesian,

• Apply classifier to each item to find recommendation candidates
Model-based approaches

- For each user, learn a classifier that classifies items into rating classes
 - liked by user and not liked by user
 - e.g., Bayesian,
- Apply classifier to each item to find recommendation candidates
- Problem: scalability -- will not investigate further
Model-based approaches

- For each user, learn a classifier that classifies items into rating classes
 - liked by user and not liked by user
 - e.g., Bayesian,
- Apply classifier to each item to find recommendation candidates
- Problem: scalability -- will not investigate further
Limitations of content-based approach
Limitations of content-based approach

- Finding the appropriate features
- e.g., images, movies, music
Limitations of content-based approach

• Finding the appropriate features
 • e.g., images, movies, music
• Overspecialization
 • Never recommends items outside user’s content profile
 • People might have multiple interests
Limitations of content-based approach

- Finding the appropriate features
 - e.g., images, movies, music
- Overspecialization
 - Never recommends items outside user’s content profile
- People might have multiple interests
- Recommendations for new users
- How to build a profile?
Collaborative filtering

- Consider user c

- Find set D of other users whose ratings are “similar” to c’s ratings

- Estimate user’s ratings based on ratings of users in D
Similar Users
Similar Users

- Let r_x be the vector of user x's ratings
Similar Users

- Let r_x be the vector of user x's ratings
- Cosine similarity measure

 - $\text{sim}(x,y) = \cos(r_x, r_y)$
Similar Users

• Let r_x be the vector of user x’s ratings

• Cosine similarity measure

 • $\text{sim}(x,y) = \cos(r_x, r_y)$

• Pearson correlation coefficient

 • $S_{xy} = \text{items rated by both users } x \text{ and } y$
Similar Users

- Let r_x be the vector of user x’s ratings

- Cosine similarity measure

- $\text{sim}(x,y) = \cos(r_x, r_y)$

- \begin{align*}
 \text{sim}(x, y) &= \frac{\sum_{s \in S_{xy}} (r_{xs} - \bar{r}_x)(r_{ys} - \bar{r}_y)}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \bar{r}_x)^2 (r_{ys} - \bar{r}_y)^2}}
\end{align*}

- Pearson correlation coefficient

- $S_{xy} = \text{items rated by both users } x \text{ and } y$
Complexity
Complexity

- Expensive step is finding k most similar customers
Complexity

• Expensive step is finding k most similar customers

 • $O(|U|)$
Complexity

- Expensive step is finding k most similar customers
 - $O(|U|)$
- Too expensive to do at runtime
Complexity

- Expensive step is finding k most similar customers
 - $O(|U|)$
- Too expensive to do at runtime
 - Need to pre-compute
Complexity

- Expensive step is finding k most similar customers
 - $O(|U|)$
- Too expensive to do at runtime
 - Need to pre-compute
- Naïve precomputation takes time $O(N|U|)$
Complexity

- Expensive step is finding k most similar customers
 - $O(|U|)$
- Too expensive to do at runtime
 - Need to pre-compute
- Na"ive precomputation takes time $O(N|U|)$
 - Simple trick gives some speedup
Complexity

• Expensive step is finding k most similar customers
 • $O(|U|)$

• Too expensive to do at runtime
 • Need to pre-compute

• Naïve precomputation takes time $O(N|U|)$
 • Simple trick gives some speedup

• Can use clustering, partitioning as alternatives, but quality degrades
Item-item collaborative filtering
Item-item collaborative filtering

• So far: User-user collaborative filtering
Item-item collaborative filtering

- So far: User-user collaborative filtering

- Another view
 - For item s, find other similar items
 - Estimate rating for item based on ratings for similar items
 - Can use same similarity metrics and prediction functions as in user-user model
Item-item collaborative filtering

- So far: User-user collaborative filtering

- Another view

 - For item s, find other similar items

 - Estimate rating for item based on ratings for similar items

 - Can use same similarity metrics and prediction functions as in user-user model

- In practice, it has been observed that item-item often works better than user-user
Pros and Cons of Collaborative Filtering
Pros and Cons of Collaborative Filtering

- Works for any kind of item
- No feature selection needed
Pros and Cons of Collaborative Filtering

• Works for any kind of item

• No feature selection needed

• New user problem
Pros and Cons of Collaborative Filtering

- Works for any kind of item
- No feature selection needed
- New user problem
- New item problem
Pros and Cons of Collaborative Filtering

- Works for any kind of item
- No feature selection needed
- New user problem
- New item problem
- Sparsity of rating matrix
- Cluster-based smoothing?
Hybrid Methods
Hybrid Methods

- Implement two separate recommenders and combine predictions
Hybrid Methods

- Implement two separate recommenders and combine predictions
- Add content-based methods to collaborative filtering
 - item profiles for new item problem
 - demographics to deal with new user problem
Evaluating Predictions
Evaluating Predictions

- Compare predictions with known ratings
 - Root-mean-square error (RMSE)
Evaluating Predictions

- Compare predictions with known ratings
 - Root-mean-square error (RMSE)
- Another approach: 0/1 model
 - Coverage
 - Number of items/users for which system can make predictions
 - Precision
 - Accuracy of predictions
- Receiver operating characteristic (ROC)
 - Tradeoff curve between false positives and false negatives
Problems with Measures

- Narrow focus on accuracy sometimes misses the point
- Prediction Diversity
- Prediction Context
- Order of predictions
- In practice, we care only to predict high ratings
- RMSE might penalize a method that does well for high ratings and badly for others
Add Data

• Leverage all the data

• Don’t try to reduce data size in an effort to make fancy algorithms work

• Simple methods on large data do best

• Add more data

• e.g., add IMDB data on genres

• More Data Beats Better Algorithms

http://anand.typepad.com/datawocky/2008/03/more-data-usual.html
Finding similar vectors

- Common problem that comes up in many settings
- Given a large number N of vectors in some high-dimensional space (M dimensions), find pairs of vectors that have high cosine-similarity
 - e.g., user profiles, item profiles
How can we compute matrices P and Q such that $R = P \times Q$
Computing Latent Factors

$$\min_{P,Q} \sum_{(i,j) \in R} (R(i,j) - P(i,:)Q(:,j))^2$$

- SVD could be used but we have **missing entries**
- Specialized methods!
Computing Latent Factors

\[
\min_{P, Q} \sum_{(i, j) \in R} (R(i, j) - P(i, :)Q(:, j))^2
\]
Computing Latent Factors

\[
\min_{P,Q} \sum_{(i,j) \in R} (R(i,j) - P(i,:)Q(:,j))^2
\]

- \textbf{SVD:}

\[
\min_{V,\Sigma,U} \sum_{(i,j) \in R} (R(i,j) - (U\Sigma V^T)(i,j))^2
\]

\[
P = U \quad Q = \Sigma V^T
\]
Dealing with missing entries

• **Want to:** minimize Sum Square Error (SSE) on unseen test data

• **Idea:** Minimize SSE on training data

\[
\min_{P,Q} \sum_{(i,j) \text{ Training}} (R(i,j) - P(i,:)Q(:,j))^2 + \lambda \left(\sum_{i,j} P(i,j)^2 + \sum_{i,j} Q(i,j)^2 \right)
\]