Lecture outline

- Classification
- Naïve Bayes classifier

Bayes Theorem

- X, Y random variables
- Joint probability: Pr(X=x,Y=y)
- Conditional probability: Pr(Y=y | X=x)
- Relationship between joint and conditional probability distributions

 $Pr(X,Y) = Pr(X | Y) \times Pr(Y) = Pr(Y | X) \times Pr(X)$

• Bayes Theorem:

$$\Pr(Y \mid X) = \frac{\Pr(X \mid Y) \Pr(Y)}{\Pr(X)}$$

Bayes Theorem for Classification

- X: attribute set
- Y: class variable
- Y depends on X in a nondetermininstic way
- We can capture this dependence using
 Pr(Y|X) : Posterior probability

VS

Pr(Y): Prior probability

Building the Classifier

• Training phase:

 Learning the posterior probabilities Pr(Y|
 X) for every combination of X and Y based on training data

• Test phase:

 For test record X', compute the class Y' that maximizes the posterior probability
 Pr(Y'|X')

Bayes Classification: Example

			cal	OUS
	binary	catego	contin	class
Tid	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Figure 4.6. Training set for predicting borrowers who will default on loan payments.

X'=(Home Owner=No, Marital Status=Married, AnnualIncome=120K)

Compute: **Pr(Yes|X')**, **Pr(No|X')** pick No or Yes with max Prob.

How can we compute these probabilities??

Computing posterior probabilities

Bayes Theorem

$$\Pr(Y \mid X) = \frac{\Pr(X \mid Y) \Pr(Y)}{\Pr(X)}$$

- P(X) is constant and can be ignored
- P(Y): estimated from training data; compute the fraction of training records in each class
- **P(X|Y)**?

Naïve Bayes Classifier

$$\Pr(X | Y = y) = \prod_{i=1}^{d} \Pr(X_i | Y = y)$$

 Attribute set X = {X₁,...,X_d} consists of d attributes

- Conditional independence:
 - X conditionally independent of Y, given X:
 Pr(X|Y,Z) = Pr(X|Z)
 - -Pr(X,Y|Z) = Pr(X|Z)xPr(Y|Z)

Naïve Bayes Classifier $Pr(X|Y = y) = \prod_{i=1}^{d} Pr(X_i|Y = y)$ • Attribute set X = {X₁,...,X_d} consists of

 Attribute set X = {X₁,...,X_d} consists of d attributes

$$\Pr(X|Y) = \frac{\Pr(Y) \prod_{i=1}^{d} \Pr(X_i|Y)}{\Pr(X)}$$

Conditional probabilities for categorical attributes

- Categorical attribute X_i
- Pr(Xi = xi|Y=y): fraction of training instances in class y that take value x_i on the i-th attribute

```
Pr(homeOwner = yes|No) = 3/7
```

```
Pr(MaritalStatus =
Single| Yes) = 2/3
```

		rical vous				
	binary	catego	contin	class		
Tid	Home Owner	Marital Status	Annual Income	Defaulted Borrower		
1	Yes	Single	125K	No		
2	No	Married	100K	No		
3	No	Single	70K	No		
4	Yes	Married	120K	No		
5	No	Divorced	95K	Yes		
6	No	Married	60K	No		
7	Yes	Divorced	220K	No		
8	No	Single	85K	Yes		
9	No	Married	75K	No		
10	No	Single	90K	Yes		

Figure 4.6. Training set for predicting borrowers who will default on loan payments.

Estimating conditional probabilities for continuous attributes?

- Discretization?
- How can we discretize?

Naïve Bayes Classifier: Example

- X' = (HomeOwner = No, MaritalStatus = Married, Income=120K)
- Need to compute Pr(Y|X') or Pr(Y)xPr(X'|Y)
- But Pr(X'|Y) is
 - $-\mathbf{Y} = \mathbf{No}$:
 - Pr(HO=No|No)xPr(MS=Married|No) xPr(Inc=120K|No) = 4/7x4/7x0.0072 = 0.0024
 - -Y=Yes:
 - Pr(HO=No|Yes)xPr(MS=Married|Yes) $xPr(Inc=120K|Yes) = 1x0x1.2x10^{-9} = 0$

Naïve Bayes Classifier: Example

- X' = (HomeOwner = No, MaritalStatus = Married, Income=120K)
- Need to compute Pr(Y|X') or Pr(Y)xPr(X'|Y)
- But **Pr(X'|Y = Yes)** is **0**?
- Correction process:

$$\Pr(X_i = x_i \mid Y = y_j) = \frac{n_c + mp}{n + m}$$

n_c: number of training examples from class y_i that take value x_i n: total number of instances from class y_i m: equivalent sample size (balance between prior and posterior)

p: user-specified parameter (prior probability)

Characteristics of Naïve Bayes Classifier

- Robust to isolated noise points
 - noise points are averaged out
- Handles missing values

 Ignoring missing-value examples
- Robust to irrelevant attributes

 If X_i is irrelevant, P(X_i|Y) becomes almost uniform
- Correlated attributes degrade the performance of NB classifier