Clustering: Partition Clustering
Lecture outline

- Distance/Similarity between data objects
- Data objects as geometric data points
- Clustering problems and algorithms
 - K–means
 - K–median
 - K–center
What is clustering?

- A **grouping** of data objects such that the objects within a group are similar (or related) to one another and different from (or unrelated to) the
What is clustering?

- A **grouping** of data objects such that the objects within a group are similar (or related) to one another and different from (or unrelated to) the
What is clustering?

- A **grouping** of data objects such that the objects within a group are similar (or related) to one another and different from (or unrelated to) the
What is clustering?

- **A grouping** of data objects such that the objects **within a group are similar** (or related) to one another and **different from** (or unrelated to) the others.

- **Intra-cluster distances** are minimized.

- **Inter-cluster distances** are maximized.
Outliers

• Outliers are objects that do not belong to any cluster or form clusters of very small cardinality.

• In some applications, we are interested in discovering outliers, not clusters (outlier analysis).
Why do we cluster?

• Clustering: given a collection of data objects group them so that
 – Similar to one another within the same cluster
 – Dissimilar to the objects in other clusters

• Clustering results are used:
 – As a stand-alone tool to get insight into data distribution
 • Visualization of clusters may unveil important information
 – As a preprocessing step for other algorithms
 • Efficient indexing or compression often relies on clustering
Applications of clustering?

- Image Processing
 - cluster images based on their visual content

- Web
 - Cluster groups of users based on their access patterns on webpages
 - Cluster webpages based on their content

- Bioinformatics
 - Cluster similar proteins together (similarity wrt chemical structure and/or functionality etc)

- Many more...
The clustering task

• Group observations into groups so that the observations belonging in the same group are similar, whereas observations in different groups are different

• Basic questions:
 – What does “similar” mean
 – What is a good partition of the objects? I.e., how is the quality of a solution measured
 – How to find a good partition of the observations
Partitioning algorithms: basic concept

- Construct a partition of a set of n objects into a set of k clusters
 - Each object belongs to exactly one cluster
 - The number of clusters k is given in advance
The k–means problem

• Given a set X of n points in a d–dimensional space and an integer k

• Task: choose a set of k points $\{c_1, c_2, \ldots, c_k\}$ in the d–dimensional space to form clusters $\{C_1, C_2, \ldots, C_k\}$ such that

$$Cost(C) = \sum_{i=1}^{k} \sum_{x \in C_i} L_2^2 (x - c_i)$$

is minimized

• Some special cases: $k = 1$, $k = n$
Algorithmic properties of the k–means problem

• NP–hard if the dimensionality of the data is at least 2 ($d \geq 2$)

• Finding the best solution in polynomial time is infeasible

• For $d=1$ the problem is solvable in polynomial time (how?)

• A simple iterative algorithm works quite well in practice
The k–means algorithm

• One way of solving the k–means problem

• Randomly pick k cluster centers \(\{c_1, \ldots, c_k\} \)

• For each \(i \), set the cluster \(C_i \) to be the set of points in \(X \) that are closer to \(c_i \) than they are to \(c_j \) for all \(i \neq j \)

• For each \(i \) let \(c_i \) be the center of cluster \(C_i \) (mean of the vectors in \(C_i \))

• Repeat until convergence
Properties of the k-means algorithm

• Finds a local optimum

• Converges often quickly (but not always)

• The choice of initial points can have large influence in the result
Two different K–means Clusterings

Original Points
Two different K-means Clusterings

Original Points

Optimal Clustering
Two different K–means Clusterings

Original Points

Optimal Clustering

Sub-optimal Clustering
Discussion k–means algorithm

• Finds a local optimum
• Converges often quickly (but not always)
• The choice of initial points can have large influence
 – Clusters of different densities
 – Clusters of different sizes

• Outliers can also cause a problem (Example?)
Some alternatives to random initialization of the central points

• Multiple runs
 – Helps, but probability is not on your side

• Select original set of points by methods other than random. E.g., pick the most distant (from each other) points as cluster centers (kmeans++ algorithm)
The k–median problem

• Given a set \(X \) of \(n \) points in a \(d \)-dimensional space and an integer \(k \)

