Lecture outline

 Nearest-neighbor search in low dimensions

– kd–trees

 Nearest-neighbor search in high dimensions

 LSH

Applications to data mining

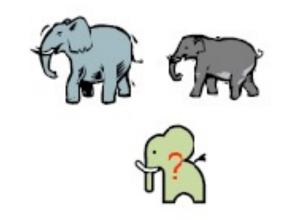
Definition

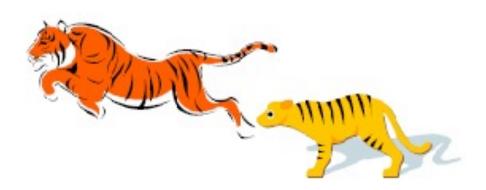
- Given: a set X of n points in R^d
- Nearest neighbor: for any query point qeR^d return the point xeX minimizing D(x,q)
- Intuition: Find the point in X that is the closest to q

Motivation

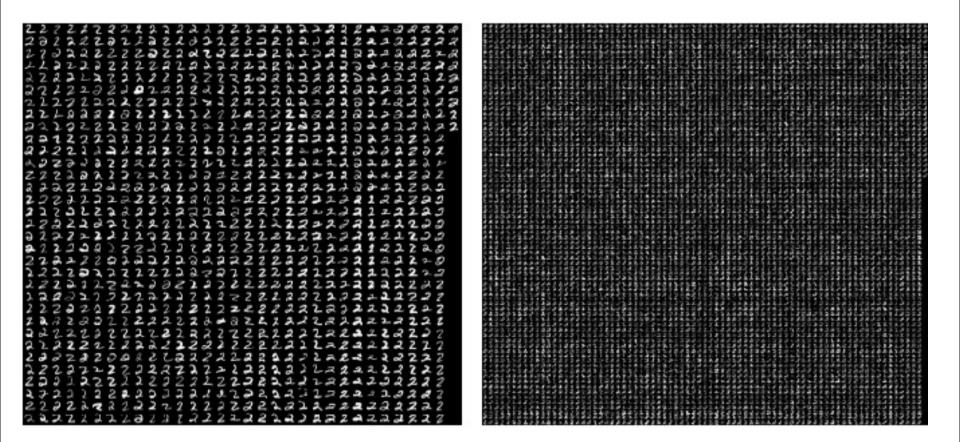
- Learning: Nearest neighbor rule
- Databases: Retrieval
- Data mining: Clustering
- Donald Knuth in vol.3 of The Art of Computer Programming called it the post-office problem, referring to the application of assigning a resident to the nearest-post office

Nearest-neighbor rule





MNIST dataset "2"



Methods for computing NN

- Linear scan: O(nd) time
- This is pretty much all what is known for exact algorithms with theoretical guarantees
- In practice:

– kd-trees work "well" in "low-medium" dimensions

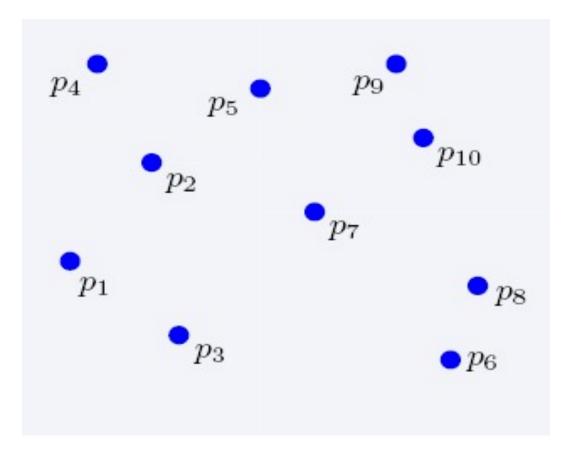
2-dimensional kd-trees

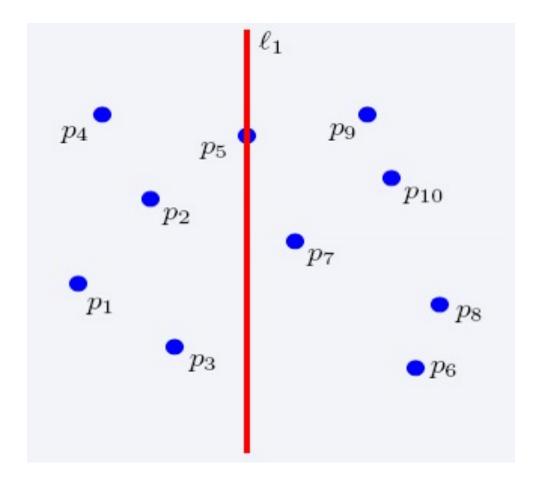
- A data structure to support range queries in R²
 - Not the most efficient solution in theory
 - Everyone uses it in practice

