Graph Clustering
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Why graph clustering is
useful?

» Distance matrices are graphs > as
useful as any other clustering

* |dentification of communities in social
networks

« Webpage clustering for better data
management of web data
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Outline

* Min s-t cut problem
* Min cut problem

* Multiway cut

* Minimum k-cut

* Other normalized cuts and spectral
graph partitionings
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Min s—t cut

* Weighted graph G(V,E)

* Ans-tcutC = (5,T) ofagraph G = (V, E)
is a cut partition of Vinto S and T such
that seS and teT

* Cost of a cut: Cost(C) = Ze(u,v) uES. v ET w(e)

Problem: Given G, s and t find the
minimum cost s-t cut
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Max flow problem

* Flow network
— Abstraction for material flowing through

the edges

— G = (V,E) directed graph with no parallel
edges

— Two distinguished nodes: s = source, t=
sink

—c(e) = capacity of edge e
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Cuts

* An s-t cut is a partition (S5,T) of V with s€S
and teT

* capacity of a cut (S,T) is
cap(S,T) = Ze out of SC(E)

* Find s-t cut with the minimum capacity: this
oroblem can be solved optimally in
nolynomial time by using flow techniques
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Flows

« An s-t flow is a function that satisfies
— For each eeE 0<f(e) <c(e) [capacity]

— For each veV- {s t}:

f(e) = f(e) [conservation]

elntov eoutofv

 The value of a flow f is:
v(f) = X f(e)

e out of s
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Max flow problem

* Find s-t flow of maximum value
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Flows and cuts

* Flow value lemma: Let f be any flow
and let (S,T) be any s-t cut. Then, the
net flow sent across the cut is equal to

the amount leaving s

Ze out of S f(E) B Ze into S f(E) — V(f)
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Flows and cuts

* Weak duality: Let f be any flow and let
(S,T) be any s-t cut. Then the value of
the flow is at most the capacity of the
cut defined by (S,T):

v(f) <cap(S,T)
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Certificate of optimality

* Let f be any flow and let (S,T) be any
cut. If v(f) = cap(S,T) then f is a max
flow and (S,T) is a min cut.

* The min-cut max-flow problems can
be solved optimally in polynomial time!
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Setting

Connected, undirected graph G=(V,E)
Assignment of weights to edges: w: E>R*

Cut: Partition of V into two sets: V’, V-V’. The set
of edﬁes with one end point in V and the other in
V’ define the cut

The removal of the cut disconnects G

Cost of a cut: sum of the weights of the edges
that have one of their end point in V’ and the
other in V-V’

Wednesday, October 16, 13



Min cut problem

* Can we solve the min-cut problem
using an algorithm for s-t cut?
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Randomized min-cut
algorithm

* Repeat : pick an edge uniformly at random and
merge the two vertices at its end-points

— If as a result there are several edges between some
pairs of (newly-formed) vertices retain them all

— Edges between vertices that are merged are removed
(no self-loops)

* Until only two vertices remain

* The set of edges between these two vertices is a
cut in G and is output as a candidate min-cut
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Example of contraction

)
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Observations on the
algorithm

* Every cut in the graph at any
intermediate stage is a cut in the
original graph
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Analysis of the algorithm

C the min-cut of size k > G has at least kn/2 edges
— Why?
E: the event of not picking an edge of C at the i-th step for 1<i <n-2

Step 1:
— Probability that the edge randomly chosen is in C is at most 2k/(kn)=2/n > Pr(El)
> 1-2/n
Step 2:
- If E1 occurs, then there are at least k(n-1)/2 edges remaining

— The probability of picking one from C is at most 2/(n-1) > Pr(E,|IE)) = 1-2/(n-1)

Step i:
— Number of remaining vertices: n-i+1

- Nur)nber of remaining edges: k(n-i+1)/2 (since we never picked an edge from the
cut

_ Pr(EiII'Ij=1__i_1 Ej) >21-2/(n-i+1)
— Probability that no edge in C is ever picked: Pr(l._E) =TI
+1))=2/(n2-n)
The probability of discovering a particular min-cut is larger than 2/n?

Repeat the above algorithm n2/2 times. The probability that a min-cut is not found is
(1-2/n2)n"2/2 < 1 /e

(1-2/(n-i

i=1...n-2
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Multiway cut
(analogue of s-t cut)

- Problem: Given a set of terminals S = {s,...,s}

subset of V, a multiway cut is a set of edges whose
removal disconnects the terminals from each other.
The multiway cut problem asks for the minimum

weight such set.

 The multiway cut problem is NP-hard (for k>2)
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Algorithm for multiway cut

 Foreach i=1,...,k, compute the minimum weight
isolating cut for s, say C

« Discard the heaviest of these cuts and output
the union of the rest, say C

. Isolating cut for s.: The set of edges whose
removal disconnects s, from the rest of the
terminals

« How can we find a minimum-weight isolating
cut?

