Time-series data analysis
Why deal with sequential data?

• Because all data is sequential 😊

• All data items arrive in the data store in some order

• Examples
 – transaction data
 – documents and words

• In some (or many) cases the order does not matter

• In many cases the order is of interest
Time-series data

- Financial time series, process monitoring...
Questions

• What is the **structure** of sequential data?

• Can we represent this structure
Sequence segmentation

• Gives an accurate representation of the structure of sequential data

• How?
 – By trying to find homogeneous segments

• Segmentation question:

• Can a sequence $T=\{t_1, t_2, \ldots, t_n\}$ be described as a concatenation of subsequences S_1, S_2, \ldots, S_k such that each S_i is in some sense homogeneous?

• The corresponding notion of segmentation in unordered data is clustering
Dynamic-programming algorithm

- Sequence T, length n, k segments, cost function $E()$, table M
- For $i=1$ to n
 - Set $M[1,i]=E(T[1...i])$ //Everything in one cluster
- For $j=1$ to k
 - Set $M[j,j]=0$ //each point in its own cluster
- For $j=2$ to k
 - For $i=j+1$ to n
 - Set $M[j,i]=\min_{i'<i}\{M[j-1,i]+E(T[i'+1...i])\}$
- To recover the actual segmentation (not just the optimal cost) store also the minimizing values i'
- Takes time $O(n^2k)$, space $O(kn)$
Example
Basic definitions

• Sequence $T = \{t_1, t_2, \ldots, t_n\}$: an ordered set of n d-dimensional real points $t_i \in \mathbb{R}^d$

• A k-segmentation S: a partition of T into k contiguous segments $\{s_1, s_2, \ldots, s_k\}$

 – Each segment $s \in S$ is represented by a single value $\mu_s \in \mathbb{R}^d$ (the representative of the segment)

• Error $E_p(S)$: The error of replacing individual points with representatives

$$E_p(S) = \left(\sum_{s \in S} \sum_{t \in s} |t - \mu_s|^p \right)^{\frac{1}{p}}$$
The k–segmentation problem

Given a sequence T of length n and a value k, find a k–segmentation $S = \{s_1, s_2, \ldots, s_k\}$ of T such that the

- Common cases for the error function E_p: $p = 1$ and $p = 2$.
 - When $p = 1$, the best μ_s corresponds the median of the points in segment s.
 - When $p = 2$, the best μ_s corresponds to the mean of the points in segment s.
Optimal solution for the k-segmentation problem

- **Bellman’61**] The k-segmentation problem can be solved optimally using a standard **dynamic-programming** algorithm

\[
E_p(S_{opt}(T[1 \ldots n], k)) = \\
\min_{j<n} \left\{ E_p(S_{opt}(T[1 \ldots j], k - 1)) + E_p(S_{opt}(T[j+1, \ldots, n], 1)) \right\}
\]

- **Running time $O(n^2k)$**
 - Too expensive for large datasets!
Heuristics

• Bottom–up greedy (BU): $O(n \log n)$
 – [Keogh and Smyth’97, Keogh and Pazzani’98]

• Top–down greedy (TD): $O(n \log n)$
 – [Douglas and Peucker’73, Shatkay and Zdonik’96, Lavrenko et. al’00]

• Global Iterative Replacement (GiR): $O(nI)$
 – [Himberg et. al ’01]

• Local Iterative Replacement (LiR): $O(nI)$
 – [Himberg et. al ’01]
Approximation algorithm

- **[Theorem]** The segmentation problem can be approximated within a constant factor of 3 for both E_1 and E_2 error measures. That is,

$$E_p(S_{DnS}) \leq 3E_p(S_{OPT}) \quad p = 1,2$$

- The running time of the approximation algorithm is:

$$O(n^{4/3} k^{5/3})$$
Divide ’n Segment (DnS) algorithm

• **Main idea**

 – Split the sequence arbitrarily into subsequences
 – Solve the k–segmentation problem in each subsequence
 – Combine the results