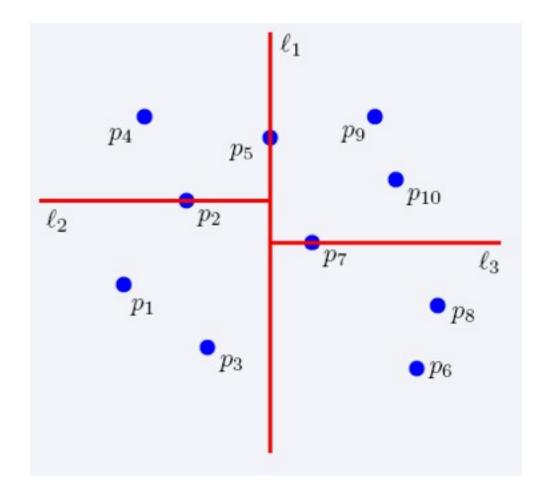
- Preprocessing time: O(nlogn)
- Space complexity: O(n)
- Query time: O(n^{1/2}+k)

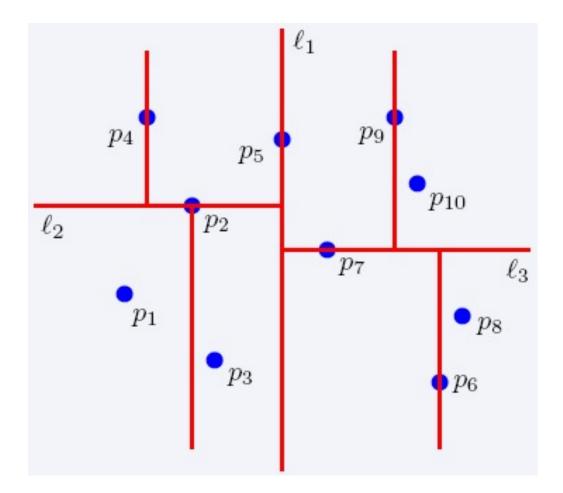
2-dimensional kd-trees

- Algorithm:
 - Choose x or y coordinate (alternate)
 - Choose the median of the coordinate; this defines a horizontal or vertical line
 - Recurse on both sides
- We get a binary tree:
 - Size O(n)
 - Depth O(logn)
 - Construction time O(nlogn)

