Link Analysis Ranking

How do search engines decide how to rank your query results?

 Guess why Google ranks the query results the way it does

How would you do it?

Naïve ranking of query results

- Given query q
- Rank the web pages p in the index based on sim(p,q)

 Scenarios where this is not such a good idea?

Why Link Analysis?

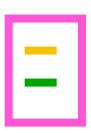
- First generation search engines
 - view documents as flat text files
 - could not cope with size, spamming, user needs
 - Example: Honda website, keywords: automobile manufacturer
- Second generation search engines
 - Ranking becomes critical
 - use of Web specific data: Link Analysis
 - shift from relevance to authoritativeness
 - a success story for the network analysis

Link Analysis: Intuition

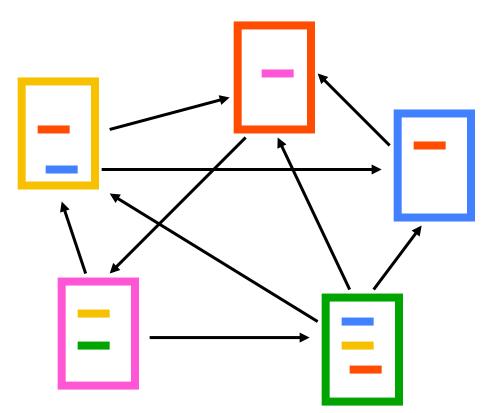
- A link from page p to page q denotes endorsement
 - page p considers page q an authority on a subject
 - mine the web graph of recommendations
 - assign an authority value to every page

- Start with a collection of web pages
- Extract the underlying hyperlink graph

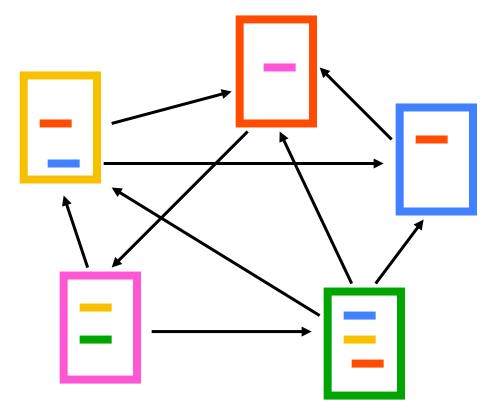
- Run the LAR algorithm on the graph
- Output: an authority weight for each node



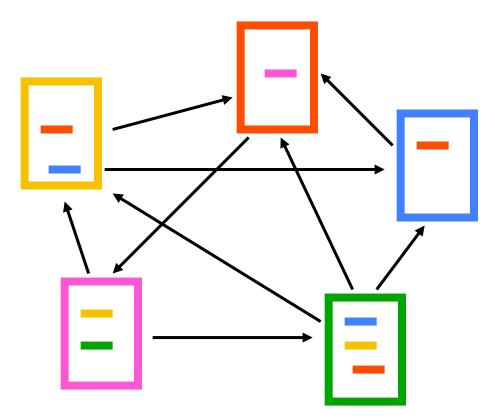
- Start with a collection of web pages
- Extract the underlying hyperlink graph
- Run the LAR algorithm on the graph
- Output: an authority weight for each node



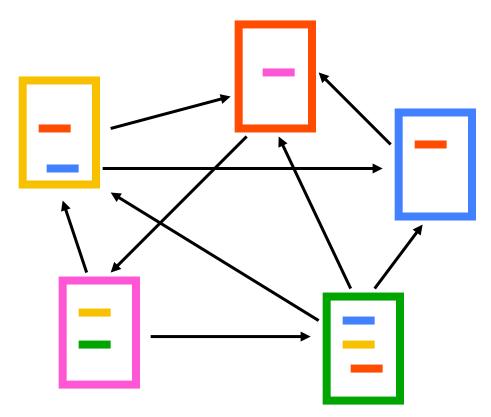
Start with a collection of web pages



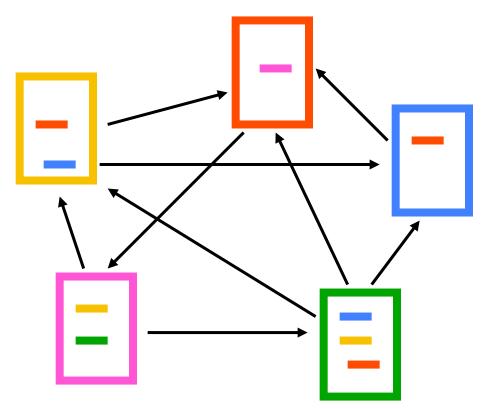
- Start with a collection of web pages
- Extract the underlying hyperlink graph



