
Model Evaluation
• Metrics for Performance Evaluation

– How to evaluate the performance of a 
model?

• Methods for Performance Evaluation
– How to obtain reliable estimates?

• Methods for Model Comparison
– How to compare the relative performance 

of different models?
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Metrics for Performance 
Evaluation

• Focus on the predictive capability of a 
model
– Rather than how fast it takes to classify or 

build models, scalability, etc.
• Confusion Matrix:

PREDICTED CLASSPREDICTED CLASSPREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

ACTUAL
CLASS

Class=Yes a: TP b: FN
ACTUAL
CLASS Class=No c: FP d: TN

a: TP (true positive)
b: FN (false 
negative)
c: FP (false positive)
d: TN (true negative)
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Metrics for Performance 
Evaluation…

• Most widely-used metric:

PREDICTED CLASSPREDICTED CLASSPREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

ACTUAL
CLASS

Class=Yes a
(TP)

b
(FN)

ACTUAL
CLASS

Class=No c
(FP)

d
(TN)
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Limitation of Accuracy
• Consider a 2-class problem

– Number of Class 0 examples = 9990
– Number of Class 1 examples = 10

• If model predicts everything to be class 
0, accuracy is 9990/10000 = 99.9 %
– Accuracy is misleading because model 

does not detect any class 1 example
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Cost Matrix
      PREDICTED CLASS      PREDICTED CLASS      PREDICTED CLASS

ACTUAL
CLASS

C(i|j) Class=Yes Class=No

ACTUAL
CLASS

Class=Yes C(Yes|Yes) C(No|Yes)ACTUAL
CLASS

Class=No C(Yes|No) C(No|No)

C(i|j): Cost of misclassifying class j example as 
class i
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Computing Cost of 
Classification

Cost 
Matrix

PREDICTED CLASSPREDICTED CLASSPREDICTED CLASS

ACTUAL
CLASS

C(i|j) + -
ACTUAL
CLASS

+ -1 100ACTUAL
CLASS

- 1 0

Model M1 PREDICTED CLASSPREDICTED CLASSPREDICTED CLASS

ACTUAL
CLASS

+ -
ACTUAL
CLASS

+ 150 40ACTUAL
CLASS

- 60 250

Model M2 PREDICTED CLASSPREDICTED CLASSPREDICTED CLASS

ACTUAL
CLASS

+ -
ACTUAL
CLASS

+ 250 45ACTUAL
CLASS

- 5 200

Accuracy = 80%
Cost = 3910

Accuracy = 90%
Cost = 4255
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Cost vs Accuracy
Count PREDICTED CLASSPREDICTED CLASSPREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

ACTUAL
CLASS

Class=Yes a b
ACTUAL
CLASS Class=No c d

Cost PREDICTED CLASSPREDICTED CLASSPREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

ACTUAL
CLASS

Class=Yes p q
ACTUAL
CLASS Class=No q p
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Cost vs Accuracy
Count PREDICTED CLASSPREDICTED CLASSPREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

ACTUAL
CLASS

Class=Yes a b
ACTUAL
CLASS Class=No c d

Cost PREDICTED CLASSPREDICTED CLASSPREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

ACTUAL
CLASS

Class=Yes p q
ACTUAL
CLASS Class=No q p

N = a + b + c + d

Accuracy = (a + d)/N

Cost = p (a + d) + q (b + c)
        = p (a + d) + q (N – a – d)
        = q N – (q – p)(a + d)
        = N [q – (q-p) × Accuracy] 

Accuracy is proportional to cost 
if
1. C(Yes|No)=C(No|Yes) = q 
2. C(Yes|Yes)=C(No|No) = p
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Cost-Sensitive Measures

l Precision is biased towards C(Yes|Yes) & C(Yes|No)
l Recall is biased towards C(Yes|Yes) & C(No|Yes)
l F-measure is biased towards all except C(No|No)
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Methods for Performance 
Evaluation

• How to obtain a reliable estimate of 
performance?