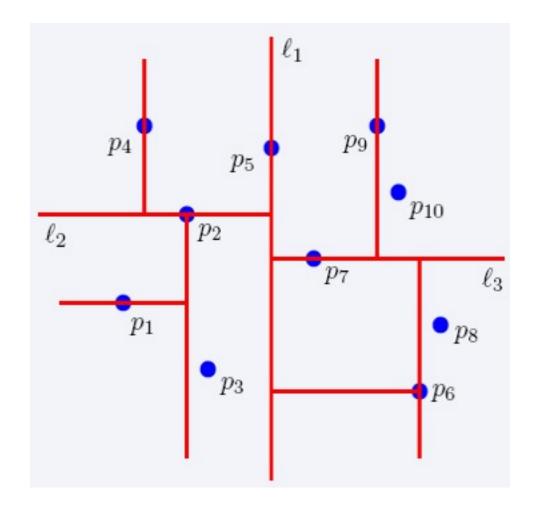




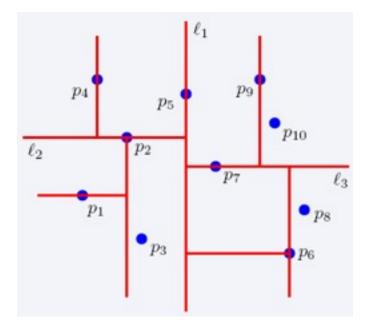


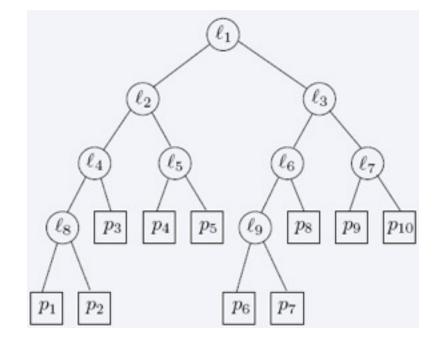


Wednesday, September 18, 13

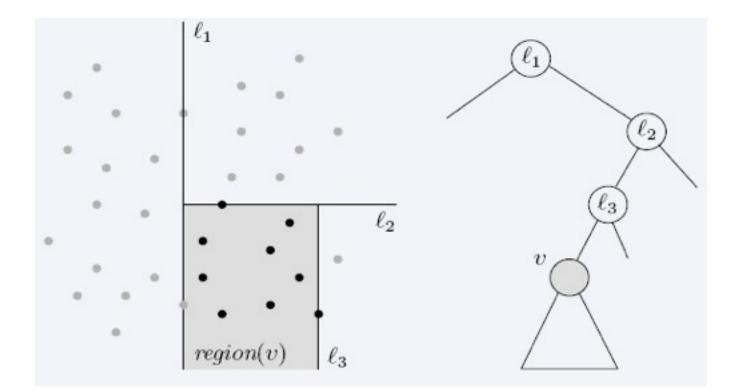


The complete kd-tree





Region of node v



Region(v) : the subtree rooted at **v** stores the points in black dots

Searching in kd-trees

- Range-searching in 2-d
 - Given a set of n points, build a data structure that for any query rectangle R reports all point in R

kd-tree: range queries

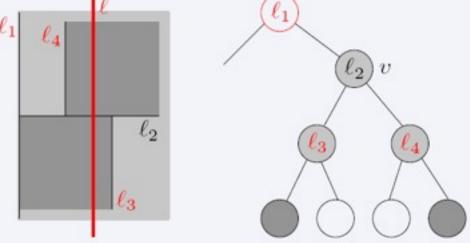
- Recursive procedure starting from v = root
- Search (v,R)
 - If v is a leaf, then report the point stored in v if it lies in R
 - Otherwise, if Reg(v) is contained in R, report all points in the subtree(v)
 - Otherwise:
 - If Reg(left(v)) intersects R, then Search(left(v),R)
 - If **Reg(right(v))** intersects **R**, then

Query time analysis

- We will show that Search takes at most O(n^{1/2}+P) time, where P is the number of reported points
 - The total time needed to report all points in all sub-trees is O(P)
 - We just need to bound the number of nodes v such that region(v) intersects R but is not contained in R (i.e., boundary of R intersects the boundary of region(v))
 - gross overestimation: bound the number of region(v) which are crossed by any of the 4 horizontal/vertical lines

Query time (Cont'd)

Q(n): max number of regions in an n-point kd-tree intersecting a (say



- If *l* intersects region(v) (due to vertical line splitting), then after two levels it intersects 2 regions (due to 2 vertical splitting lines)
- The number of regions intersecting l is Q(n)=2+2Q(n/n)

4) \rightarrow Q(n)=(n^{1/2})

d-dimensional kd-trees

- A data structure to support range queries in R^d
- Preprocessing time: O(nlogn)
- Space complexity: O(n)
- Query time: O(n^{1-1/d}+k)

Construction of the ddimensional kd-trees

- The construction algorithm is similar as in 2-d
- At the root we split the set of points into two subsets of same size by a hyperplane vertical to x₁-axis
- At the children of the root, the partition is based on the second coordinate: x₂coordinate
- At depth d, we start all over again by partitioning on the first coordinate
- The recursion stops until there is only one

Locality-sensitive hashing (LSH)

- Idea: Construct hash functions h: R^d→ U such that for any pair of points p,q:
 If D(p,q)≤r, then Pr[h(p)=h(q)] is high
 If D(p,q)≥cr, then Pr[h(p)=h(q)] is small
- Then, we can solve the "approximate NN" problem by hashing
- LSH is a general framework; for a given D we need to find the right h

Approximate Nearest Neighbor

- Given a set of points X in R^d and query point qeR^d
 C-Approximate r-Nearest Neighbor search returns:
 - Returns $p \in P, D(p,q) \leq r$
 - Returns NO if there is no $p' \in X$, $D(p',q) \leq cr$

Locality-Sensitive Hashing (LSH)

- A family H of functions h: R^d→U is called (P₁,P₂,r,cr)-sensitive if for any p,q:
 - if $D(p,q) \le r$, then $Pr[h(p)=h(q)] \ge P1$
 - $\text{ If } D(p,q) \ge cr$, then $Pr[h(p)=h(q)] \le P2$
- P1 > P2
- Example: Hamming distance

 LSH functions: h(p)=p_i, i.e., the i-th bit of p

– Probabilities: Pr[h(p)=h(q)]=1-D(p,q)/d

Algorithm -- preprocessing

- $g(p) = \langle h_1(p), h_2(p), ..., h_k(p) \rangle$
- Preprocessing
 - Select $\mathbf{g}_1, \mathbf{g}_2, \dots, \mathbf{g}_L$
 - For all peX hash p to buckets g₁(p),...,g₁(p)
 - Since the number of possible buckets might be large we only maintain the non empty ones
- Running time?

