Dimensionality reduction

Outline

 Dimensionality Reductions or data projections

Random projections

 Singular Value Decomposition and Principal Component Analysis (PCA)

The curse of dimensionality

 The efficiency of many algorithms depends on the number of dimensions d

 Distance/similarity computations are at least linear to the number of dimensions

Index structures fail as the dimensionality of the data increases

Goals

Reduce dimensionality of the data

Maintain the meaningfulness of the data

Dimensionality reduction

- Dataset X consisting of n points in a ddimensional space
- Data point x_i∈R^d (d-dimensional real vector):

$$x_i = [x_{i1}, x_{i2}, ..., x_{id}]$$

- Dimensionality reduction methods:
 - Feature selection: choose a subset of the features
 - Feature extraction: create new features by combining new ones

Dimensionality reduction

- Dimensionality reduction methods:
 - Feature selection: choose a subset of the features
 - Feature extraction: create new features by combining new ones
- Both methods map vector x_i∈R^d, to vector y_i ∈ R^k, (k<<d)

• $F: \mathbb{R}^d \rightarrow \mathbb{R}^k$

Linear dimensionality reduction

Function F is a linear projection

•
$$y_i = x_i A$$

 $\cdot Y = X A$

• Goal: Y is as close to X as possible

Closeness: Pairwise distances

Johnson-Lindenstrauss lemma: Given ε>0, and an integer n, let k be a positive integer such that k≥k₀=O(ε⁻² logn). For every set X of n points in R^d there exists F: R^d→R^k such that for all x_i, x_j ∈X

$$(1-\epsilon)||x_i - x_j||^2 \le ||F(x_i) - F(x_j)||^2 \le (1+\epsilon)||x_i - x_j||^2$$

What is the intuitive interpretation of this statement?

JL Lemma: Intuition

- Vectors x_i∈R^d, are projected onto a k-dimensional space (k<<d): y_i = x_i A
- If $||\mathbf{x}_i|| = 1$ for all i, then, $||\mathbf{x}_i - \mathbf{x}_j||^2$ is approximated by $(\mathbf{d}/\mathbf{k})||\mathbf{y}_i - \mathbf{y}_j||^2$

Intuition:

- The expected squared norm of a projection of a unit vector onto a random subspace through the origin is k/d
- The probability that it deviates from expectation is very small

Finding random projections

- Vectors x_i∈R^d, are projected onto a kdimensional space (k<<d)
- Random projections can be represented by linear transformation matrix A
- $y_i = x_i A$

What is the matrix A?

Finding random projections

- Vectors x_i∈R^d, are projected onto a kdimensional space (k<<d)
- Random projections can be represented by linear transformation matrix A
- $y_i = x_i A$

What is the matrix A?

Finding matrix A

- Elements A(i,j) can be Gaussian distributed
- Achlioptas* has shown that the Gaussian distribution can be replaced by

$$A(i, j) = \begin{cases} +1 \text{ with prob } \frac{1}{6} \\ 0 \text{ with prob } \frac{2}{3} \\ -1 \text{ with prob } \frac{1}{6} \end{cases}$$

- All zero mean, unit variance distributions for A(i,j) would give a mapping that satisfies the JL lemma
- Why is Achlioptas result useful?

Datasets in the form of

We are given n objects and d features describing the objects.

(Each object has d numeric values describing it.)

Dataset

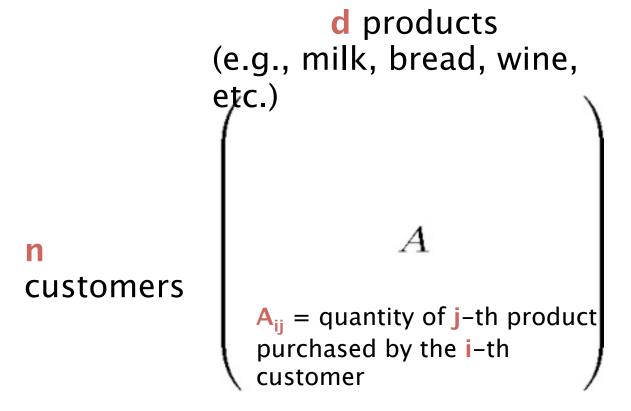
An n-by-d matrix A, A_{ij} shows the "importance" of feature j for object i.

Every row of A represents an object.

