Lecture outline

• Classification
• Decision–tree classification
What is classification?

![Table](image)

Figure 4.6. Training set for predicting borrowers who will default on loan payments.
What is classification?

Classification is the task of learning a target function f that maps attribute set x to one of the predefined class labels y.

![Table Example]

Figure 4.6. Training set for predicting borrowers who will default on loan payments.
What is classification?

Figure 4.2. Classification as the task of mapping an input attribute set x into its class label y.
Why classification?

• The target function f is known as a classification model

• **Descriptive modeling**: Explanatory tool to distinguish between objects of different classes (e.g., description of who can pay back his loan)

• **Predictive modeling**: Predict a class of a previously **unseen** record
Typical applications

- credit approval
- target marketing
- medical diagnosis
- treatment effectiveness analysis
General approach to classification

• **Training set** consists of records with known class labels

• Training set is used to **build a classification model**

• The classification model is applied to the **test set** that consists of records with **unknown labels**
General approach to classification

![Diagram showing the general approach to classification]

Figure 4.3. General approach for building a classification model.
Evaluation of classification models

- Counts of test records that are correctly (or incorrectly) predicted by the classification model
- Confusion matrix

\[
\begin{array}{c|cc}
\text{Actual Class} & \text{Class = 1} & \text{Class = 0} \\
\hline
\text{Class = 1} & f_{11} & f_{10} \\
\text{Class = 0} & f_{01} & f_{00} \\
\end{array}
\]

Accuracy
\[
\text{Accuracy} = \frac{\text{# correct predictions}}{\text{total # of predictions}} = \frac{f_{11} + f_{00}}{f_{11} + f_{10} + f_{01} + f_{00}}
\]

Error rate
\[
\text{Error rate} = \frac{\text{# wrong predictions}}{\text{total # of predictions}} = \frac{f_{10} + f_{01}}{f_{11} + f_{10} + f_{01} + f_{00}}
\]
Supervised vs. Unsupervised Learning

- **Supervised learning (classification)**
 - Supervision: The training data (observations, measurements, etc.) are accompanied by labels indicating the class of the observations
 - New data is classified based on the training set

- **Unsupervised learning (clustering)**
 - The class labels of training data is unknown
 - Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data
Decision Trees

- Decision tree
 - A flow-chart-like tree structure
 - Internal node denotes a test on an attribute
 - Branch represents an outcome of the test
 - Leaf nodes represent class labels or class distribution

- Decision tree generation consists of two phases
 - **Tree construction**
 - At start, all the training examples are at the root
 - Partition examples recursively based on selected attributes
 - **Tree pruning**
 - Identify and remove branches that reflect noise or outliers

- Use of decision tree: Classifying an unknown sample
 - Test the attribute values of the sample against the decision tree
Training

<table>
<thead>
<tr>
<th>age</th>
<th>income</th>
<th>student</th>
<th>credit_rating</th>
<th>buys_computer</th>
</tr>
</thead>
<tbody>
<tr>
<td><=30</td>
<td>high</td>
<td>no</td>
<td>fair</td>
<td>no</td>
</tr>
<tr>
<td><=30</td>
<td>high</td>
<td>no</td>
<td>excellent</td>
<td>no</td>
</tr>
<tr>
<td>31…40</td>
<td>high</td>
<td>no</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>medium</td>
<td>no</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>low</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>low</td>
<td>yes</td>
<td>excellent</td>
<td>no</td>
</tr>
<tr>
<td>31…40</td>
<td>low</td>
<td>yes</td>
<td>excellent</td>
<td>yes</td>
</tr>
<tr>
<td><=30</td>
<td>medium</td>
<td>no</td>
<td>fair</td>
<td>no</td>
</tr>
<tr>
<td><=30</td>
<td>low</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>medium</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td><=30</td>
<td>medium</td>
<td>yes</td>
<td>excellent</td>
<td>yes</td>
</tr>
<tr>
<td>31…40</td>
<td>medium</td>
<td>no</td>
<td>excellent</td>
<td>yes</td>
</tr>
<tr>
<td>31…40</td>
<td>high</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>medium</td>
<td>no</td>
<td>excellent</td>
<td>no</td>
</tr>
</tbody>
</table>
Output: A Decision Tree for age?

