Graph Clustering
Why graph clustering is useful?

• Distance matrices are graphs → as useful as any other clustering

• Identification of communities in social networks

• Webpage clustering for better data management of web data
Outline

• Min s–t cut problem
• Min cut problem
• Multiway cut
• Minimum k–cut
• Other normalized cuts and spectral graph partitionings
Min $s-t$ cut

• Weighted graph $G(V,E)$

• An $s-t$ cut $C = (S,T)$ of a graph $G = (V, E)$ is a cut partition of V into S and T such that $s \in S$ and $t \in T$

• Cost of a cut: $\text{Cost}(C) = \sum_{e(u,v) \in S, v \in T} w(e)$

• **Problem:** Given G, s and t find the minimum cost $s-t$ cut
Max flow problem

- Flow network
 - Abstraction for material \textit{flowing} through the edges
 - $G = (V,E)$ directed graph with no parallel edges
 - Two distinguished nodes: $s = \text{source}$, $t = \text{sink}$
 - $c(e) =$ capacity of edge e
Cuts

• An s–t cut is a partition \((S,T)\) of \(V\) with \(s \in S\) and \(t \in T\)

• capacity of a cut \((S,T)\) is \(\text{cap}(S,T) = \sum_{e \text{ out of } S} c(e)\)

• Find s–t cut with the minimum capacity: this problem can be solved optimally in polynomial time by using flow techniques
Flows

• An s–t flow is a function that satisfies
 – For each $e \in E$ $0 \leq f(e) \leq c(e)$ [capacity]
 – For each $v \in V - \{s, t\}$:
 \[\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)\] [conservation]

• The value of a flow f is:
 \[v(f) = \sum_{e \text{ out of } s} f(e)\]
Max flow problem

• Find $s-t$ flow of maximum value
Flows and cuts

• **Flow value lemma:** Let f be any flow and let (S,T) be any $s-t$ cut. Then, the net flow sent across the cut is equal to the amount leaving s

\[
\sum_{e \text{ out of } S} f(e) - \sum_{e \text{ in to } S} f(e) = v(f)
\]
Flows and cuts

• **Weak duality:** Let f be any flow and let (S,T) be any $s-t$ cut. Then the value of the flow is at most the capacity of the cut defined by (S,T):

$$v(f) \leq \text{cap}(S,T)$$
Certificate of optimality

• Let f be any flow and let (S,T) be any cut. If $v(f) = \text{cap}(S,T)$ then f is a max flow and (S,T) is a min cut.

• The min–cut max–flow problems can be solved optimally in polynomial time!
Setting

• Connected, undirected graph $G= (V,E)$

• Assignment of weights to edges: $w: E \rightarrow \mathbb{R}^+$

• **Cut**: Partition of V into two sets: V', $V-V'$. The set of edges with one end point in V and the other in V' define the cut

• The removal of the cut disconnects G

• **Cost of a cut**: sum of the weights of the edges that have one of their end point in V' and the other in $V-V'$
Min cut problem

• Can we solve the min-cut problem using an algorithm for s–t cut?
Randomized min-cut algorithm

- **Repeat**: pick an edge uniformly at random and merge the two vertices at its end-points
 - If as a result there are several edges between some pairs of (newly-formed) vertices retain them all
 - Edges between vertices that are merged are removed (**no self-loops**)

- **Until** only two vertices remain

- The set of edges between these two vertices is a cut in G and is output as a candidate min-cut
Example of contraction
Observations on the algorithm

• Every cut in the graph at any intermediate stage is a cut in the original graph
Analysis of the algorithm

• C the min-cut of size k \rightarrow G has at least $kn/2$ edges
 – Why?
• E_i: the event of not picking an edge of C at the i-th step for $1 \leq i \leq n-2$
• Step 1:
 – Probability that the edge randomly chosen is in C is at most $2k/(kn)=2/n \rightarrow \Pr(E_1) \geq 1-2/n$
• Step 2:
 – If E_1 occurs, then there are at least $k(n-1)/2$ edges remaining
 – The probability of picking one from C is at most $2/(n-1) \rightarrow \Pr(E_2|E_1) = 1 - 2/(n-1)$
• Step i:
 – Number of remaining vertices: $n-i+1$
 – Number of remaining edges: $k(n-i+1)/2$ (since we never picked an edge from the cut)
 – $\Pr(E_i|\Pi_{j=1\ldots i-1} E_j) \geq 1 - 2/(n-i+1)$
 – Probability that no edge in C is ever picked: $\Pr(\Pi_{i=1\ldots n-2} E_i) \geq \Pi_{i=1\ldots n-2} (1-2/(n-i+1))=2/(n^2-n)$
• The probability of discovering a particular min-cut is larger than $2/n^2$
• Repeat the above algorithm $n^2/2$ times. The probability that a min-cut is not found is $(1-2/n^2)^{n^2/2} < 1/e$
Multiway cut
(analogue of s–t cut)