Goal

- 1. Understand the structure of the data, e.g., the underlying process generating the data.
- 2. Reduce the number of features representing the

Market basket matrices



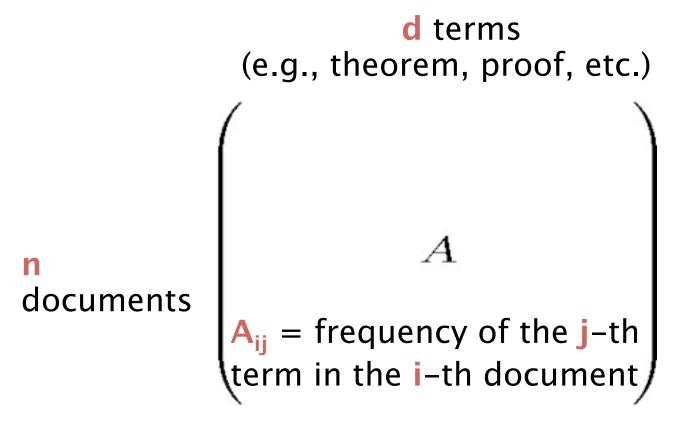
Find a subset of the products that characterize customer behavior

Social-network matrices

```
d groups
                   (e.g., BU group, opera,
                   etc.)
n users
                    A<sub>ij</sub> = partiticipation of
the i-th user in the j-th
```

Find a subset of the groups that accurately clusters social-network users

Document matrices



Find a subset of the terms that accurately clusters the documents

Recommendation systems

n customers $\begin{pmatrix} A \\ A_{ij} = \text{frequency of} \\ \text{the j-th product is} \\ \text{bought by the i-th} \\ \text{customer} \end{pmatrix}$

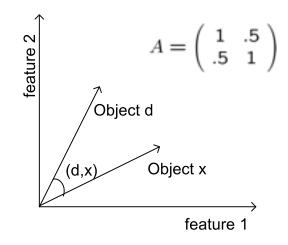
Find a subset of the products that accurately describe the behavior or the customers

The Singular Value Decomposition (SVD)

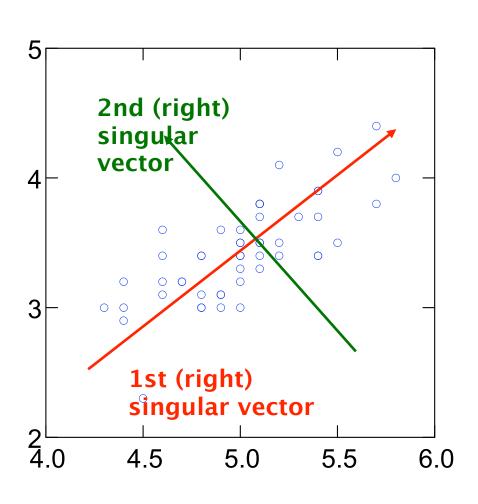
Data matrices have n rows (one for each object) and d columns (one for each feature).

Rows: vectors in a Euclidean space,

Two objects are "close" if the angle between their corresponding vectors is small.



SVD: Example



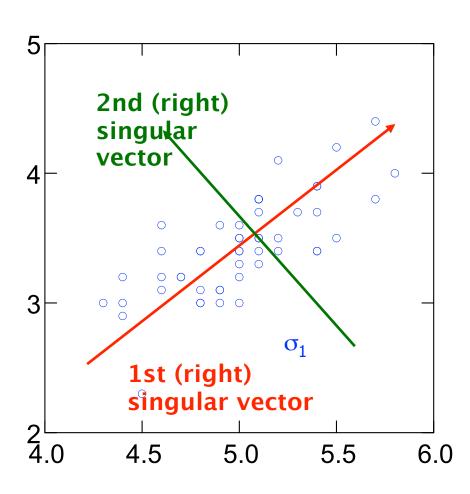
Input: 2-d dimensional points

Output:

1st (right) singular vector: direction of maximal variance,

2nd (right) singular vector: direction of maximal variance, after removing the projection of the data along the first singular vector.

Singular values



σ₁: measures how much of the data variance is explained by the first singular vector.

σ₂: measures how much of the data variance is explained by the second singular vector.