- **Age**?
 - <=30
 - **Student**?
 - no
 - no
 - yes
 - yes
 - 30..40
 - **Credit rating**?
 - excellent
 - no
 - yes
 - fair
 - no
 - yes
Constructing decision trees

• Exponentially many decision trees can be constructed from a given set of attributes

• Finding the most accurate tree is NP-hard

• In practice: greedy algorithms
 • Grow a decision tree by making a series of locally optimum decisions on which attributes to use for partitioning the data
Constructing decision trees: the Hunt’s algorithm

- X_t: the set of training records for node t
- $y = \{y_1, ..., y_c\}$: class labels

Step 1: If all records in X_t belong to the same class y_t, then t is a leaf node labeled as y_t

Step 2: If X_t contains records that belong to more than one class,
 - select **attribute test condition** to partition the records into smaller subsets
 - Create a **child node** for each outcome of test condition
 - Apply algorithm **recursively** for each child
Decision-tree construction (Example)

Figure 4.6. Training set for predicting borrowers who will default on loan payments.

Figure 4.7. Hunt's algorithm for inducing decision trees.
Design issues

• How should the training records be split?

• How should the splitting procedure stop?
Splitting methods

- Binary attributes

![Diagram](image_url)

Figure 4.8. Test condition for binary attributes.
Splitting methods

• Nominal attributes

Figure 4.9. Test conditions for nominal attributes.
Splitting methods

- Ordinal attributes

Figure 4.10. Different ways of grouping ordinal attribute values.
Splitting methods

- Continuous attributes

Figure 4.11. Test condition for continuous attributes.
Selecting the best split

- $p(i|t)$: fraction of records belonging to class i
- **Best split** is selected based on the degree of **impurity** of the child nodes
 - Class distribution $(0,1)$ has **high purity**
 - Class distribution $(0.5,0.5)$ has the **smallest purity** (highest impurity)

- **Intuition**: high purity \Rightarrow small value of impurity measures \Rightarrow better split
Selecting the best split

(a) Gender

- Male
 - C0: 6
 - C1: 4
- Female
 - C0: 4
 - C1: 6

(b) Car Type

- Family
 - C0: 1
 - C1: 3
- Sports
 - C0: 8
 - C1: 0
- Luxury
 - C0: 1
 - C1: 7
Selecting the best split: Impurity measures

- \(p(i|t) \): fraction of records associated with node \(t \) belonging to class \(i \)

\[
\text{Entropy}(t) = - \sum_{i=1}^{c} p(i|t) \log p(i|t)
\]

\[
\text{Gini}(t) = 1 - \sum_{i=1}^{c} [p(i|t)]^2
\]

\[
\text{Classification-Error}(t) = 1 - \max_{i} [p(i|t)]
\]
Range of impurity measures

Figure 4.13. Comparison among the impurity measures for binary classification problems.
Impurity measures

• In general the different impurity measures are **consistent**

• **Gain of a test condition**: compare the impurity of the parent node with the impurity of the child nodes

 \[\Delta = I(\text{parent}) - \sum_{j=1}^{k} \frac{N(v_j)}{N} I(v_j) \]

• Maximizing the gain == minimizing the weighted average impurity measure of children nodes

• If \(I() = \text{Entropy}() \), then \(\Delta_{\text{info}} \) is called **information gain**
Computing gain: example

Figure 4.14. Splitting binary attributes.
Is minimizing impurity/ maximizing Δ enough?

Figure 4.12. Multiway versus binary splits.
Is minimizing impurity/maximum enough?

• Impurity measures favor attributes with large number of values

• A test condition with large number of outcomes may not be desirable
 – # of records in each partition is too small to make predictions
Gain ratio

• **Gain ratio** = $\Delta_{\text{info}} / \text{Splitinfo}$

• $\text{Splitinfo} = -\sum_{i=1 \ldots k} p(v_i) \log(p(v_i))$

• k: total number of splits

• If each attribute has the same number of records, $\text{Splitinfo} = \log k$

• Large number of splits \Rightarrow large $\text{Splitinfo} \Rightarrow$ small gain ratio
Constructing decision-trees (pseudocode)

\textbf{GenDecTree}(\text{Sample } S, \text{ Features } F)

1. If \text{stopping_condition}(S,F) = \text{true} then
 a. leaf = \text{createNode()}
 b. leaf.label = \text{Classify}(S)
 c. return leaf