• **Advantages**

 – Extremely simple
 – High quality results
 – Can be applied to other segmentation problems[Gionis’03, Haiminen’04,Bingham’06]
DnS algorithm – Details

Input: Sequence T, integer k

Output: a k-segmentation of T

1. Partition sequence T arbitrarily into m disjoint intervals T_1, T_2, \ldots, T_m
2. For each interval T_i solve optimally the k-segmentation problem using DP algorithm

3. Let T' be the concatenation of mk representatives produced in **Step 2**. Each representative is weighted with the length of the segment it represents

4. Solve optimally the k-segmentation problem for T' using the DP algorithm and output this segmentation as the final segmentation
The DnS algorithm

Input sequence T consisting of $n=20$ points ($k=2$)
The DnS algorithm – Step 1

Partition the sequence into $m=3$ disjoint intervals
Solve optimally the k-segmentation problem into each partition ($k=2$)
The DnS algorithm – Step 2

Solve optimally the k-segmentation problem into each partition (k=2)
The DnS algorithm – Step 3

Sequence T' consisting of $mk=6$ representatives
The DnS algorithm – Step 4

Solve k-segmentation on T' ($k=2$)
Running time

- In the case of equipartition in **Step 1**, the running time of the algorithm as a function of \(m \) is:

\[
R(m) = m \left(\frac{n}{m} \right)^2 k + (mk)^2 k
\]

- The function \(R(m) \) is minimized for

\[
m_0 = \left(\frac{n}{k} \right)^{2/3}
\]

- Running time \(R(m_0) = 2n^{4/3}k^{5/3} \)
The segmentation error

- **Theorem** The segmentation error of the DnS algorithms is at most three times the error of the optimal (DP) algorithm for both E_1 and E_2 error measures.

$$E_p(S_{DnS}) \leq 3E_p(S_{OPT}) \quad p = 1,2$$
Proof for E_1

$$
\sum_{t \in T} d_1(t, \tau) \leq \sum_{t \in T} d_1(t, \lambda_t)
$$
Proof for E_1

$$\sum_{t \in T} d_1(t, \tau) \leq \sum_{t \in T} d_1(t, \lambda_t)$$
Proof for E_1

\[
\sum_{t \in T} d_1(t, \tau) \leq \sum_{t \in T} d_1(t, \lambda_t)
\]
Proof for E_1

- λ_t: the representative of point t in the optimal segmentation
- τ: the representative of point t in the segmentation of Step 2

Lemma: $\sum_{t \in T} d_1(t, \tau) \leq \sum_{t \in T} d_1(t, \lambda_t)$
Proof:

Lemma: \[\sum_{t \in T} d_1(t, \tau) \leq \sum_{t \in T} d_1(t, \lambda_t) \]

\[E_1(S_{DnS}) = \sum_{t \in T} d_1(t, \mu_t) \]
\[\leq \sum_{t \in T} (d_1(t, \tau) + d_1(\tau, \mu_t)) \]
\[\leq \sum_{t \in T} (d_1(t, \tau) + d_1(\tau, \lambda_t)) \]
\[\leq \sum_{t \in T} (d_1(t, \tau) + d_1(\tau, t) + d_1(t, \lambda_t)) \]
\[\leq 2 \sum_{t \in T} d_1(t, \lambda_t) + \sum_{t \in T} d_1(t, \lambda_t) \]
\[= 3E(S_{OPT}) \]

- \(\lambda_t \): the representative of point \(t \) in the optimal segmentation
- \(\tau \): the representative of point \(t \) in the segmentation of Step 2
- \(\mu_t \): the representative of point \(t \) in the final segmentation in Step 4
Proof:

- λ_t: the representative of point t in the optimal segmentation
- τ: the representative of point t in the segmentation of Step 2
- μ_t: the representative of point t in the final segmentation in Step 4

