Lecture outline

• Classification
• Naïve Bayes classifier
Bayes Theorem

- X, Y random variables
- Joint probability: $\Pr(X=x, Y=y)$
- Conditional probability: $\Pr(Y=y \mid X=x)$
- Relationship between joint and conditional probability distributions

$$\Pr(X, Y) = \Pr(X \mid Y) \times \Pr(Y) = \Pr(Y \mid X) \times \Pr(X)$$

- **Bayes Theorem:**

$$\Pr(Y \mid X) = \frac{\Pr(X \mid Y) \Pr(Y)}{\Pr(X)}$$
Bayes Theorem for Classification

- **X**: attribute set
- **Y**: class variable
- **Y** depends on **X** in a **non-deterministic** way
- We can capture this dependence using
 \[\text{Pr}(Y|X) : \text{Posterior probability} \]
 vs
 \[\text{Pr}(Y) : \text{Prior probability} \]
Building the Classifier

- Training phase:
 - Learning the posterior probabilities $\Pr(Y|X)$ for every combination of X and Y based on training data

- Test phase:
 - For test record X', compute the class Y' that maximizes the posterior probability $\Pr(Y'|X')$
Bayes Classification: Example

$X' = (\text{Home Owner} = \text{No}, \text{Marital Status} = \text{Married}, \text{Annual Income} = 120K)$

Compute: $\Pr(\text{Yes}|X'), \Pr(\text{No}|X')$ pick No or Yes with max Prob.

How can we compute these probabilities??
Computing posterior probabilities

- Bayes Theorem
 \[Pr(Y | X) = \frac{Pr(X | Y) Pr(Y)}{Pr(X)} \]

- **P(X)** is constant and can be ignored
- **P(Y)**: estimated from training data; compute the fraction of training records in each class
- **P(X|Y)**?
Naïve Bayes Classifier

\[\Pr(X \mid Y = y) = \prod_{i=1}^{d} \Pr(X_i \mid Y = y) \]

- Attribute set \(X = \{X_1, \ldots, X_d\} \) consists of \(d \) attributes

- Conditional independence:
 - \(X \) conditionally independent of \(Y \), given \(X \):
 \[\Pr(X \mid Y, Z) = \Pr(X \mid Z) \]
 - \(\Pr(X, Y \mid Z) = \Pr(X \mid Z) \times \Pr(Y \mid Z) \)
Naïve Bayes Classifier

\[
Pr(X|Y = y) = \prod_{i=1}^{d} Pr(X_i|Y = y)
\]

- Attribute set \(X = \{X_1, \ldots, X_d\} \) consists of \(d \) attributes

\[
Pr(X|Y) = \frac{Pr(Y) \prod_{i=1}^{d} Pr(X_i|Y)}{Pr(X)}
\]
Conditional probabilities for categorical attributes

- Categorical attribute X_i
- $Pr(X_i = x_i|Y=y)$: fraction of training instances in class y that take value x_i on the i-th attribute

$Pr(\text{homeOwner} = \text{yes}|\text{No}) = 3/7$

$Pr(\text{MaritalStatus} = \text{Single}| \text{Yes}) = 2/3$
Estimating conditional probabilities for continuous attributes?

• Discretization?

• How can we discretize?
Naïve Bayes Classifier: Example

• \(X' = (\text{HomeOwner} = \text{No}, \text{MaritalStatus} = \text{Married}, \text{Income}=120K)\)

• Need to compute \(\Pr(Y|X')\) or \(\Pr(Y) \cdot \Pr(X'|Y)\)

• But \(\Pr(X'|Y)\) is

 – \(Y = \text{No}:\)

 • \(\Pr(\text{HO} = \text{No}|\text{No}) \cdot \Pr(\text{MS} = \text{Married}|\text{No}) \cdot \Pr(\text{Inc} = 120K|\text{No}) = 4/7 \cdot 4/7 \cdot 0.0072 = 0.0024\)

 – \(Y = \text{Yes}:\)

 • \(\Pr(\text{HO} = \text{No}|\text{Yes}) \cdot \Pr(\text{MS} = \text{Married}|\text{Yes}) \cdot \Pr(\text{Inc} = 120K|\text{Yes}) = 1 \cdot 0 \cdot 1.2 \cdot 10^{-9} = 0\)
Naïve Bayes Classifier: Example

- $X' = (\text{HomeOwner} = \text{No}, \text{MaritalStatus} = \text{Married}, \text{Income} = 120\text{K})$
- Need to compute $\Pr(Y|X')$ or $\Pr(Y) \times \Pr(X'|Y)$
- But $\Pr(X'|Y = \text{Yes})$ is 0?
- Correction process:

$$
\Pr(X_i = x_i \mid Y = y_j) = \frac{n_c + mp}{n + m}
$$

- n_c: number of training examples from class y_j that take value x_i
- n: total number of instances from class y_j
- m: equivalent sample size (balance between prior and posterior)
- p: user-specified parameter (prior probability)
Characteristics of Naïve Bayes Classifier

• Robust to isolated noise points
 – noise points are averaged out
• Handles missing values
 – Ignoring missing-value examples
• Robust to irrelevant attributes
 – If X_i is irrelevant, $P(X_i|Y)$ becomes almost uniform
• Correlated attributes degrade the performance of NB classifier