2. root = \text{createNode()}

3. root.test_condition = \text{findBestSplit}(S,F)

4. V = \{v| \text{v a possible outcome of root.test_condition}\}

5. for each value v \in V:
 a. $S_v = \{s | \text{root.test_condition}(s) = v \text{ and } s \in S\}$;
 b. child = \text{TreeGrowth}(S_v, F);
 c. Add child as a descent of root and label the edge (root\rightarrow child) as v
Stopping criteria for tree induction

• Stop expanding a node when all the records belong to the same class

• Stop expanding a node when all the records have similar attribute values

• Early termination
Advantages of decision trees

• Inexpensive to construct
• Extremely fast at classifying unknown records
• Easy to interpret for small-sized trees
• Accuracy is comparable to other classification techniques for many simple data sets
Example: C4.5 algorithm

- Simple depth-first construction.
- Uses Information Gain
- Sorts Continuous Attributes at each node.
- Needs entire data to fit in memory.
- Unsuitable for Large Datasets.

You can download the software from: http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz
Practical problems with classification

• Underfitting and overfitting
• Missing values
• Cost of classification
Overfitting and underfitting

Underfitting: when model is too simple, both training and test errors are large
Overfitting due to noise

Decision boundary is distorted by noise point
Underfitting due to insufficient samples

Lack of data points in the lower half of the diagram makes it difficult to predict correctly the class labels of that region.

- Insufficient number of training records in the region causes the decision tree to predict the test examples using other training records that are irrelevant to the classification task.
Overfitting: course of action

- Overfitting results lead to decision trees that are more complex than necessary

- Training error no longer provides a good estimate of how well the tree will perform on previously unseen records

- Need new ways for estimating errors
Methods for estimating the error

- **Re-substitution errors**: error on training ($\Sigma e(t)$)
- **Generalization errors**: error on testing ($\Sigma e'(t)$)

Methods for estimating generalization errors:
- **Optimistic approach**: $e'(t) = e(t)$
- **Pessimistic approach**:
 - For each leaf node: $e'(t) = (e(t)+0.5)$
 - Total errors: $e'(T) = e(T) + N \times 0.5$ (N: number of leaf nodes)
 - For a tree with 30 leaf nodes and 10 errors on training (out of 1000 instances):
 - Training error = $10/1000 = 1\%$
 - Generalization error = $(10 + 30 \times 0.5)/1000 = 2.5\%$

- **Reduced error pruning (REP)**:
 - uses **validation data set** to estimate generalization error

Wednesday, October 23, 13
Addressing overfitting: Occam’s razor

• Given two models of similar generalization errors, one should prefer the simpler model over the more complex model.

• For complex models, there is a greater chance that it was fitted accidentally by errors in data.

• Therefore, one should include model complexity when evaluating a model.
Addressing overfitting: postpruning

- Grow decision tree to its entirety
- Trim the nodes of the decision tree in a bottom-up fashion
- If generalization error improves after trimming, replace sub-tree by a leaf node.
- Class label of leaf node is determined from majority class of instances in the sub-tree
- Can use MDL for post-pruning
Addressing overfitting: preprunning

• Stop the algorithm before it becomes a fully-grown tree

• Typical stopping conditions for a node:
 • Stop if all instances belong to the same class
 • Stop if all the attribute values are the same

• More restrictive conditions:
 • Stop if number of instances is less than some user-specified threshold
 • Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain).
Decision boundary for decision trees

- Border line between two neighboring regions of different classes is known as **decision boundary**

- **Decision boundary in decision trees** is parallel to axes because test condition involves a single attribute at-a-time
Oblique Decision Trees

Not all datasets can be partitioned optimally using test conditions involving single attributes!
Oblique Decision Trees

Not all datasets can be partitioned optimally using test conditions involving single attributes!
Oblique Decision Trees

- Test condition may involve multiple attributes
- More expressive representation
- Finding optimal test condition is computationally expensive
- Not all datasets can be partitioned optimally using test conditions involving single attributes!
Oblique Decision Trees

Circular points:
\[0.5 \leq \sqrt{x_1^2 + x_2^2} \leq 1 \]

Triangular points:
\[\sqrt{x_1^2 + x_2^2} > 1 \text{ or } \sqrt{x_1^2 + x_2^2} < 0.5 \]