Link Analysis Ranking
How do search engines decide how to rank your query results?

- Guess why Google ranks the query results the way it does

- How would you do it?
Naïve ranking of query results

• Given query q
• Rank the web pages p in the index based on $\text{sim}(p,q)$

• Scenarios where this is not such a good idea?
Why Link Analysis?

• First generation search engines
 – view documents as flat text files
 – could not cope with size, spamming, user needs
 • Example: Honda website, keywords: automobile manufacturer

• Second generation search engines
 – Ranking becomes critical
 – use of Web specific data: Link Analysis
 – shift from relevance to authoritativeness
 – a success story for the network analysis
Link Analysis: Intuition

- A link from page p to page q denotes endorsement
 - page p considers page q an authority on a subject
 - mine the web graph of recommendations
 - assign an authority value to every page
Link Analysis Ranking Algorithms

• Start with a collection of web pages

• Extract the underlying hyperlink graph

• Run the LAR algorithm on the graph

• Output: an authority weight for each node
Link Analysis Ranking Algorithms

• Start with a collection of web pages

• Extract the underlying hyperlink graph

• Run the LAR algorithm on the graph

• Output: an authority weight for each node
Link Analysis Ranking Algorithms

- Start with a collection of web pages
Link Analysis Ranking Algorithms

• Start with a collection of web pages

• Extract the underlying hyperlink graph
Link Analysis Ranking
Algorithms

• Start with a collection of web pages

• Extract the underlying hyperlink graph
Link Analysis Ranking Algorithms

• Start with a collection of web pages

• Extract the underlying hyperlink graph

• Run the LAR algorithm on the graph
• Start with a collection of web pages

• Extract the underlying hyperlink graph

• Run the LAR algorithm on the graph
Link Analysis Ranking Algorithms

- Start with a collection of web pages
- Extract the underlying hyperlink graph
- Run the LAR algorithm on the graph
- Output: an authority weight for each node
Algorithm input

• **Query dependent**: rank a small subset of pages related to a specific query
 – HITS (Kleinberg 98) was proposed as query dependent

• **Query independent**: rank the whole Web
 – PageRank (Brin and Page 98) was proposed as query independent
Query-dependent LAR

• Given a query q, find a subset of web pages S that are related to S
• Rank the pages in S based on some ranking criterion
Query-dependent input

Root Set
Query-dependent input

IN Root Set OUT
Query dependent input

IN

Root Set

OUT
Query dependent input

Base Set

IN

Root Set

OUT

Thursday, November 14, 13
Properties of a good seed set S

- S is relatively small.
- S is rich in relevant pages.
- S contains most (or many) of the strongest authorities.
How to construct a good seed set S

• For query q first collect the t highest-ranked pages for q from a text-based search engine to form set Γ

• $S = \Gamma$

• Add to S all the pages pointing to Γ

• Add to S all the pages that pages from Γ point to
Link Filtering

- Navigational links: serve the purpose of moving within a site (or to related sites)
 - www.espn.com → www.espn.com/nba
 - www.yahoo.com → www.yahoo.it
 - www.espn.com → www.msn.com

- Filter out navigational links
 - same domain name
 - same IP address
How do we rank the pages in seed set S?

- In degree?
- Intuition
- Problems
Hubs and Authorities [K98]

- Authority is not necessarily transferred directly between authorities.
- Pages have double identity:
 - hub identity
 - authority identity
- Good hubs point to good authorities.
- Good authorities are pointed by good hubs.
HITS Algorithm

- Initialize all weights to 1.
- Repeat until convergence
 - \(O \) operation: hubs collect the weight of the authorities
 \[
 h_i = \sum_{j:i \rightarrow j} a_j
 \]
 - \(I \) operation: authorities collect the weight of the hubs
 \[
 a_i = \sum_{j:j \rightarrow i} h_j
 \]
 - Normalize weights under some norm
HITS and eigenvectors

• The HITS algorithm is a power-method eigenvector computation
 – in vector terms $a^t = A^T h^{t-1}$ and $h^t = A a^{t-1}$
 – so $a^t = A^T A a^{t-1}$ and $h^t = AA^T h^{t-1}$
 – The authority weight vector a is the eigenvector of $A^T A$ and the hub weight vector h is the eigenvector of AA^T
 – Why do we need normalization?