• **Task:** choose a set of \(k \) points \(\{C_1, C_2, \ldots, C_k\} \) from \(X \) and form clusters \(\{C_1, C_2, \ldots, C_k\} \) such that

\[
Cost(C) = \sum_{i=1}^{k} \sum_{x \in C_i} L_1(x, c_i)
\]

is minimized
The k-medoids algorithm

• Or ... PAM (Partitioning Around Medoids, 1987)

– Choose randomly k medoids from the original dataset X
– Assign each of the $n-k$ remaining points in X to their closest medoid
– iteratively replace one of the medoids by one of the non-medoids if it improves the total clustering cost
Discussion of PAM algorithm

• The algorithm is very similar to the k-means algorithm

• It has the same advantages and disadvantages

• How about efficiency?
CLARA (Clustering Large Applications)

• It draws **multiple samples** of the data set, applies PAM on each sample, and gives the best clustering as the output

• **Strength**: deals with larger data sets than PAM

• **Weakness:**
 – Efficiency depends on the sample size
 – A good clustering based on samples will not necessarily represent a good clustering of the whole data set if the sample is biased
The k–center problem

• Given a set X of n points in a d–dimensional space and an integer k

• Task: Partition the points in X in k clusters $\{C_1, C_2, \ldots, C_k\}$ such that

$$R(C) = \max_i \max_{x, x' \in C_i} d(x, x')$$

is minimized
Algorithmic properties of the k-centers problem

- NP-hard if the dimensionality of the data is at least 2 ($d \geq 2$)

- Finding the best solution in polynomial time is infeasible

- For $d = 1$ the problem is solvable in polynomial time (how?)

- A simple combinatorial algorithm works well in practice
The furthest-first traversal algorithm

• Pick any data point and label it as point 1
• For i=2,3,...,k
 – Find the unlabelled point furthest from \{1,2,...,i-1\} and label it as i.

 // Use \(d(x,S) = \min_{y \in S} d(x,y) \) to identify the distance \(d(x,S) \) of a point from a set
 – \(\pi(i) = \arg\min_{j<i} d(i,j) \)
 – \(R_i = d(i,\pi(i)) \)
• Assign the remaining unlabelled points to their closest labelled point
The furthest-first traversal is a 2-approximation algorithm

- **Claim 1**: \(R_1 \geq R_2 \geq \ldots \geq R_n \)

- **Proof**:
 - \(R_j = d(j, \pi(j)) = d(j, \{1,2,\ldots,j-1\}) \)
 - \(\leq d(j, \{1,2,\ldots,i-1\}) \quad // j > i \)
 - \(\leq d(i, \{1,2,\ldots,i-1\}) = R_i \)
The furthest-first traversal is a 2-approximation algorithm

• Claim 2: If C is the clustering reported by the farthest algorithm, then $R(C) = R_{k+1}$

• Proof:
 – For all $i > k$ we have that $d(i, \{1,2,\ldots,k\}) \leq d(k+1,\{1,2,\ldots,k\}) = R_{k+1}$
The furthest-first traversal is a 2-approximation algorithm

- **Theorem:** If C is the clustering reported by the farthest algorithm, and C^* is the optimal clustering, then $R(C) \leq 2 \times R(C^*)$

- **Proof:**
 - Let $C^*_1, C^*_2, \ldots, C^*_k$ be the clusters of the optimal k-clustering.

 - If these clusters contain points $\{1, \ldots, k\}$ then $R(C) \leq 2 \times R(C^*)$ (triangle inequality)

 - Otherwise suppose that one of these clusters contains two or more of the points in $\{1, \ldots, k\}$. These points are at distance at least R_k from each other. Thus clusters must have radius
 \[\frac{1}{2} R_k \geq \frac{1}{2} R_{k+1} = \frac{1}{2} R(C) \]
What is the right number of clusters?

• ...or who sets the value of k?

• For n points to be clustered consider the case where $k=n$. What is the value of the error function?

• What happens when $k = 1$?

• Since we want to minimize the error why don’t we select always $k = n$?
Occam’s razor and the minimum description length principle

- Clustering provides a description of the data
- For a description to be good it has to be:
 - Not too general
 - Not too specific
- Penalize for every extra parameter that one has to pay
- Penalize the number of bits you need to describe the extra parameter
- So for a clustering C, extend the cost function as follows:
 - $\text{NewCost}(C) = \text{Cost}(C) + |C| \times \log n$