— Can we do it with a single s-t cut computation?
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Approximation result

* The previous algorithm achieves an
approximation guarantee of 2-2/k

* Proof
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Minimum k-cut

* A set of edges whose removal leaves k
connected components is called a k-cut.
The minimum k-cut problem asks for a
minimum-weight k-cut

* Recursively compute cuts in G (and the
resulting connected components) until
there are k components left

* Thisis a (2-2/k)-approximation
algorithm
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Minimum k-cut algorithm

 Compute the Gomory-Hu tree T for G

* Output the union of the lightest k-1
cuts of the n-1 cuts associated with
edges of T in G; let C be this union

* The above algorithm is a (2-2/k)-
approximation algorithm

Wednesday, October 16, 13



Gomory-Hu Tree

T is a tree with vertex set V

The edges of T need not be in E

* Let e be an edge in T; its removal from T
creates two connected components with
vertex sets (S,S’)

 The cut in G defined by partition (S,S’) is
the cut associated with e in G
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Gomory-Hu tree

* Tree T is said to be the Gomory-Hu
tree for G if
— For each pair of vertices u,v in V, the

weight of a minimum u-v cut in G is the
same as thatin T

— For each edge e in T, w'(e) is the weight
of the cut associated with e in G
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Min-cuts again

« What does it mean that a set of nodes are well or
sparsely interconnected?

: the min number of edges such that when
removed cause the graph to become disconnected
— small min-cut implies sparse connectivity

—mmEUV\U YYA@]
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Measuring connectivity

« What does it mean that a set of nodes are well
interconnected?

* min-cut: the min number of edges such that when
removed cause the graph to become disconnected
— not always a good idea!

U
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Graph expansion

 Normalize the cut by the size of the smallest

compone.nt - BE(U.V\U)
- min{|U[, [V \U[}
a(G) = min EWUVAU)

v min{|U|, [V \U|}
* We will now see how the graph expansion

relates to the eigenvalue of the adjacency
matrix A
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Spectral analysis

* The Laplacian matrix L = D - A where

— A = the adjacency matrix
— D = diag(d,,d,,...,d,)

- d. = degree of node |

* Therefore
—L(Gi,i) = d,
—LG,j) = -1, if there is an edge (i,j)
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Laplacian Matrix properties

* The matrix L is and

— all eigenvalues of L are positive

 The matrix L has 0 as an eigenvalue,
and corresponding eigenvector w, =

(1,1,...,1)
—A; = 0 is the smallest eigenvalue
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The second smallest

eigenvalue

* The second smallest eigenvalue (also
known as ) A, satisfies

Ao = min  z! Lx
|x||=1,x Lw

» The vector that minimizes A, is called
the It minimizes

> iner (T —
Ao = min (”)GEE:x 2 where Z%_O
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Spectral ordering

The values of x minimize

min E(% J)EE Z r; =0

x#0
For weighted matrlces

Z('LJ)A[Z.] J)Z—LBJ : :ZUZ—O
min

x#0 Zz CU,L

The ordering according to the x. values will group
similar (connected) nodes together

Physical interpretation: The stable state of springs
placed on the edges of the graph
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Spectral partition

 Partition the nodes according to the ordering
induced by the Fielder vector

 If u=(uy,u,,...,u,) is the Fielder vector, then

split nodes according to a value

— bisection: s is the median value in u

— ratio cut: s is the value that minimizes «

— sign: separate positive and negative values ( )

— gap: separate according to the largest gap in the
values of u

* This works well (provably for special cases)
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Fielder Value

« The value A, is a good approximation of the graph expansion

d = maximum degree

— < Oz(G) < \/)\Q(Zd— )\2)

 If the max degree d is bounded we obtain a good
approximation of the minimum expansion cut
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Conductance

 The expansion does not capture the
inter-cluster similarity well

— The nodes with high degree are more
Important

EU,V\U)
v min{d(U),d(V —U)}

d(G) = mln

weighted degrees of nodes in U

eU gelU
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Conductance and random
walks

 Consider the normalized stochastic matrix M = D-1A
« The conductance of the Markov Chain M is

. D icu nggU m(4) Mz, j]
AM) = min (). 2 (V\ T}

— the probability that the random walk escapes set U

 The conductance of the graph is the same as that of
the Markov Chain, @(G) = (M)

» Conductance o is related to the second eigenvalue
of the matrix M
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Interpretation of conductance

 Low conductance means that there is
some in the graph

— a subset of nodes not well connected with
the rest of the graph.

» High conductance means that the
graph is well connected
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Clustering Conductance

* The conductance of a clustering is
defined as the maximum conductance
over all clusters in the clustering.

* Minimizing the conductance of
clustering seems like a natural choice
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A spectral algorithm

* Create matrix M = DA
* Find the second largest eigenvector v

* Find the best ratio-cut (minimum
conductance cut) with respect to v

* Recurse on the pieces induced by the

CuUt.

* The algorithm has provable guarantees
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A divide and merge
methodology

phase:

— Recursively partition the input into two
pieces until singletons are produced

— output: a tree hierarchy
* Merge phase:

— use dynamic programming to merge the
leafs in order to produce a tree-respecting
flat clustering
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Merge phase or dynamic-
progamming on trees

 The merge phase finds the optimal

clustering in the tree T produced by
the divide phase

* k-means objective with cluster centers

F{Cr,....Ce}) Y > d(u,c;)?

1 ued;
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Dynamic programming on
trees

* OPT(C,i): optimal clustering for C
using i clusters

- C,, C_the left and the right children of
hode C

* Dynamic-programming recurrence
C,wheni=1

OPT(C,i) = . .
(C.0) {arg min,_._. F(OPT(C,, j)UOPT(C,,i- j)), otherwise
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