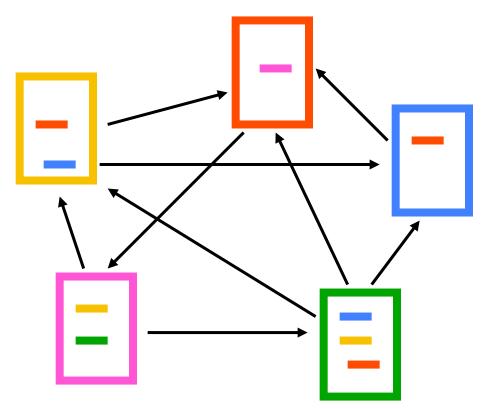
- Start with a collection of web pages
- Extract the underlying hyperlink graph



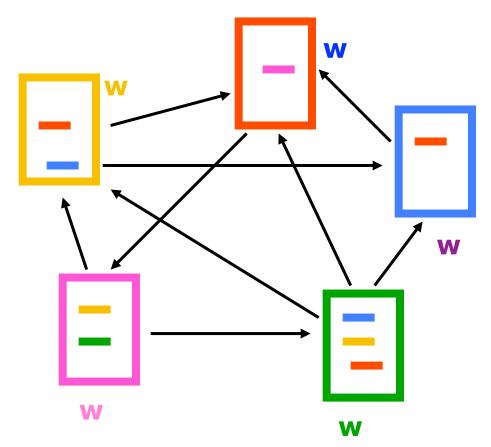
- Start with a collection of web pages
- Extract the underlying hyperlink graph
- Run the LAR algorithm on the graph



- Start with a collection of web pages
- Extract the underlying hyperlink graph
- Run the LAR algorithm on the graph



- Start with a collection of web pages
- Extract the underlying hyperlink graph
- Run the LAR algorithm on the graph
- Output: an authority weight for each node



Algorithm input

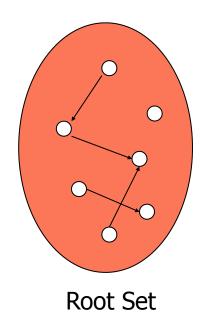
- Query dependent: rank a small subset of pages related to a specific query
 - HITS (Kleinberg 98) was proposed as query dependent

- Query independent: rank the whole Web
 - PageRank (Brin and Page 98) was proposed as query independent

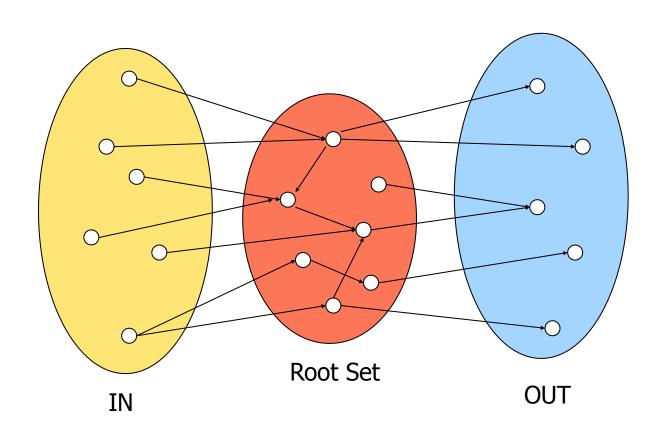
Query-dependent LAR

- Given a query q, find a subset of web pages S
 - that are related to S
- Rank the pages in S based on some ranking criterion

