Dimensionality reduction

Outline

- Dimensionality Reductions or data projections
- Random projections
- Singular Value Decomposition and Principal Component Analysis (PCA)

The curse of dimensionality

- The efficiency of many algorithms depends on the number of dimensions d
- Distance/similarity computations are at least linear to the number of dimensions
- Index structures fail as the dimensionality of the data increases

Goals

- Reduce dimensionality of the data
- Maintain the meaningfulness of the data

Dimensionality reduction

- Dataset X consisting of n points in a ddimensional space
- Data point $x_{i} \in R^{d}$ (d-dimensional real vector): $x_{i}=\left[x_{i 1}, x_{i 2}, \ldots, x_{i d}\right]$
- Dimensionality reduction methods:
- Feature selection: choose a subset of the features
- Feature extraction: create new features by combining new ones

Dimensionality reduction

- Dimensionality reduction methods:
- Feature selection: choose a subset of the features
- Feature extraction: create new features by combining new ones
- Both methods map vector $\mathrm{x}_{\mathrm{i}} \in \mathrm{R}^{\mathrm{d}}$, to vector $y_{i} \in \mathbb{R}^{k},(k \ll d)$
- F : $\mathrm{R}^{\mathrm{d}} \rightarrow \mathrm{R}^{\mathrm{k}}$

Linear dimensionality reduction

- Function F is a linear projection
- $y_{i}=x_{i} A$
- $\mathrm{Y}=\mathrm{X}$ A
- Goal: Y is as close to X as possible

Closeness: Pairwise distances

- Johnson-Lindenstrauss lemma: Given $\varepsilon>0$, and an integer n, let k be a positive integer such that $\mathrm{k} \geq \mathrm{k}_{0}=\mathrm{O}\left(\varepsilon^{-2} \log n\right)$. For every set X of n points in R^{d} there exists $F: R^{d} \rightarrow R^{k}$ such that for all $X_{i}, x_{j} \in X$
$(1-\varepsilon)\left\|x_{i}-x_{j}\right\|^{2} \leq\left\|F\left(x_{i}\right)-F\left(x_{j}\right)\right\|^{2} \leq(1+\varepsilon)\left\|x_{i}-x_{j}\right\|^{2}$
What is the intuitive interpretation of this statement?

JL Lemma: Intuition

- Vectors $\mathrm{x}_{\mathrm{i}} \in \mathrm{R}^{\mathrm{d}}$, are projected onto a $\mathrm{k}-$ dimensional space $(\mathbb{k} \ll d)$: $y_{i}=x_{i} A$
- If $\left\|x_{i}\right\|=1$ for all i, then,
$\left\|x_{i}-x_{j}\right\|^{2}$ is approximated by $(d / k)\left\|y_{i}-y_{j}\right\|^{2}$
- Intuition:
- The expected squared norm of a projection of a unit vector onto a random subspace through the origin is k / d
- The probability that it deviates from expectation is very small

Finding random projections

- Vectors $\mathrm{x}_{\mathrm{i}} \in \mathrm{R}^{\mathrm{d}}$, are projected onto a k dimensional space ($k \ll d$)
- Random projections can be represented by linear transformation matrix A
- $y_{i}=x_{i} A$
- What is the matrix A ?

Finding random projections

- Vectors $\mathrm{x}_{\mathrm{i}} \in \mathrm{R}^{\mathrm{d}}$, are projected onto a k dimensional space ($k \ll d$)
- Random projections can be represented by linear transformation matrix A
- $y_{i}=x_{i} A$
- What is the matrix A ?

Finding matrix A

- Elements A(ii,j) can be Gaussian distributed
- Achlioptas* has shown that the Gaussian distribution can be replaced by

$$
A(i, j)=\left\{\begin{array}{l}
+1 \text { with prob } \frac{1}{6} \\
0 \text { with prob } \frac{2}{3} \\
-1 \text { with prob } \frac{1}{6}
\end{array}\right.
$$

- All zero mean, unit variance distributions for A(i,j) would give a mapping that satisfies the JL lemma
- Why is Achlioptas result useful?

Datasets in the form of

We are given n objects and d features describing the objects.
(Each object has d numeric values describing it.)
Dataset
An n-by-d matrix $A, A_{i j}$ shows the "importance" of feature j for object i.
Every row of A represents an object.

Goal

1. Understand the structure of the data, e.g., the underlying process generating the data.
2. Reduce the number of features representing the

Market basket matrices

d products
(e.g., milk, bread, wine, etc.)

