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How do search engines decide 
how to rank your query results?

• Guess why Google ranks the query 
results the way it does

• How would you do it?
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Naïve ranking of query 
results

• Given query q
• Rank the web pages p in the index 

based on sim(p,q)

• Scenarios where this is not such a 
good idea?
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Why Link Analysis?
• First generation search engines

– view documents as flat text files
– could not cope with size, spamming, user 

needs
• Example: Honda website, keywords: 

automobile manufacturer
• Second generation search engines

– Ranking becomes critical
– use of Web specific data: Link Analysis
– shift from relevance to authoritativeness
– a success story for the network analysis
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Link Analysis: Intuition
• A link from page p to page q denotes 

endorsement
– page p considers page q an authority on a 

subject
– mine the web graph of recommendations
– assign an authority value to every page
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Link Analysis Ranking 
Algorithms

• Start with a collection of 
web pages

• Extract the underlying 
hyperlink graph

• Run the LAR algorithm 
on the graph

• Output: an authority 
weight for each node
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Link Analysis Ranking 
Algorithms

• Start with a collection of 
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hyperlink graph
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Algorithm input
• Query dependent: rank a small subset 

of pages related to a specific query
– HITS (Kleinberg 98) was proposed as 

query dependent

• Query independent: rank the whole 
Web
– PageRank (Brin and Page 98) was 

proposed as query independent
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Query-dependent LAR
• Given a query q, find a subset of web 

pages S

 that are related to S
• Rank the pages in S based on some 

ranking criterion
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Query-dependent input

Root Set
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Query-dependent input

Root Set
IN OUT
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Query dependent input

Root Set
IN OUT
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Query dependent input

Root Set
IN OUT

Base Set

Thursday, November 14, 13



Properties of a good seed set S
• S is relatively small.
• S is rich in relevant pages.
• S contains most (or many) of the 

strongest authorities.
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How to construct a good seed 
set S

• For query q first collect the t highest-ranked 
pages for q from a text-based search engine 
to form set Γ

• S = Γ

• Add to S all the pages pointing to Γ

• Add to S all the pages that pages from Γ 
point to
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Link Filtering
• Navigational links: serve the purpose of 

moving within a site (or to related sites)
• www.espn.com → www.espn.com/nba
• www.yahoo.com → www.yahoo.it
• www.espn.com → www.msn.com

• Filter out navigational links
– same domain name
– same IP address 
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How do we rank the pages in 
seed set S?

• In degree?

• Intuition

• Problems
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Hubs and Authorities [K98]
• Authority is not necessarily 

transferred directly between 
authorities

• Pages have double identity
– hub identity
– authority identity

• Good hubs point to good 
authorities

• Good authorities are 
pointed by good hubs

hubs authorities
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HITS Algorithm

• Initialize all weights to 1.
• Repeat until convergence

– O operation : hubs  collect the weight of the authorities

– I operation: authorities collect the weight of the hubs

– Normalize weights under some norm

hi =
X

j:i!j

aj

ai =
X

j:j!i

hj
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HITS and eigenvectors
• The HITS algorithm is a power-method 

eigenvector computation
– in vector terms at = ATht-1 and ht = Aat-1

– so at = ATAat-1 and ht = AATht-1

– The authority weight vector a is the eigenvector 
of ATA and the hub weight vector h is the 
eigenvector of AAT

– Why do we need normalization?
• The vectors a and h are singular vectors of 

the matrix A
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A = U⌃V T

Singular Value Decomposition

• r : rank of matrix A

•                               : singular values (sq. roots of eig-vals AAT, ATA)
                     
•                               : left singular vectors (eig-vectors of AAT)
                    
•                                :right singular vectors (eig-vectors of ATA)

•   

�1 � �2 � . . . � �r

~u1, ~u2, . . . , ~ur

~v1,~v2, . . . ,~vr
A = �1~u1~v

T
1 + �2~u2~v

T
2 + . . .+ �r~ur~v

T
r

U = [~u1, . . . ~ur]

⌃ = diag(�1, . . . ,�r)

V = [~v1~v2 . . .~vr]
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21

Singular Value 
Decomposition

• Linear trend v in matrix A:
– the tendency of the row vectors 

of A to align with vector v
– strength of the linear trend: Av

• SVD discovers the linear 
trends in the data

• ui , vi : the i-th strongest 
linear trends 

• σi : the strength of the i-th 
strongest linear trend

σ1

σ2
v1

v2

  HITS discovers the strongest linear trend in the 
authority space
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HITS and the TKC effect
• The HITS algorithm favors the most 

dense community of hubs and 
authorities
– Tightly Knit Community (TKC) effect
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HITS and the TKC effect
• The HITS algorithm favors the most 

dense community of hubs and 
authorities
– Tightly Knit Community (TKC) effect
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HITS and the TKC effect
• The HITS algorithm favors the most 

dense community of hubs and 
authorities
– Tightly Knit Community (TKC) effect

32n

32n

32n

3n · 2n

3n · 2n

3n · 2n

after n iterationsweight of node p is 
proportional to the number 
of (BF)n paths that leave 
node p
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HITS and the TKC effect
• The HITS algorithm favors the most 

dense community of hubs and 
authorities
– Tightly Knit Community (TKC) effect

1

1

1

0

0

0

after normalization
with the max 
element as n → ∞
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Query-independent LAR
• Have an a-priori ordering of the web pages