• The vectors a and h are singular vectors of the matrix A
Singular Value Decomposition

\[A = U \Sigma V^T \]

\[U = [\vec{u}_1, \ldots, \vec{u}_r] \quad V = [\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_r] \]

\[\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_r) \]

- \(r \) : rank of matrix A
- \(\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r \) : singular values (sq. roots of eig–vals \(AA^T, A^TA \))
- \(\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_r \) : left singular vectors (eig–vectors of \(AA^T \))
- \(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_r \) : right singular vectors (eig–vectors of \(A^TA \))
- \[A = \sigma_1 \vec{u}_1 \vec{v}_1^T + \sigma_2 \vec{u}_2 \vec{v}_2^T + \ldots + \sigma_r \vec{u}_r \vec{v}_r^T \]
Singular Value Decomposition

• **Linear trend** \mathbf{v} in matrix \mathbf{A}:
 - the tendency of the row vectors of \mathbf{A} to align with vector \mathbf{v}
 - strength of the linear trend: $\mathbf{A}\mathbf{v}$

• SVD discovers the linear trends in the data

• \mathbf{u}_i, \mathbf{v}_i: the i–th strongest linear trends

• σ_i: the strength of the i–th strongest linear trend

• HITS discovers the **strongest linear trend** in the authority space
HITS and the TKC effect

• The HITS algorithm favors the most dense community of hubs and authorities
 – Tightly Knit Community (TKC) effect
HITS and the TKC effect

- The HITS algorithm favors the most dense community of hubs and authorities
 - Tightly Knit Community (TKC) effect
HITS and the TKC effect

- The HITS algorithm favors the most dense community of hubs and authorities
 - Tightly Knit Community (TKC) effect
HITS and the TKC effect

• The HITS algorithm favors the most dense community of hubs and authorities
 – Tightly Knit Community (TKC) effect

Thursday, November 14, 13
HITS and the TKC effect

• The HITS algorithm favors the most dense community of hubs and authorities
 – Tightly Knit Community (TKC) effect
HITS and the TKC effect

• The HITS algorithm favors the most dense community of hubs and authorities
 – Tightly Knit Community (TKC) effect
HITS and the TKC effect

- The HITS algorithm favors the most dense community of hubs and authorities
 - Tightly Knit Community (TKC) effect

weight of node p is proportional to the number of $(BF)^n$ paths that leave node p

![Diagram showing the progression of weights after n iterations]
HITS and the TKC effect

• The HITS algorithm favors the most dense community of hubs and authorities
 – Tightly Knit Community (TKC) effect

after normalization with the max element as $n \to \infty$
Query-independent LAR

- Have an a-priori ordering of the web pages

- Q: Set of pages that contain the keywords in the query q

- Present the pages in Q ordered according to order π

- What are the advantages of such an approach?
InDegree algorithm

• Rank pages according to in-degree
 \[-w_i = |B(i)|\]
PageRank algorithm [BP98]

- Good authorities should be pointed by good authorities
- Random walk on the web graph
 - pick a page at random
 - with probability $1 - \alpha$ jump to a random page
 - with probability α follow a random outgoing link
- Rank according to the stationary distribution

$$PR(p) = \alpha \sum_{q \rightarrow p} \frac{PR(q)}{|F(q)|} + (1 - \alpha) \frac{1}{n}$$
Markov chains

• A Markov chain describes a discrete time stochastic process over a set of states
 \[S = \{s_1, s_2, \ldots, s_n\} \]
 according to a transition probability matrix
 \[P = \{P_{ij}\} \]
 – \(P_{ij} \) = probability of moving to state \(j \) when at state \(i \)
 • \(\sum_j P_{ij} = 1 \) (stochastic matrix)

• **Memorylessness property**: The next state of the chain depends only at the current state and not on the past of the process (first order MC)
 – higher order MCs are also possible
Random walks

• Random walks on graphs correspond to Markov Chains
 – The set of states S is the set of nodes of the graph G
 – The \textit{transition probability matrix} is the probability that we follow an edge from one node to another
An example

\[A = \begin{bmatrix}
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 \\
\end{bmatrix} \]

\[P = \begin{bmatrix}
0 & 1/2 & 1/2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
1/3 & 1/3 & 1/3 & 0 & 0 \\
1/2 & 0 & 0 & 0 & 1/2 \\
\end{bmatrix} \]
State probability vector

- The vector $q^t = (q^t_1, q^t_2, \ldots, q^t_n)$ that stores the probability of being at state i at time t

 - $q^0_i = \text{the probability of starting from state } i$

 - $q^t = q^{t-1} P$
An example

\[P = \begin{bmatrix}
0 & 1/2 & 1/2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
1/3 & 1/3 & 1/3 & 0 & 0 \\
1/2 & 0 & 0 & 1/2 & 0 \\
\end{bmatrix} \]

\[q^{t+1}_1 = 1/3 \ q^t_4 + 1/2 \ q^t_5 \]
\[q^{t+1}_2 = 1/2 \ q^t_1 + q^t_3 + 1/3 \ q^t_4 \]
\[q^{t+1}_3 = 1/2 \ q^t_1 + 1/3 \ q^t_4 \]
\[q^{t+1}_4 = 1/2 \ q^t_5 \]
\[q^{t+1}_5 = q^t_2 \]
Stationary distribution