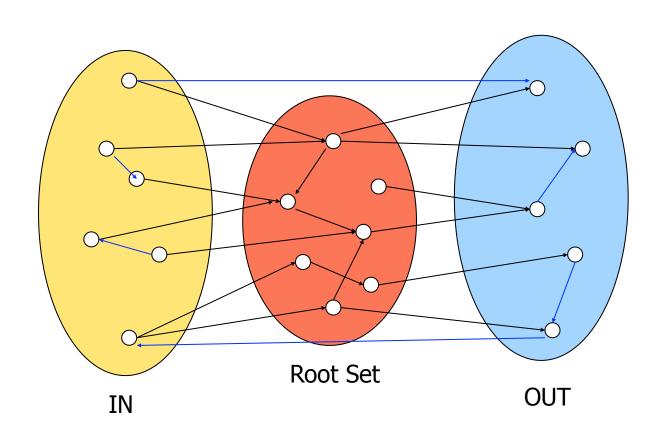
Query-dependent input



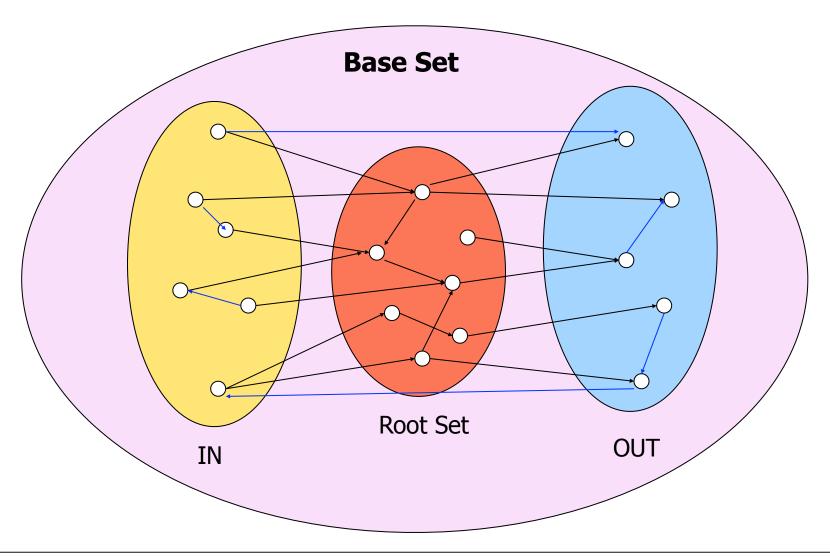
Query-dependent input



Query dependent input



Query dependent input



Properties of a good seed set S

- S is relatively small.
- S is rich in relevant pages.
- S contains most (or many) of the strongest authorities.

How to construct a good seed set \$

 For query q first collect the t highest-ranked pages for q from a text-based search engine to form set \(\Gamma\)

- Add to S all the pages pointing to I
- Add to S all the pages that pages from F point to

Link Filtering

- Navigational links: serve the purpose of moving within a site (or to related sites)
 - www.espn.com → www.espn.com/nba
 - www.yahoo.com → www.yahoo.it
 - www.espn.com → www.msn.com
- Filter out navigational links
 - same domain name
 - same IP address

How do we rank the pages in seed set \$?

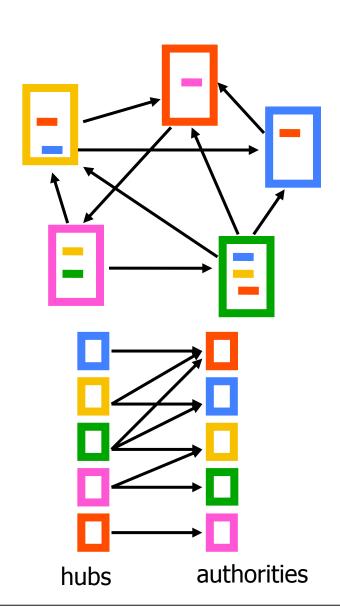
In degree?

