Measuring distance/similarity of data objects
Multiple data types

• Records of users
• Graphs
• Images
• Videos
• Text (webpages, books)
• Strings (DNA sequences)
• Timeseries
• How do we compare them?
Feature space representation

• Usually data objects consist of a set of attributes (also known as dimensions)

• J. Smith, 20, 200K

• If all \(d \) dimensions are real-valued then we can visualize each data point as points in a \(d \)-dimensional space

• If all \(d \) dimensions are binary then we can think of each data point as a binary vector
Distance functions

• The distance $d(x, y)$ between two objects x and y is a metric if

 – $d(i, j) \geq 0$ (non-negativity)
 – $d(i, i) = 0$ (isolation)
 – $d(i, j) = d(j, i)$ (symmetry)
 – $d(i, j) \leq d(i, h) + d(h, j)$ (triangular inequality) [Why do we need it?]

• The definitions of distance functions are usually different for real, boolean, categorical, and ordinal variables.

• Weights may be associated with different variables based on applications and data semantics.
Data Structures

• **data** matrix

\[
\begin{bmatrix}
 x_{11} & \cdots & x_{1l} & \cdots & x_{1d} \\
 \vdots & \ddots & \vdots & \ddots & \vdots \\
 x_{i1} & \cdots & x_{il} & \cdots & x_{id} \\
 \vdots & \cdots & \vdots & \ddots & \vdots \\
 x_{n1} & \cdots & x_{nl} & \cdots & x_{nd}
\end{bmatrix}
\]

• **Distance** matrix

\[
\begin{bmatrix}
 0 & \hspace{1cm} & d(2,1) & 0 \\
 & & d(3,1) & d(3,2) & 0 \\
 & & & \vdots & \vdots & \vdots \\
 & & d(n,1) & d(n,2) & \cdots & \cdots & 0
\end{bmatrix}
\]
Distance functions for real-valued vectors

- L_p norms or Minkowski distance:

$$L_p(x, y) = \left(\sum_{i=1}^{d} |x_i - y_i|^p \right)^{\frac{1}{p}}$$

- $p = 1$, L_1, Manhattan (or city block) distance:

$$L_1(x, y) = \left(\sum_{i=1}^{d} |x_i - y_i| \right)$$
Distance functions for real-valued vectors

- L_p norms or Minkowski distance:

$$L_p(x, y) = \left(\sum_{i=1}^{d} |x_i - y_i|^p \right)^{\frac{1}{p}}$$

- $p = 2$, L_2, Euclidean distance:

$$L_2(x, y) = \left(\sum_{i=1}^{d} (x_i - y_i)^2 \right)^{1/2}$$
Distance functions for binary vectors or sets

- **Jaccard** similarity between binary vectors x and y (Range?):

 $$JSim(x, y) = \frac{|x \cap y|}{|x \cup y|}$$

- **Jaccard** distance (Range?):

 $$JDist(x, y) = 1 - \frac{|x \cap y|}{|x \cup y|}$$
Jaccard similarity/distance

• Example:
 • JSim = 1/6
 • Jdist = 5/6
Distance functions for strings

• **Edit distance** between two strings \(x \) and \(y \) is the \textit{min} number of operations required to transform one string to another

• Operations: replace, delete, insert, transpose etc.
Examples of edit distance

• **Hamming distance** between two strings x and y of equal length is the number of positions in which the two strings differ from each other.

• Examples: the Hamming distance between

 - "toned" and "roses" is 3.
 - 1011101 and 1001001 is 2.
 - 2173896 and 2233796 is 3.
Examples of edit distance

- **Edit distance** between two strings x and y of length n and m resp. is the **min** number of single-character edits (insertion, deletion, substitution) required to change one word to the other.
Example

• **INTENTION**
• **EXECUTION**

• **INTENTION**
• **EXECUTION**

• dsis

Wednesday, September 11, 13
Computing edit distance

- **Edit distance** is computed using dynamic programming

\[
D(i, j) = \min \{ D(i - 1, j) + \text{del}(X[i]), D(i, j - 1) + \text{ins}(Y[j]), D(i - 1, j - 1) + \text{sub}(X[i], Y[j]) \}
\]

- Running time? Metric?