- **Problem:** Given a set of terminals $S = \{s_1, \ldots, s_k\}$ subset of V, a multiway cut is a set of edges whose removal disconnects the terminals from each other. The multiway cut problem asks for the minimum weight such set.

- The multiway cut problem is NP-hard (for $k > 2$)
Algorithm for multiway cut

• For each $i=1,\ldots,k$, compute the minimum weight isolating cut for s_i, say C_i

• Discard the heaviest of these cuts and output the union of the rest, say C

• **Isolating cut** for s_i: The set of edges whose removal disconnects s_i from the rest of the terminals

• How can we find a minimum-weight isolating cut?
 – Can we do it with a single s–t cut computation?
Approximation result

• The previous algorithm achieves an approximation guarantee of $2 - \frac{2}{k}$

• Proof
Minimum k-cut

- A set of edges whose removal leaves k connected components is called a k-cut. The minimum k-cut problem asks for a minimum-weight k-cut.

- Recursively compute cuts in G (and the resulting connected components) until there are k components left.

- This is a $(2-2/k)$-approximation algorithm.
Minimum k–cut algorithm

• Compute the Gomory–Hu tree T for G

• Output the union of the lightest $k-1$ cuts of the $n-1$ cuts associated with edges of T in G; let C be this union

• The above algorithm is a $(2-2/k)$–approximation algorithm
Gomory–Hu Tree

• T is a tree with vertex set V

• The edges of T need not be in E

• Let e be an edge in T; its removal from T creates two connected components with vertex sets (S,S')

• The cut in G defined by partition (S,S') is the cut associated with e in G
Gomory–Hu tree

- Tree T is said to be the Gomory–Hu tree for G if
 - For each pair of vertices u,v in V, the weight of a minimum $u-v$ cut in G is the same as that in T
 - For each edge e in T, $w'(e)$ is the weight of the cut associated with e in G
Min–cuts again

• What does it mean that a set of nodes are well or sparsely interconnected?

• \textbf{min–cut}: the min number of edges such that when removed cause the graph to become disconnected
 – small min–cut implies sparse connectivity
 – \(\min_{U} E(U, V \setminus U) = \sum_{i \in U} \sum_{j \in V \setminus U} A[i, j] \)
Measuring connectivity

• What does it mean that a set of nodes are well interconnected?

• **min-cut**: the min number of edges such that when removed cause the graph to become disconnected – not always a good idea!
Graph expansion

- Normalize the cut by the size of the smallest component
- **Cut ratio:** \(\alpha = \frac{E(U, V \setminus U)}{\min\{|U|, |V \setminus U|\}} \)
- **Graph expansion:**
 \[
 \alpha(G) = \min_U \frac{E(U, V \setminus U)}{\min\{|U|, |V \setminus U|\}}
 \]
- We will now see how the graph expansion relates to the eigenvalue of the adjacency matrix \(A \)
Spectral analysis

• The Laplacian matrix \(L = D - A \) where
 - \(A \) = the adjacency matrix
 - \(D = \text{diag}(d_1, d_2, \ldots, d_n) \)
 - \(d_i \) = degree of node \(i \)

• Therefore
 - \(L(i, i) = d_i \)
 - \(L(i, j) = -1 \), if there is an edge \((i, j)\)
Laplacian Matrix properties

• The matrix L is **symmetric and positive semi-definite**
 – all eigenvalues of L are positive

• The matrix L has 0 as an eigenvalue, and corresponding eigenvector $w_1 = (1,1,\ldots,1)$
 – $\lambda_1 = 0$ is the smallest eigenvalue
The second smallest eigenvalue