SVD decomposition

$$\begin{pmatrix} A \\ \end{pmatrix} = \begin{pmatrix} U \\ \end{pmatrix} \cdot \begin{pmatrix} X \\ \end{pmatrix} \cdot \begin{pmatrix} V \\ \end{pmatrix} \cdot \begin{pmatrix} V \\ \end{pmatrix}^{T}$$

$$\text{n x d} \qquad \text{n x } \ell \qquad \ell \text{ x } \ell \qquad \ell \text{ x d}$$

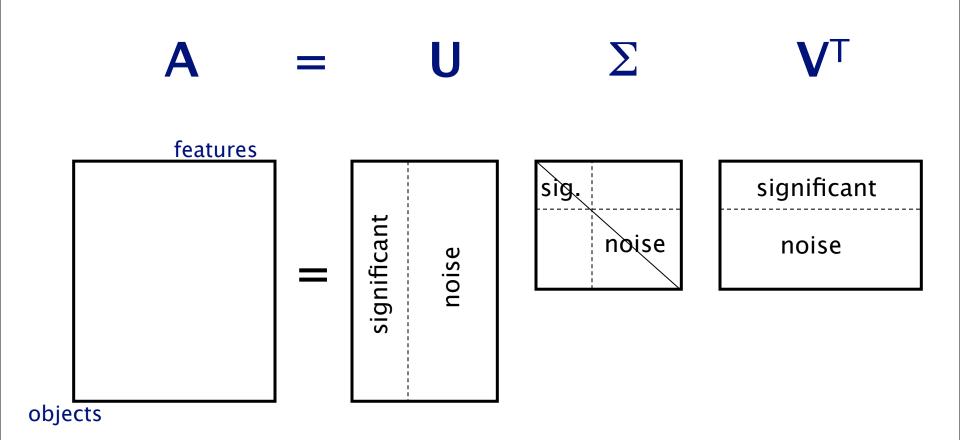
U (V): orthogonal matrix containing the left (right) singular vectors of A.

 Σ : diagonal matrix containing the **singular values** of **A**: $(\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_\ell)$

Exact computation of the SVD takes O(min{mn², m²n}) time.

The top k left/right singular vectors/values can be computed faster using Lanczos/Arnoldi methods.

SVD and Rank-k



Rank-k approximations (A_k)

$$\begin{pmatrix} & & \\ & A_k & \\ & & \end{pmatrix} = \begin{pmatrix} & U_k & \\ & & \end{pmatrix} \cdot \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix} \cdot \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix} \cdot \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix}$$

 U_k (V_k): orthogonal matrix containing the top k left (right) singular vectors of A.

 Σ_k : diagonal matrix containing the top k singular values of A

 A_k is an approximation of A

Rank-k approximations (A_k)

$$\begin{pmatrix} A_k \\ \end{pmatrix} = \begin{pmatrix} U_k \\ \end{pmatrix} \cdot \begin{pmatrix} \Sigma_k \\ \end{pmatrix} \cdot \begin{pmatrix} V_k^T \\ \end{pmatrix}$$

$$\text{n x d} \qquad \text{n x k} \qquad \text{k x d}$$

 U_k (V_k): orth (right) singular Σ_k : diagonal values of A

A_k is the best approximation of A

 A_k is an approximation of A

SVD as an optimization problem

Find C to minimize:

$$\min_{C} \left\| A - C X \right\|_{n \times d}^{2}$$

$$n \times k \times d \right\|_{F \text{ Frobenius norm:}}^{2}$$

$$\left\|A\right\|_F^2 = \sum_{i,j} A_{ij}^2$$

Given C it is easy to find X from standard least squares.

However, the fact that we can find the optimal C is fascinating!

PCA and SVD

- PCA is SVD done on centered data
- PCA looks for such a direction that the data projected to it has the maximal variance
- PCA/SVD continues by seeking the next direction that is orthogonal to all previously found directions
- All directions are orthogonal

How to compute the PCA

- Data matrix A, rows = data points,
 columns = variables (attributes, features,
 parameters)
- 1. Center the data by subtracting the mean of each column
- Compute the SVD of the centered matrix
 A' (i.e., find the first k singular values/vectors)
 A' = UΣV^T
- 3. The principal components are the columns of V, the coordinates of the data in the basis defined by the principal components are $U\Sigma$

Singular values tell us something about the variance

- The variance in the direction of the k-th principal component is given by the corresponding singular value σ_k^2
- Singular values can be used to estimate how many components to keep
- Rule of thumb: keep enough to explain 85% of the variation: $\frac{k}{\sqrt{2}}$

$$\frac{\sum_{j=1}^{n} \sigma_{j}^{2}}{\sum_{j=1}^{n} \sigma_{j}^{2}} \approx 0.85$$

SVD is "the Rolls-Royce and the Swiss Army Knife of Numerical Linear Algebra."*
*Dianne O'Leary, MMDS '06

SVD as an optimization

Find C to minimize:

$$\min_{C} \left\| \frac{A - C X}{n \times d} \right\|_{F \text{ Frobenius norm:}}^{2}$$

$$\left\|A\right\|_F^2 = \sum_{i,j} A_{ij}^2$$

Given C it is easy to find X from standard least squares.

However, the fact that we can find the optimal c is fascinating!