• Q:  Set of pages that contain the keywords in 
the query q

• Present the pages in Q ordered according to 
order π

• What are the advantages of such an 
approach?
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InDegree algorithm
• Rank pages according to in-degree

– wi = |B(i)|

1. Red Page
2. Yellow Page
3. Blue Page
4. Purple Page
5. Green Page

w=1 w=1

w=2

w=3
w=2
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PageRank algorithm [BP98]
• Good authorities should be 

pointed by good authorities
• Random walk on the web graph

– pick a page at random
– with probability 1- α jump to a 

random page
– with probability α follow a random 

outgoing link
• Rank according to the stationary 

distribution
•  

1. Red Page
2. Purple Page 
3. Yellow Page
4. Blue Page
5. Green Page

PR(p) = ↵
X

q!p

PR(q)

|F (q)| + (1� ↵)
1

n
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Markov chains
• A Markov chain describes a discrete time stochastic 

process over a set of states

 according to a transition probability matrix

– Pij = probability of moving to state j when at state i
• ∑jPij = 1 (stochastic matrix)

• Memorylessness property: The next state of the 
chain depends only at the current state and not on 
the past of the process (first order MC)
– higher order MCs are also possible

S = {s1, s2, … sn}

P = {Pij}
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Random walks
• Random walks on graphs correspond 

to Markov Chains
– The set of states S is the set of nodes of 

the graph G
– The transition probability matrix is the 

probability that we follow an edge from 
one node to another
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An example

v1
v2

v3

v4
v5
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State probability vector
• The vector qt = (qt

1,qt
2, … ,qt

n) that 
stores the probability of being at state 
i at time t
– q0

i
 = the probability of starting from state i

qt = qt-1 P
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An example

v1
v2

v3

v4
v5

qt+1
1 = 1/3 qt

4 + 1/2 qt
5

qt+1
2 = 1/2 qt

1 + qt
3 + 1/3 qt

4

qt+1
3 = 1/2 qt

1 + 1/3 qt
4

qt+1
4 = 1/2 qt

5

qt+1
5 = qt

2 
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Stationary distribution
• A stationary distribution for a MC with transition 

matrix P, is a probability distribution π, such that π 
= πP

• A MC has a unique stationary distribution if 
– it is irreducible

• the underlying graph is strongly connected
– it is aperiodic

• for random walks, the underlying graph is not bipartite
• The probability πi is the fraction of times that we 

visited  state i as t → ∞
• The stationary distribution is an eigenvector of 

matrix P
– the principal left eigenvector of P – stochastic matrices have 

maximum eigenvalue 1
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Computing the stationary 
distribution

• The Power Method
– Initialize to some distribution q0

– Iteratively compute qt = qt-1P
– After enough iterations qt ≈ π
– Power method because it computes qt = q0Pt

• Why does it converge?
– follows from the fact that any vector can be 

written as a linear combination of the 
eigenvectors

• q0 = v1 + c2v2 + … cnvn

• Rate of convergence
– determined by λ2t
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The PageRank random walk
• Vanilla random walk

– make the adjacency matrix stochastic and 
run a random walk

Thursday, November 14, 13



The PageRank random walk
• What about sink nodes?

– what happens when the random walk 
moves to a node without any outgoing 
inks?
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The PageRank random walk
• Replace these row vectors with a vector v

– typically, the uniform vector

P’ = P + dvT
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The PageRank random walk
• How do we guarantee irreducibility?

– add a random jump to vector v with prob α
• typically, to a uniform vector

P’’ = αP’ + (1-α)uvT,  where u is the vector of all 1s
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Effects of random jump
• Guarantees irreducibility
• Motivated by the concept of random 

surfer
• Offers additional flexibility 

– personalization
– anti-spam

• Controls the rate of convergence
– the second eigenvalue of matrix P’’ is α
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A PageRank algorithm
• Performing vanilla power method is now too 

expensive – the matrix is not sparse

t = 1
repeat




   t = t +1

until δ < ε

Efficient computation ofq0 = v

qt = (P 00)
T
qt�1

� = ||qt � qt�1||

qt = (P 00)
T
qt�1

qt = aP 0T qt�1

� = ||qt�1||1 � ||qt||1
qt = qt + �v
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Random walks on undirected graphs

• In the stationary distribution of a 
random walk on an undirected graph, 
the probability of being at node i is 
proportional to the (weighted) degree 
of the vertex

• Random walks on undirected graphs 
are not “interesting”
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Research on PageRank
• Specialized PageRank

– personalization [BP98]
• instead of picking a node uniformly at random favor specific 

nodes that are related to the user
– topic sensitive PageRank [H02]

• compute many PageRank vectors, one for each topic
• estimate relevance of query with each topic
• produce final PageRank as a weighted combination

• Updating PageRank [Chien et al 2002]
• Fast computation of PageRank

– numerical analysis tricks
– node aggregation techniques
– dealing with the “Web frontier”
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