A
customers

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{ij}}=\text { quantity of } \mathrm{j} \text {-th product } \\
& \text { purchased by the } \mathrm{i} \text {-th } \\
& \text { customer }
\end{aligned}
$$

Find a subset of the products that characterize customer behavior

Social-network matrices

n users $\left(\begin{array}{c}\text { d groups } \\ \begin{array}{l}\text { (e.g., BU group, opera, } \\ A \\ \mathrm{~A}_{\mathrm{ij}}=\text { partiticipation of } \\ \text { the i-th user in the } \mathrm{j} \text {-th } \\ \text { group }\end{array}\end{array}\right.$

Find a subset of the groups that accurately clusters social-network users

Document matrices

d terms
(e.g., theorem, proof, etc.)
n documents $\left(\begin{array}{l}\text { A } \\ A_{i j}=\text { frequency of the } j-t h \\ \text { term in the i-th document }\end{array}\right)$
Find a subset of the terms that accurately clusters the documents

Recommendation systems

d products

Find a subset of the products that accurately describe the behavior or the customers

The Singular Value Decomposition (SVD)

Data matrices have n rows (one for each object) and d columns (one for each feature).

Rows: vectors in a Euclidean space,
Two objects are "close" if the angle between their corresponding vectors is small.

SVD: Example

Input: 2-d dimensional points

Output:

1st (right) singular vector: direction of maximal variance, 2nd (right) singular vector: direction of maximal variance, after removing the projection of the data along the first singular vector.

Singular values

σ_{1} : measures how much of the data variance is explained by the first singular vector.
σ_{2} : measures how much of the data variance is explained by the second singular vector.

SVD decomposition

$$
\begin{aligned}
& (A)=(U) \cdot\left(\begin{array}{ll}
& \\
\mathbf{x} \\
\mathbf{0}
\end{array}\right) \cdot\left(\begin{array}{l}
\\
\end{array}\right)^{T} \\
& n \times d \quad n \times \ell \quad \ell \times \ell \quad \ell \times d
\end{aligned}
$$

$\mathrm{U}(\mathrm{V})$: orthogonal matrix containing the left (right) singular vectors of A.
Σ : diagonal matrix containing the singular values of A : ($\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{\ell}$)

Exact computation of the SVD takes $O\left(m i n\left\{m n^{2}, m^{2} n\right\}\right)$ time.
The top k left/right singular vectors/values can be computed faster using Lanczos/Arnoldi methods.

SVD and Rank-k

Rank-k approximations (A_{k})

$\mathrm{U}_{\mathrm{k}}\left(\mathrm{V}_{\mathrm{k}}\right)$: orthogonal matrix containing the top k left (right) singular vectors of A.
$\Sigma_{\mathrm{k}^{\prime}}$ diagonal matrix containing the top k singular values of A
A_{k} is an approximation of A

Rank-k approximations (A_{k})

A_{k} is an approximation of A

SVD as an optimization problem

Find C to minimize:

$$
\begin{aligned}
& \min _{C} \|{\underset{n \times d}{A}-\underset{n \times k}{C} \underset{k \times d}{X} \|_{F \text { Frobenius norm: }}^{2}}_{\|A\|_{F}^{2}=\sum_{i, j} A_{i j}^{2}}=\text {. }
\end{aligned}
$$

Given C it is easy to find X from standard least squares.
However, the fact that we can find the optimal C is fascinatina!

PCA and SVD

- PCA is SVD done on centered data
- PCA looks for such a direction that the data projected to it has the maximal variance
- PCA/SVD continues by seeking the next direction that is orthogonal to all previously found directions
- All directions are orthogonal

How to compute the PCA

- Data matrix A, rows = data points, columns = variables (attributes, features, parameters)

1. Center the data by subtracting the mean of each column
2. Compute the SVD of the centered matrix A^{\prime} (i.e., find the first k singular values/vectors) $\mathrm{A}^{\prime}=\mathbf{U} \Sigma^{\mathbf{T}} \mathrm{V}^{\top}$
3. The principal components are the columns of V , the coordinates of the data in the basis defined by the principal components are UE

Singular values tell us something about the variance

- The variance in the direction of the k-th principal component is given by the corresponding singular value $\sigma_{k}{ }^{2}$
- Singular values can be used to estimate how many components to keep
- Rule of thumb: keep enough to explain 85% of the variation:

$$
\frac{\sum_{j=1}^{k} \sigma_{j}^{2}}{\sum_{j=1}^{n} \sigma_{j}^{2}} \approx 0.85
$$

SVD is "the Rolls-Royce and the Swiss Army Knife of Numerical Linear Algebra."*
*Dianne O'Leary, MMDS '06

SVD as an optimization

Find C to minimize:

$$
\min _{C}\|\underset{n \times d}{A}-\underset{n \times k}{C} \underset{k \times d}{X}\|_{F \text { Frobenius norm: }}^{2}
$$

$$
\|A\|_{r}^{2}=\sum_{i,} A_{i}^{2}
$$

Given C it is easy to find X from standard least squares.
However, the fact that we can find the optimal C is fascinating!