Intuition

Problems

Hubs and Authorities [K98]

- Authority is not necessarily transferred directly between authorities
- Pages have double identity
 - hub identity
 - authority identity
- Good hubs point to good authorities
- Good authorities are pointed by good hubs



HITS Algorithm

- Initialize all weights to 1.
- Repeat until convergence
 - O operation: hubs collect the weight of the authorities

$$h_i = \sum_{j:i\to j} a_j$$

I operation: authorities collect the weight of the hubs

$$a_i = \sum_{j:j\to i} h_j$$

- Normalize weights under some norm

HITS and eigenvectors

- The HITS algorithm is a power-method eigenvector computation
 - in vector terms $\mathbf{a}^t = \mathbf{A}^T \mathbf{h}^{t-1}$ and $\mathbf{h}^t = \mathbf{A} \mathbf{a}^{t-1}$
 - so $a^t = A^TAa^{t-1}$ and $h^t = AA^Th^{t-1}$
 - The authority weight vector a is the eigenvector of A^TA and the hub weight vector h is the eigenvector of AA^T
 - Why do we need normalization?
- The vectors a and h are singular vectors of the matrix A

Singular Value Decomposition

$$A = U\Sigma V^{T}$$

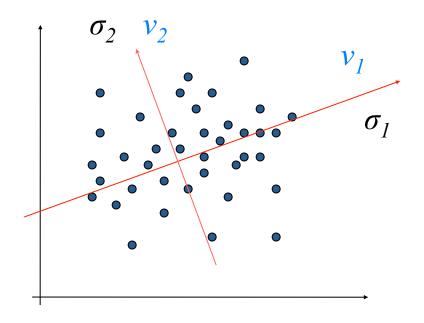
$$U = [\vec{u}_{1}, \dots \vec{u}_{r}] \quad V = [\vec{v}_{1}\vec{v}_{2} \dots \vec{v}_{r}]$$

$$\Sigma = \operatorname{diag}(\sigma_{1}, \dots, \sigma_{r})$$

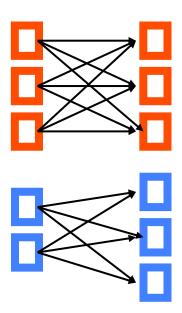
- r: rank of matrix A
- $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r$: singular values (sq. roots of eig-vals AAT, ATA)
- $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_r$: left singular vectors (eig-vectors of AAT)
- $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_r$:right singular vectors (eig-vectors of ATA)
- $A = \sigma_1 \vec{u}_1 \vec{v}_1^T + \sigma_2 \vec{u}_2 \vec{v}_2^T + \dots + \sigma_r \vec{u}_r \vec{v}_r^T$

Singular Value Decomposition

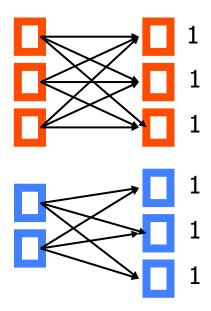
- Linear trend v in matrix A:
 - the tendency of the row vectors of A to align with vector v
 - strength of the linear trend: Av
- SVD discovers the linear trends in the data
- u_i, v_i: the i-th strongest linear trends
- σ_i : the strength of the i-th strongest linear trend
- HITS discovers the strongest linear trend in the authority space



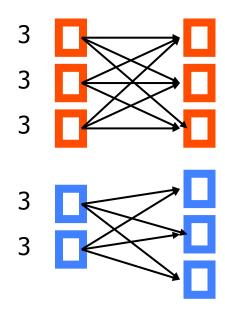
- The HITS algorithm favors the most dense community of hubs and authorities
 - Tightly Knit Community (TKC) effect



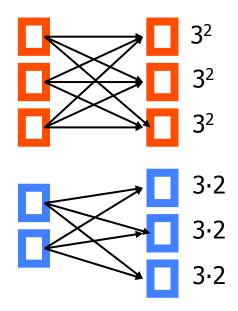
- The HITS algorithm favors the most dense community of hubs and authorities
 - Tightly Knit Community (TKC) effect