• Performance of a model may depend 
on other factors besides the learning 
algorithm:
– Class distribution
– Cost of misclassification
– Size of training and test sets
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Learning Curve
l Learning curve shows 

how accuracy changes 
with varying sample 
size

l Requires a sampling 
schedule for creating 
learning curve

Effect of small sample 
size:

- Bias in the estimate
- Variance of 

estimate
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Methods of Estimation
• Holdout

– Reserve 2/3 for training and 1/3 for testing 
• Random subsampling

– Repeated holdout
• Cross validation

– Partition data into k disjoint subsets
– k-fold: train on k-1 partitions, test on the 

remaining one
– Leave-one-out: k=n

• Bootstrap
– Sampling with replacement
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ROC (Receiver Operating 
Characteristic)

• Developed in 1950s for signal detection 
theory to analyze noisy signals 
– Characterize the trade-off between positive hits 

and false alarms
• ROC curve plots TPR (on the y-axis) against 

FPR (on the x-axis)
PREDICTED CLASSPREDICTED CLASSPREDICTED CLASS

Actual

Yes No

Actual
Yes a

(TP)
b

(FN)Actual
No c

(FP)
d

(TN)
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ROC (Receiver Operating 
Characteristic)

• Performance of each classifier 
represented as a point on the ROC 
curve
– changing the threshold of algorithm, 

sample distribution or cost matrix 
changes the location of the point
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ROC Curve
- 1-dimensional data set containing 2 classes (positive and negative)
- any points located at x > t is classified as positive
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ROC Curve

At threshold t:
TP=0.5, FN=0.5, FP=0.12, FN=0.88

- 1-dimensional data set containing 2 classes (positive and negative)
- any points located at x > t is classified as positive
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ROC Curve
(TP,FP):
• (0,0): declare everything

          to be negative class
• (1,1): declare everything

         to be positive class
• (1,0): ideal

• Diagonal line:
– Random guessing
– Below diagonal line:

•  prediction is opposite 
of the true class

PREDICTED CLASSPREDICTED CLASSPREDICTED CLASS

Actual

Yes No

Actual
Yes a

(TP)
b

(FN)Actual
No c

(FP)
d

(TN)
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Using ROC for Model 
Comparison

l No model consistently 
outperform the other

l M1 is better for 
small FPR

l M2 is better for 
large FPR

l Area Under the ROC 
curve

l Ideal:  Area = 1
l Random guess:

 Area = 0.5
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How to Construct an ROC 
curve

Instance P(+|A) True Class
1 0.95 +
2 0.93 +
3 0.87 -
4 0.85 -
5 0.85 -
6 0.85 +
7 0.76 -
8 0.53 +
9 0.43 -

10 0.25 +

• Use classifier that produces 
posterior probability for each 
test instance P(+|A)

• Sort the instances according 
to P(+|A) in decreasing order

• Apply threshold at each 
unique value of P(+|A)

• Count the number of TP, FP, 
  TN, FN at each threshold

• TP rate, TPR = TP/(TP+FN)

• FP rate, FPR = FP/(FP + TN)
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How to construct an ROC 
curve

Threshold >= 

ROC Curve:
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Ensemble Methods
• Construct a set of classifiers from the 

training data

• Predict class label of previously unseen 
records by aggregating predictions 
made by multiple classifiers
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General Idea
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Why does it work?
• Suppose there are 25 base classifiers

– Each classifier has error rate, ε = 0.35
– Assume classifiers are independent
– Probability that the ensemble classifier 

makes a wrong prediction:
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Examples of Ensemble 
Methods

• How to generate an ensemble of 
classifiers?
– Bagging

– Boosting
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Bagging
• Sampling with replacement

• Build classifier on each bootstrap 
sample

• Each sample has probability 1-(1 – 1/
n)n of being selected
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Boosting
• An iterative procedure to adaptively 

change distribution of training data by 
focusing more on previously 
misclassified records

– Initially, all N records are assigned equal 
weights

– Unlike bagging, weights may change at 
the end of boosting round
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Boosting
• Records that are wrongly classified will 

have their weights increased
• Records that are classified correctly will 

have their weights decreased

• Example 4 is hard to classify
• Its weight is increased, therefore it is more 
likely to be chosen again in subsequent 
rounds
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Example: AdaBoost
• Base classifiers: C1, C2, …, CT

• Data pairs: (xi,yi)

• Error rate:

• Importance of a classifier: 
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Example: AdaBoost
• Classification: 

• Weight update for every iteration t and 
classifier j :

• If any intermediate rounds produce error rate higher 
than 50%, the weights are reverted back to 1/n
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Illustrating AdaBoost
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Illustrating AdaBoost
Initial weights for each data point
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Illustrating AdaBoost
Data points 
for training

Initial weights for each data point
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Illustrating AdaBoost
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