- The second smallest eigenvalue (also known as Fielder value) λ_2 satisfies

$$\lambda_2 = \min_{\|x\|=1, x \perp w_1} x^T L x$$

- The vector that minimizes λ_2 is called the Fielder vector. It minimizes

$$\lambda_2 = \min_{x \neq 0} \frac{\sum_{(i,j) \in E} (x_i - x_j)^2}{\sum_i x_i^2} \quad \text{where} \quad \sum_i x_i = 0$$
Spectral ordering

• The values of x minimize

$$\min_{x \neq 0} \frac{\sum_{(i,j) \in E} (x_i - x_j)^2}{\sum_i x_i^2} \quad \sum_i x_i = 0$$

• For weighted matrices

$$\min_{x \neq 0} \frac{\sum_{(i,j)} A[i,j] (x_i - x_j)^2}{\sum_i x_i^2} \quad \sum_i x_i = 0$$

• The ordering according to the x_i values will group similar (connected) nodes together

• Physical interpretation: The stable state of springs placed on the edges of the graph
Spectral partition

• Partition the nodes according to the ordering induced by the Fielder vector

• If $u = (u_1, u_2, \ldots, u_n)$ is the Fielder vector, then split nodes according to a value s
 – bisection: s is the median value in u
 – ratio cut: s is the value that minimizes α
 – sign: separate positive and negative values ($s=0$)
 – gap: separate according to the largest gap in the values of u

• This works well (provably for special cases)
Fielder Value

- The value λ_2 is a good approximation of the graph expansion

$$\frac{\alpha(G)^2}{2d} \leq \lambda_2 \leq 2\alpha(G)$$

$d = \text{maximum degree}$

$$\frac{\lambda_2}{2} \leq \alpha(G) \leq \sqrt{\lambda_2(2d - \lambda_2)}$$

- If the max degree d is bounded we obtain a good approximation of the minimum expansion cut
Conductance

• The expansion does not capture the inter-cluster similarity well
 – The nodes with high degree are more important

• Graph Conductance

\[\phi(G) = \min_U \frac{E(U, V \setminus U)}{\min\{d(U), d(V - U)\}} \]

 – weighted degrees of nodes in U

\[d(U) = \sum_{i \in U} \sum_{j \in U} A[i, j] \]
Conductance and random walks

• Consider the normalized stochastic matrix $M = D^{-1}A$

• The conductance of the Markov Chain M is

$$
\phi(M) = \min_U \frac{\sum_{i \in U} \sum_{j \notin U} \pi(i) M[i, j]}{\min\{\pi(U), \pi(V - U)\}}
$$

 – the probability that the random walk escapes set U

• The conductance of the graph is the same as that of the Markov Chain, $\varphi(G) = \varphi(M)$

• Conductance φ is related to the second eigenvalue of the matrix M

$$
\frac{\phi^2}{8} \leq 1 - \mu_2 \leq \phi
$$
Interpretation of conductance

• Low conductance means that there is some bottleneck in the graph
 – a subset of nodes not well connected with the rest of the graph.

• High conductance means that the graph is well connected
Clustering Conductance

• The conductance of a clustering is defined as the maximum conductance over all clusters in the clustering.

• Minimizing the conductance of clustering seems like a natural choice.
A spectral algorithm

- Create matrix $M = D^{-1}A$
- Find the second largest eigenvector v
- Find the best ratio-cut (minimum conductance cut) with respect to v
- Recurse on the pieces induced by the cut.

- The algorithm has provable guarantees
A divide and merge methodology

• **Divide** phase:
 – Recursively partition the input into two pieces until singletons are produced
 – output: a tree hierarchy

• **Merge** phase:
 – use dynamic programming to merge the leafs in order to produce a tree–respecting flat clustering
Merge phase or dynamic-programming on trees

• The **merge** phase finds the optimal clustering in the tree T produced by the **divide** phase

• k–means objective with cluster centers c_1, \ldots, c_k:

$$F (\{C_1, \ldots, C_k\}) \sum_i \sum_{u \in C_i} d(u, c_i)^2$$
Dynamic programming on trees

- **OPT(C, i):** optimal clustering for C using i clusters
- **C_L, C_R** the left and the right children of node C

- Dynamic-programming recurrence

\[
OPT(C, i) = \begin{cases}
C, & \text{when } i = 1 \\
\arg \min_{1 \leq j \leq i} F(OPT(C_L, j) \cup OPT(C_R, i - j)), & \text{otherwise}
\end{cases}
\]