- A stationary distribution for a MC with transition matrix P, is a probability distribution π, such that $\pi = \pi P$

- A MC has a unique stationary distribution if
 - it is irreducible
 - the underlying graph is strongly connected
 - it is aperiodic
 - for random walks, the underlying graph is not bipartite

- The probability π_i is the fraction of times that we visited state i as $t \to \infty$

- The stationary distribution is an eigenvector of matrix P
 - the principal left eigenvector of P – stochastic matrices have maximum eigenvalue 1
Computing the stationary distribution

• The Power Method
 – Initialize to some distribution q^0
 – Iteratively compute $q^t = q^{t-1}P$
 – After enough iterations $q^t \approx \pi$
 – Power method because it computes $q^t = q^0P^t$

• Why does it converge?
 – follows from the fact that any vector can be written as a linear combination of the eigenvectors
 • $q^0 = v_1 + c_2v_2 + \ldots + c_nv_n$

• Rate of convergence
 – determined by λ_2^t
The PageRank random walk

• Vanilla random walk
 – make the adjacency matrix stochastic and run a random walk

\[
P = \begin{bmatrix}
0 & 1/2 & 1/2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
1/3 & 1/3 & 1/3 & 0 & 0 \\
1/2 & 0 & 0 & 1/2 & 0
\end{bmatrix}
\]
The PageRank random walk

• What about sink nodes?
 – what happens when the random walk moves to a node without any outgoing inks?

\[
P = \begin{bmatrix}
0 & 1/2 & 1/2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
1/3 & 1/3 & 1/3 & 0 & 0 & 0 \\
1/2 & 0 & 0 & 1/2 & 0 & 0 \\
\end{bmatrix}
\]
The PageRank random walk

- Replace these row vectors with a vector \mathbf{v} — typically, the uniform vector

$$
P' = \begin{bmatrix}
0 & 1/2 & 1/2 & 0 & 0 \\
1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\
0 & 1 & 0 & 0 & 0 \\
1/3 & 1/3 & 1/3 & 0 & 0 \\
1/2 & 0 & 0 & 1/2 & 0
\end{bmatrix}
$$

$$
P' = P + d\mathbf{v}^T \\
d = \begin{cases}
1 & \text{if } i \text{ is sink} \\
0 & \text{otherwise}
\end{cases}
$$
The PageRank random walk

• How do we guarantee irreducibility?
 – add a random jump to vector v with prob α
 • typically, to a uniform vector

$P'' = \alpha \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 0 & 1 & 0 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 0 & 0 & 1/2 \end{bmatrix} + (1 - \alpha) \begin{bmatrix} 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \end{bmatrix}$

$P'' = \alpha P' + (1 - \alpha)uv^T$, where u is the vector of all 1s
Effects of random jump

• Guarantees irreducibility
• Motivated by the concept of random surfer
• Offers additional flexibility
 – personalization
 – anti-spam
• Controls the rate of convergence
 – the second eigenvalue of matrix P'' is α
A PageRank algorithm

• Performing vanilla power method is now too expensive – the matrix is not sparse

\[
q^0 = v \\
t = 1 \\
\text{repeat} \\
\quad q^t = (P'')^T q^{t-1} \\
\quad \delta = ||q^t - q^{t-1}|| \\
\quad t = t + 1 \\
\text{until } \delta < \epsilon
\]

Efficient computation of
\[
q^t = (P'')^T q^{t-1}
\]

\[
q^t = \alpha P'T q^{t-1} \\
\beta = ||q^{t-1}||_1 - ||q^t||_1 \\
q^t = q^t + \beta v
\]
Random walks on undirected graphs

• In the stationary distribution of a random walk on an undirected graph, the probability of being at node i is proportional to the (weighted) degree of the vertex

• Random walks on undirected graphs are not “interesting”
Research on PageRank

• Specialized PageRank
 – personalization [BP98]
 • instead of picking a node uniformly at random favor specific nodes that are related to the user
 – topic sensitive PageRank [H02]
 • compute many PageRank vectors, one for each topic
 • estimate relevance of query with each topic
 • produce final PageRank as a weighted combination

• Updating PageRank [Chien et al 2002]

• Fast computation of PageRank
 – numerical analysis tricks
 – node aggregation techniques
 – dealing with the “Web frontier”