Algorithm -- query

- Query **q**:
 - Retrieve the points from buckets $g_1(q),g_2(q),...,$ $g_L(q)$ and let points retrieved be $x_1,...,x_L$
 - If D(x_i,q)≤r report it
 - Otherwise report that there does not exist such a NN
 - Answer the query based on the retrieved points
 - Time O(dL)

Applications of LSH in data mining

• Numerous....

Applications

- Find pages with similar sets of words (for clustering or classification)
- Find users in Netflix data that watch similar movies
- Find movies with similar sets of users
- Find images of related things

How would you do it?

- Finding very similar items might be computationally demanding task
- We can relax our requirement to finding **somewhat similar** items

Running example: comparing documents

- Documents have common text, but no common topic
- Easy special cases:
 - Identical documents
 - Fully contained documents (letter by letter)
- General case:
 - Many small pieces of one document appear out of order in another. What do we do then?

Finding similar documents

- Given a collection of documents, find pairs of documents that have lots of text in common
 - Identify mirror sites or web pages
 - Plagiarism
 - Similar news articles

Key steps

- Shingling: convert documents (news articles, emails, etc) to sets
- LSH: convert large sets to small signatures, while preserving the similarity
- Compare the signatures instead of the actual documents

Shingles

- A k-shingle (or k-gram) is a sequence of k characters that appears in a document
- If doc = abcab and k=3, then 2singles: {ab, bc, ca}
- Represent a document by a set of kshingles

Assumption

- Documents that have similar sets of kshingles are similar: same text appears in the two documents; the position of the text does not matter
- What should be the value of k?
 What would large or small k mean?

Data model: sets

- Data points are represented as sets (i.e., sets of shingles)
- Similar data points have large intersections in their sets
 - Think of documents and shingles
 - Customers and products
 - Users and movies

Similarity measures for sets

- Now we have a set representation of the data
- Jaccard coefficient
- A, B sets (subsets of some, large, universe U) $sim(A, B) = \frac{|A \cap B|}{|A \cup B|}$

Find similar objects using the Jaccard similarity

- Naïve method?
- Problems with the naïve method?

 There are too many objects
 Each object consists of too many sets

Speedingup the naïve method

- Represent every object by a signature (summary of the object)
- Examine pairs of signatures rather than pairs of objects
- Find all similar pairs of signatures
- Check point: check that objects with similar signatures are actually similar

Still problems

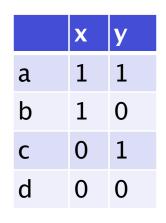
- Comparing large number of signatures with each other may take too much time (although it takes less space)
- The method can produce pairs of objects that might not be similar (false positives). The check point needs to be enforced

Creating signatures

- For object x, signature of x (sign(x)) is much smaller (in space) than x
- For objects x, y it should hold that sim(x,y) is almost the same as sim(sing(x),sign(y))

Intuition behind Jaccard similarity

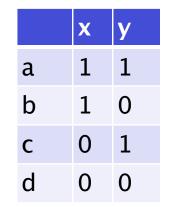
Consider two objects: x,y



- a: # of rows of form same as a
- sim(x,y)= a /(a+b+c)

A type of signatures -minhashes

- Randomly permute the rows
- h(x): first row (in permuted data) in which column x has an 1
- Use several (e.g., 100) independent hash functions to design a signature



