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Outline

• Dimensionality Reductions or data 
projections

• Random projections

• Singular Value Decomposition and Principal 
Component Analysis (PCA)
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The curse of dimensionality
• The efficiency of many algorithms 

depends on the number of dimensions d

– Distance/similarity computations are at 
least linear to the number of dimensions

– Index structures fail as the dimensionality 
of the data increases
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Goals
• Reduce dimensionality of the data

• Maintain the meaningfulness of the 
data
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Dimensionality reduction
• Dataset X consisting of n points in a d-

dimensional space
• Data point xiєRd (d-dimensional real 

vector): 

 xi = [xi1, xi2,…, xid]
• Dimensionality reduction methods:
– Feature selection: choose a subset of the 

features
– Feature extraction: create new features 

by combining new ones
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Dimensionality reduction
• Dimensionality reduction methods:
– Feature selection: choose a subset of the 

features
– Feature extraction: create new features 

by combining new ones
• Both methods map vector xiєRd, to 

vector yi є Rk, (k<<d)

• F : RdRk
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Linear dimensionality 
reduction

• Function F is a linear projection
• yi = xi A

• Y = X A

• Goal: Y is as close to X as possible
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Closeness: Pairwise distances
• Johnson-Lindenstrauss lemma: Given 
ε>0, and an integer n, let k be a positive 
integer such that k≥k0=O(ε-2 logn). For 
every set X of n points in Rd there exists 
F: RdRk such that for all xi, xj єX


 (1-ε)||xi - xj||2≤ ||F(xi )- F(xj)||2≤ (1+ε)||xi - xj||2

What is the intuitive interpretation of 
this statement?
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JL Lemma: Intuition
• Vectors xiєRd, are projected onto a k-

dimensional space (k<<d): yi = xi A
• If ||xi||=1 for all i, then, 

 ||xi-xj||2 is approximated by (d/k)||yi-yj||2 
• Intuition: 
– The expected squared norm of a projection of 

a unit vector onto a random subspace 
through the origin is k/d

– The probability that it deviates from 
expectation is very small
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Finding random projections
• Vectors xiєRd, are projected onto a k-

dimensional space (k<<d)
• Random projections can be 

represented by linear transformation 
matrix A

• yi = xi A 

• What is the matrix A? 
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Finding random projections
• Vectors xiєRd, are projected onto a k-

dimensional space (k<<d)
• Random projections can be 

represented by linear transformation 
matrix A

• yi = xi A

• What is the matrix A? 
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Finding matrix A
• Elements A(i,j) can be Gaussian distributed 
• Achlioptas* has shown that the Gaussian 

distribution can be replaced by

• All zero mean, unit variance distributions for 
A(i,j) would give a mapping that satisfies the JL 
lemma

• Why is Achlioptas result useful?
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Datasets in the form of 

We are given n objects and d features describing the 
objects. 
(Each object has d numeric values describing it.)

Dataset
An n-by-d matrix A, Aij shows the “importance” of 
feature j for object i.
Every row of A represents an object.

Goal
1. Understand the structure of the data, e.g., the 

underlying process generating the data.
2. Reduce the number of features representing the 
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Market basket matrices

n 
customers

d products 
(e.g., milk, bread, wine, 
etc.)

Aij = quantity of j-th product 
purchased by the i-th 
customer

Find  a subset of the products that 
characterize customer behavior
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Social-network matrices

n users

d groups 
(e.g., BU group, opera, 
etc.)

Aij = partiticipation of 
the i-th user in the  j-th 
group

Find  a subset of the groups that accurately 
clusters social-network users
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Document matrices

n 
documents

d terms 
(e.g., theorem, proof, etc.)

Aij = frequency of the j-th 
term in the i-th document

Find  a subset of the terms that accurately 
clusters the documents
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Recommendation systems

n 
customers

d products 

Aij = frequency of 
the j-th  product is 
bought by the i-th 
customer

Find  a subset of the products that 
accurately describe the behavior or the 

customers
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The Singular Value 
Decomposition (SVD)

Data matrices have n rows (one for 
each object) and d columns (one 
for each feature).

Rows: vectors in a Euclidean space,

Two objects are “close” if the angle 
between their corresponding 
vectors is small. 
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SVD: Example
Input: 2-d dimensional 
points

Output: 

1st (right) 
singular vector

1st (right) singular vector: 
direction of maximal 
variance,

2nd (right) 
singular 
vector

2nd (right) singular vector: 
direction of maximal variance, 
after removing the projection 
of the data along the first 
singular vector.
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Singular values

σ1: measures how much of 
the data variance is 
explained by the first 
singular vector.

σ2: measures how much of 
the data variance is 
explained by the second 
singular vector.

σ1
1st (right) 
singular vector

2nd (right) 
singular 
vector
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SVD decomposition

U (V): orthogonal matrix containing the left (right) 
singular vectors of A.
Σ: diagonal matrix containing the singular values of A: 
(σ1 ≥ σ2 ≥ … ≥ σℓ )

    


 Exact computation of the SVD takes O(min{mn2 , m2n}) 

time. 

 The top k left/right singular vectors/values can be 

computed faster using Lanczos/Arnoldi methods.

0

0

n x d n x ℓ ℓ x ℓ ℓ x d
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Rank-k approximations (Ak)

Uk (Vk): orthogonal matrix containing the top k left 
(right) singular vectors of A.
Σk: diagonal matrix containing the top k singular 
values of A

Ak is an approximation of A

n x d n x k k x k k x d
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Rank-k approximations (Ak)

Uk (Vk): orthogonal matrix containing the top k left 
(right) singular vectors of A.
Σk: diagonal matrix containing the top k singular 
values of A

Ak is an approximation of A

n x d n x k k x k k x d

Ak is the best 
approximation 

of A
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SVD as an optimization 
problem

Given C it is easy to find X from standard 
least squares.
However, the fact that we can find the 
optimal C  is fascinating!

Frobenius norm:

Find C to minimize:
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PCA and SVD
• PCA is SVD done on centered data

• PCA looks for such a direction that the data 
projected to it has the maximal variance

• PCA/SVD continues by seeking the next 
direction that is orthogonal to all previously 
found directions

• All directions are orthogonal
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How to compute the PCA
• Data matrix A, rows = data points, 

columns = variables (attributes, features, 
parameters)

1. Center the data by subtracting the mean of 
each column

2. Compute the SVD of the centered matrix 
A’ (i.e., find the first k singular values/vectors)                     
A’ = UΣVT

3. The principal components are the columns of 
V, the coordinates of the data in the basis 
defined by the principal components are UΣ
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Singular values tell us something 
about the variance

• The variance in the direction of the k-th principal 
component is given by the corresponding singular 
value σk

2

• Singular values can be used to estimate how many 
components to keep

• Rule of thumb: keep enough to explain 85% of the 
variation: 
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SVD is “the Rolls-Royce and the 
Swiss Army Knife of Numerical 
Linear Algebra.”*
*Dianne O’Leary, MMDS ’06
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SVD as an optimization 

Given C it is easy to find X from standard least 
squares.
However, the fact that we can find the optimal 
C  is fascinating!

Frobenius norm:

Find C to minimize:
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