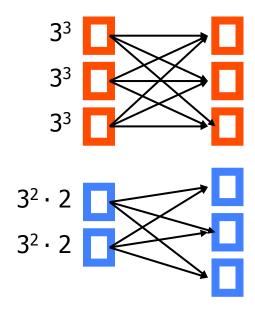
- The HITS algorithm favors the most dense community of hubs and authorities
 - Tightly Knit Community (TKC) effect



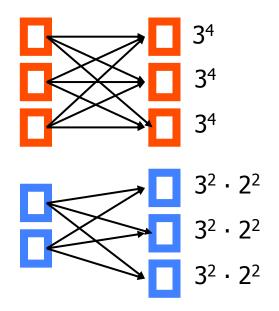
- The HITS algorithm favors the most dense community of hubs and authorities
 - Tightly Knit Community (TKC) effect



- The HITS algorithm favors the most dense community of hubs and authorities
 - Tightly Knit Community (TKC) effect

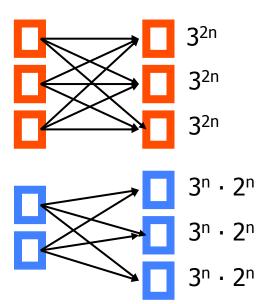


- The HITS algorithm favors the most dense community of hubs and authorities
 - Tightly Knit Community (TKC) effect



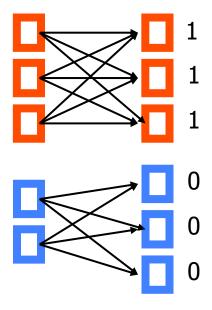
- The HITS algorithm favors the most dense community of hubs and authorities
 - Tightly Knit Community (TKC) effect

weight of node p is proportional to the number of (BF)ⁿ paths that leave node p



after n iterations

- The HITS algorithm favors the most dense community of hubs and authorities
 - Tightly Knit Community (TKC) effect



after normalization with the max element as $n \rightarrow \infty$

Query-independent LAR

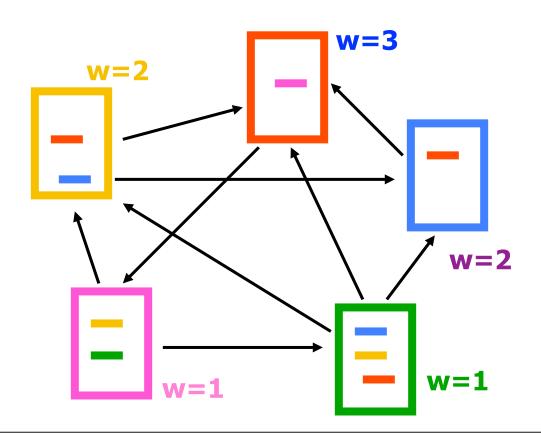
- Have an a-priori ordering of the web pages
- Q: Set of pages that contain the keywords in the query q
- Present the pages in Q ordered according to order π

What are the advantages of such an approach?

InDegree algorithm

Rank pages according to in-degree

$$-w_i = |B(i)|$$

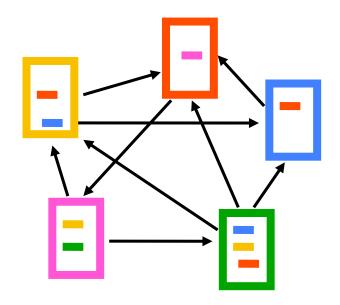


- 1. Red Page
- 2. Yellow Page
- 3. Blue Page
- 4. Purple Page
- 5. Green Page

PageRank algorithm [BP98]

- Good authorities should be pointed by good authorities
- Random walk on the web graph
 - pick a page at random
 - with probability 1- α jump to a random page
 - with probability a follow a random outgoing link
- Rank according to the stationary distribution

•
$$PR(p) = \alpha \sum_{q \to p} \frac{PR(q)}{|F(q)|} + (1 - \alpha) \frac{1}{n}$$



- 1. Red Page
- 2. Purple Page
- 3. Yellow Page
- 4. Blue Page
- 5. Green Page

Markov chains

 A Markov chain describes a discrete time stochastic process over a set of states

$$S = \{s_1, s_2, ... s_n\}$$

according to a transition probability matrix

$$P = \{P_{ij}\}$$

- $-P_{ii}$ = probability of moving to state j when at state i
 - $\sum_{i} P_{ii} = 1$ (stochastic matrix)
- Memorylessness property: The next state of the chain depends only at the current state and not on the past of the process (first order MC)
 - higher order MCs are also possible

