Covering problems
Prototype problems: Covering problems

• Setting:
 – Universe of N elements $U = \{U_1, \ldots, U_N\}$
 – A set of n sets $S = \{s_1, \ldots, s_n\}$
 – Find a collection C of sets in S ($C \subset S$) such that $\bigcup_{c \in C} c$ contains many elements from U

• Example:
 – U: set of documents in a collection
 – s_i: set of documents that contain term t_i
 – Find a collection of terms that cover most of the documents
Prototype covering problems

- **Set cover problem**: Find a small collection C of sets from S such that all elements in the universe U are covered by some set in C.

- **Best collection problem**: find a collection C of k sets from S such that the collection covers as many elements from the universe U as possible.

- Both problems are NP-hard.

- Simple approximation algorithms with provable properties are available and very useful in practice.
Set-cover problem

- Universe of N elements $U = \{U_1, \ldots, U_N\}$
- A set of n sets $S = \{s_1, \ldots, s_n\}$ such that $\bigcup_i s_i = U$

Question: Find the smallest number of sets from S to form collection C (C subset of S) such that $\bigcup_{c \in C} c = U$

- The set-cover problem is **NP-hard** (what does this mean?)
Trivial algorithm

• Try all subcollections of S

• Select the smallest one that covers all the elements in U
Trivial algorithm

• Try all subcollections of S

• Select the smallest one that covers all the elements in U

• The running time of the trivial algorithm is $O(2^{|S|}|U|)$
Trivial algorithm

• Try all subcollections of S

• Select the smallest one that covers all the elements in U

• The running time of the trivial algorithm is $O(2^{|S|} |U|)$
Trivial algorithm

• Try all subcollections of S

• Select the smallest one that covers all the elements in U

• The running time of the trivial algorithm is $O(2^{|S|}|U|)$

• This is way too slow
Greedy algorithm for set cover

• Select first the largest-cardinality set \(s \) from \(S \)

• Remove the elements from \(s \) from \(U \)

• Recompute the sizes of the remaining sets in \(S \)

• Go back to the first step
As an algorithm

- $X = U$
- $C = \emptyset$
- while X is not empty do
 - For all $s \in S$ let $a_s = |s \text{ intersection } X|$
 - Let s be such that a_s is maximal
 - $C = C \cup \{s\}$
 - $X = X \setminus s$
How can this go wrong?

• No global consideration of how good or bad a selected set is going to be
How good is the greedy algorithm?
How good is the greedy algorithm?

• Consider a minimization problem
 – In our case we want to minimize the cardinality of set \(C \)

• Consider an instance \(I \), and cost \(a^*(I) \) of the optimal solution
 – \(a^*(I) \): is the minimum number of sets in \(C \) that cover all elements in \(U \)

• Let \(a(I) \) be the cost of the approximate solution
 – \(a(I) \): is the number of sets in \(C \) that are picked by the greedy algorithm

• An algorithm for a minimization problem has approximation factor \(F \) if for all instances \(I \) we have that
 \[a(I) \leq F \times a^*(I) \]

• Can we prove any approximation bounds for the greedy algorithm for set cover?
How good is the greedy algorithm for set cover?

• (Trivial?) Observation: The greedy algorithm for set cover has approximation factor $F = s_{\text{max}}$, where s_{max} is the set in S with the largest cardinality.
How good is the greedy algorithm for set cover?

• (Trivial?) Observation: The greedy algorithm for set cover has approximation factor \(F = s_{\text{max}} \), where \(s_{\text{max}} \) is the set in \(S \) with the largest cardinality.

• Proof:
 \[a^*(I) \geq N / |s_{\text{max}}| \text{ or } N \leq |s_{\text{max}}|a^*(I) \]
 \[a(I) \leq N \leq |s_{\text{max}}|a^*(I) \]
How good is the greedy algorithm for set cover? A tighter bound

• The greedy algorithm for set cover has approximation factor $F = O(\log |s_{\text{max}}|)$

• **Proof**: (From CLR “Introduction to Algorithms”)
Best-collection problem

- Universe of N elements $U = \{U_1, \ldots, U_N\}$
- A set of n sets $S = \{s_1, \ldots, s_n\}$ such that $U_i \cap s_i = U$

Question: Find the collection C consisting of k sets from S such that $f(C) = |U_{c \in C} c|$ is maximized

- The best-collection problem is NP-hard

- Simple approximation algorithm has approximation factor $F = (e-1)/e$
Greedy approximation algorithm for the best-collection problem

- \(C = \{\} \)
- for every set \(s \) in \(S \) and not in \(C \) compute the gain of \(s \):
 \[
 g(s) = f(C \cup \{s\}) - f(C)
 \]
- Select the set \(s \) with the maximum gain
- \(C = C \cup \{s\} \)
- Repeat until \(C \) has \(k \) elements
Basic theorem

- The greedy algorithm for the best-collection problem has approximation factor $F = (e-1)/e$

- C^*: optimal collection of cardinality k
- C: collection output by the greedy algorithm
- $f(C) \geq (e-1)/e \times f(C^*)$