	x	У
a	0	1
b	0	0
C	1	1
d	1	0

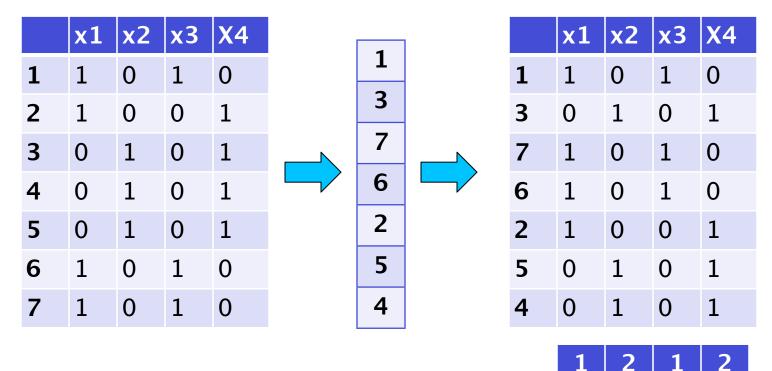
"Surprising" property

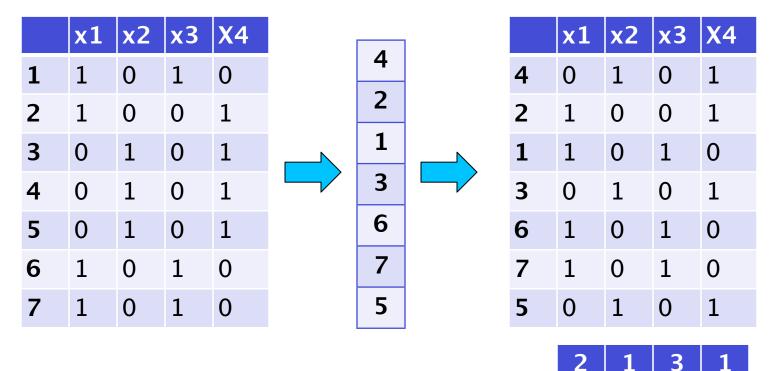
- The probability (over all permutations of rows) that h(x)=h(y) is the same as sim(x,y)
- Both of them are a/(a+b+c)
- So?

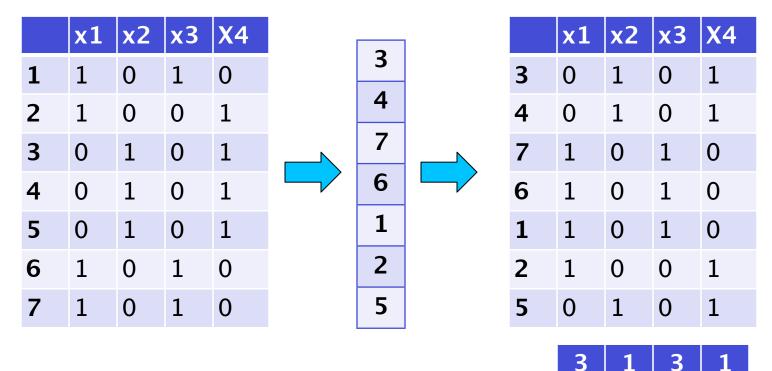
- The similarity of signatures is the fraction of the hash functions on which they agree

Minhash algorithm

- Pick k (e.g., 100) permutations of the rows
- Think of sign(x) as a new vector
- Let sign(x)[i]: in the i-th permutation, the index of the first row that has 1 for object x







	x1	x2	x 3	X4					
1	1	0	1	0		1	~2	~2	
2	1	0	0	1			x2		
3	0	1	0	1	\sim		2	1	2
4	0	1	0	1	~	_	_	3	1
5	0	1	0	1		3	1	3	1
6	1	0	1	0					
7	1	0	1	0					

	actua	signs
(x1,x2)	0	0
(x1,x3)	0.75	2/3
(x1,x4)	1/7	0
(x2,x3)	0	0
(x2,x4)	0.75	1
(x3,x4)	0	0

Is it now feasible?

- Assume a billion rows
- Hard to pick a random permutation of 1...billion
- Even representing a random permutation requires 1 billion entries!!!
- How about accessing rows in permuted order?
- 🛞

Being more practical

- Approximating row permutations: pick k=100 (?) hash functions (h₁,...,h_k)
- for each row r for each column c if c has 1 in row r for each hash function h_i do if h_i (r) is a smaller value than M(i,c) then $M(i,c) = h_i(r);$

Being more practical

 Approximating row permutations: pick k=100 (?) hash functions

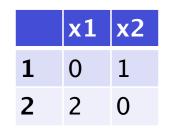
for each row r for each column if c has 1 in ro for each hash if h_i (r) is a sm then

M(i,c) will become the smallest value of h_i(r) for which column c has 1 in row r; i.e., h_i(r) gives order of rows for i-th

 $M(i,c) = h_i(r);$

• Input matrix

	x1	x2
1	1	0
2	0	1
3	1	1
4	1	0
5	0	1



 $h(r) = r + 1 \mod 5$ $g(r) = 2r + 1 \mod 5$