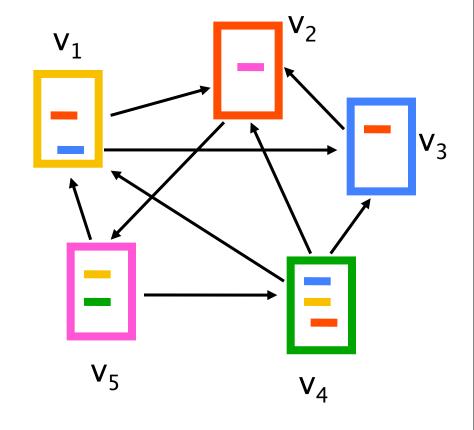
Random walks

- Random walks on graphs correspond to Markov Chains
 - The set of states S is the set of nodes of the graph G
 - The transition probability matrix is the probability that we follow an edge from one node to another

An example

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$P = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 0 & 0 & 1/2 \end{bmatrix}$$



State probability vector

- The vector q^t = (q^t₁,q^t₂, ..., q^t_n) that stores the probability of being at state i at time t
 - $-q_i^0$ = the probability of starting from state i $q^t = q^{t-1} P$

An example

$$P = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \end{bmatrix}$$

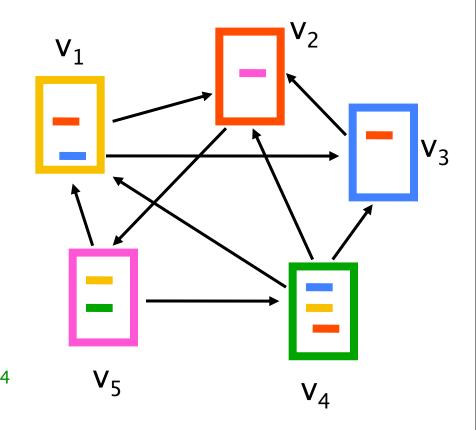
$$q^{t+1}_{1} = 1/3 \ q^{t}_{4} + 1/2 \ q^{t}_{5}$$

$$q^{t+1}_{2} = 1/2 \ q^{t}_{1} + q^{t}_{3} + 1/3 \ q^{t}_{4}$$

$$q^{t+1}_{3} = 1/2 \ q^{t}_{1} + 1/3 \ q^{t}_{4}$$

$$q^{t+1}_{4} = 1/2 \ q^{t}_{5}$$

$$q^{t+1}_{5} = q^{t}_{2}$$



Stationary distribution

- A stationary distribution for a MC with transition matrix P, is a probability distribution π , such that $\pi = \pi P$
- A MC has a unique stationary distribution if
 - it is irreducible
 - the underlying graph is strongly connected
 - it is aperiodic
 - for random walks, the underlying graph is not bipartite
- The probability π_i is the fraction of times that we visited state i as $t \to \infty$
- The stationary distribution is an eigenvector of matrix P
 - the principal left eigenvector of $\mbox{\sc P}$ stochastic matrices have maximum eigenvalue 1

Computing the stationary distribution

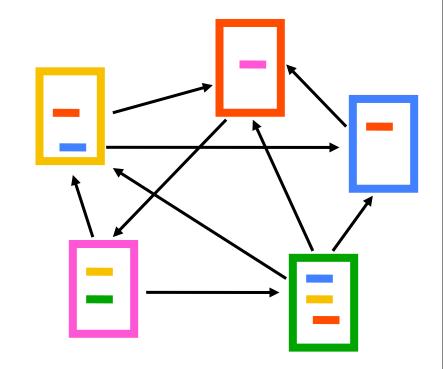
- The Power Method
 - Initialize to some distribution q⁰
 - Iteratively compute $q^t = q^{t-1}P$
 - After enough iterations $q^t \approx \pi$
 - Power method because it computes $q^t = q^0P^t$
- Why does it converge?
 - follows from the fact that any vector can be written as a linear combination of the eigenvectors
 - $q^0 = v_1 + c_2 v_2 + ... c_n v_n$
- Rate of convergence
 - determined by λ_2^t

