Problem Set 2

October 4, 2013

Due date: Mon, Oct 21, 2013 at 4pm; before class.

Exercise 1 (20 points): A *locality-sensitive hashing* function is a distribution on a family \mathcal{F} of hash functions operating on a collection of objects, such that for two objects x, y,

$$\mathbf{Pr}[h(x) = h(y)] = sim(x, y). \tag{1}$$

The term $sim(x,y) \in [0,1]$ is some similarity function defined on the collection of objects and h() is a hash function from \mathcal{F} .

Show that for any similarity function sim that admits a locality sensitive hash function family as defined in Equation (1), the distance function 1 - sim(x, y) satisfies the triangle inequality.

Exercise 2 (30 points): Consider the following 1-dimensional clustering problem: given a set of n 1-dimensional data points $X = \{x_1, \ldots, x_n\}$ and an integer n partition these points into k clusters such that

$$\sum_{i=1}^k \sum_{x_j \in C_i} (x_j - \mu_i)^2$$

is minimized. In the above equation, C_i is the *i*-th cluster and μ_i is the representative of this cluster – in this case the mean of the data points in the cluster.

Design a polynomial-time algorithm for finding the optimal clustering C.

[Bonus points:] If your algorithm runs in time linear in n^2k , then you get extra 10 points.

Exercise 3 (25 points): Consider a set of n data points x_1, \ldots, x_n .

- Assume a random number generator R() that generates values in the interval [0,1]. Let distance function d_R between two points x_i and x_j be $d_R(x_i, x_j) = R()$. Prove or disprove that d_R is a metric. (10 points)
- Construct a graph G = (V, E), where a point x_i is represented by node $v_i \in V$. For every pair of nodes v_i, v_j , there exists a directed edge in G with weight $w_{ij} = d_R(x_i, x_j)$. We define the distance function between two nodes v_i and v_j , denoted by $d_G(v_i, v_j)$, be the weight of the shortest path between v_i and v_j in graph G. Prove or disprove that d_G is a metric. (15 points)

Exercise 4 (25 points): Consider the edit distance between two labeled graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ with the same set of nodes to be the number of edges in E_1 that are not in E_2 plus the number of edges in E_2 that are not in E_1 . That is,

$$\Delta(G_1, G_2) = |E_1 \setminus E_2| + |E_2 \setminus E_1|.$$

- Prove that $\Delta()$ is a metric. (10 points)
- Given a set of graphs G_1, G_2, \ldots, G_n consisting of n graphs all sharing the same set of labeled nodes design an algorithm for finding the centroid of the set of clusters, when distance Δ is used as a distance function between graphs. (15 points)