Vanilla random walk

- make the adjacency matrix stochastic and

run a random walk

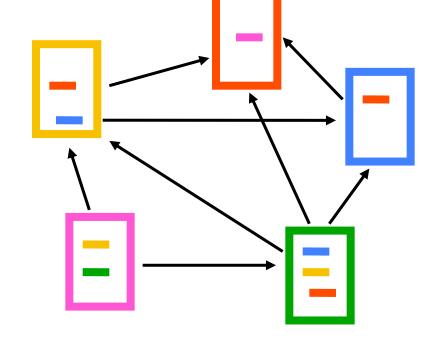
$$P = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \end{bmatrix}$$



What about sink nodes?

- what happens when the random walk moves to a node without any outgoing inks?

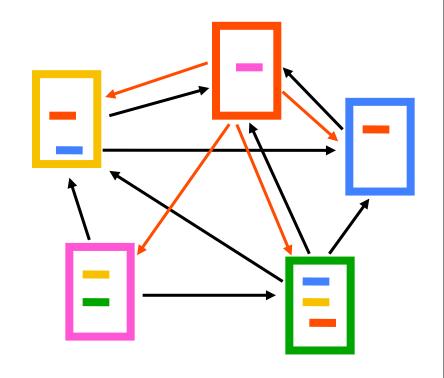
	0	1/2	1/2	0	0]
	0	0	0	0	0
P =	0	1	0	0	0
	1/3	1/3	1/3	0	0
	1/2	0	0	1/2	0



- Replace these row vectors with a vector v
 - typically, the uniform vector

$$P' = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 0 & 1 & 0 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \end{bmatrix}$$

$$P' = P + dv^{T} \qquad d = \begin{cases} 1 & \text{if i is sink} \\ 0 & \text{otherwise} \end{cases}$$



- How do we guarantee irreducibility?
 - add a random jump to vector v with prob a
 - typically, to a uniform vector

$$\mathsf{P''} = \alpha \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 0 & 1 & 0 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 0 & 0 & 1/2 \end{bmatrix} + (1-\alpha) \begin{bmatrix} 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \end{bmatrix}$$

 $P'' = \alpha P' + (1-\alpha)uv^T$, where u is the vector of all 1s

Effects of random jump

- Guarantees irreducibility
- Motivated by the concept of random surfer
- Offers additional flexibility
 - personalization
 - anti-spam
- Controls the rate of convergence
 - the second eigenvalue of matrix P" is a

A PageRank algorithm

 Performing vanilla power method is now too expensive – the matrix is not sparse

$$q^0 = v$$
 $t = 1$
repeat
 $q^t = (P'')^T q^{t-1}$
 $\delta = ||q^t - q^{t-1}||$
 $t = t + 1$
until $\delta < \epsilon$

Efficient computation of

$$q^t = \left(P^{\prime\prime}\right)^T q^{t-1}$$

$$\begin{vmatrix} q^{t} = aP'^{T}q^{t-1} \\ \beta = ||q^{t-1}||_{1} - ||q^{t}||_{1} \\ q^{t} = q^{t} + \beta v \end{vmatrix}$$

Random walks on undirected graphs

 In the stationary distribution of a random walk on an undirected graph, the probability of being at node i is proportional to the (weighted) degree of the vertex

 Random walks on undirected graphs are not "interesting"

Research on PageRank

- Specialized PageRank
 - personalization [BP98]
 - instead of picking a node uniformly at random favor specific nodes that are related to the user
 - topic sensitive PageRank [H02]
 - compute many PageRank vectors, one for each topic
 - estimate relevance of query with each topic
 - produce final PageRank as a weighted combination
- Updating PageRank [Chien et al 2002]
- Fast computation of PageRank
 - numerical analysis tricks
 - node aggregation techniques
 - dealing with the "Web frontier"