Lemma: $\sum_{t \in T} d_1(t, \tau) \leq \sum_{t \in T} d_1(t, \lambda_t)$

$$E_1(S_{DnS}) = \sum_{t \in T} d_1(t, \mu_t)$$

$$\leq \sum_{t \in T} (d_1(t, \tau) + d_1(\tau, \mu_t)) \quad \text{(triangle inequality)}$$

$$\leq \sum_{t \in T} (d_1(t, \tau) + d_1(\tau, \lambda_t))$$

$$\leq \sum_{t \in T} (d_1(t, \tau) + d_1(\tau, t) + d_1(t, \lambda_t))$$

$$\leq 2 \sum_{t \in T} d_1(t, \lambda_t) + \sum_{t \in T} d_1(t, \lambda_t)$$

$$= 3E(S_{OPT})$$
Proof:

- λ_t: the representative of point t in the optimal segmentation
- τ: the representative of point t in the segmentation of Step 2
- μ_t: the representative of point t in the final segmentation in Step 4

Lemma: \[
\sum_{t \in T} d_1(t, \tau) \leq \sum_{t \in T} d_1(t, \lambda_t)
\]

\[
E_1(S_{DnS}) = \sum_{t \in T} d_1(t, \mu_t)
\]

\[
\leq \sum_{t \in T} (d_1(t, \tau) + d_1(\tau, \mu_t)) \quad \text{(triangle inequality)}
\]

\[
\leq \sum_{t \in T} (d_1(t, \tau) + d_1(\tau, \lambda_t)) \quad \text{(optimality of DP)}
\]

\[
\leq \sum_{t \in T} (d_1(t, \tau) + d_1(\tau, t) + d_1(t, \lambda_t))
\]

\[
\leq 2 \sum_{t \in T} d_1(t, \lambda_t) + \sum_{t \in T} d_1(t, \lambda_t)
\]

\[
= 3E(S_{OPT})
\]
Proof:

- λ_t: the representative of point t in the optimal segmentation
- τ: the representative of point t in the segmentation of Step 2
- μ_t: the representative of point t in the final segmentation in Step 4

Lemma: \[
\sum_{t \in T} d_1(t, \tau) \leq \sum_{t \in T} d_1(t, \lambda_t)
\]

\[
E_1(S_{DnS}) = \sum_{t \in T} d_1(t, \mu_t)
\]

\[
\leq \sum_{t \in T} (d_1(t, \tau) + d_1(\tau, \mu_t)) \quad \text{(triangle inequality)}
\]

\[
\leq \sum_{t \in T} (d_1(t, \tau) + d_1(\tau, \lambda_t)) \quad \text{(optimality of DP)}
\]

\[
\leq \sum_{t \in T} (d_1(t, \tau) + d_1(\tau, t) + d_1(t, \lambda_t)) \quad \text{(triangle inequality)}
\]

\[
\leq 2 \sum_{t \in T} d_1(t, \lambda_t) + \sum_{t \in T} d_1(t, \lambda_t)
\]

\[
= 3E(S_{OPT})
\]
Proof:

- λ_t: the representative of point t in the optimal segmentation
- τ: the representative of point t in the segmentation of Step 2
- μ_t: the representative of point t in the final segmentation in Step 4

Lemma: $\sum_{t \in T} d_1(t, \tau) \leq \sum_{t \in T} d_1(t, \lambda_t)$

$E_1(S_{DnS}) = \sum_{t \in T} d_1(t, \mu_t)$

$\leq \sum_{t \in T} (d_1(t, \tau) + d_1(\tau, \mu_t))$ (triangle inequality)

$\leq \sum_{t \in T} (d_1(t, \tau) + d_1(\tau, \lambda_t))$ (optimality of DP)

$\leq \sum_{t \in T} (d_1(t, \tau) + d_1(\tau, t) + d_1(t, \lambda_t))$ (triangle inequality)

$\leq 2 \sum_{t \in T} d_1(t, \lambda_t) + \sum_{t \in T} d_1(t, \lambda_t)$ (Lemma)

$= 3E(S_{OPT})$
Trading speed for accuracy

- Recursively divide (into m pieces) and segment

- If $\chi=(n_i)^{1/2}$, where n_i the length of the sequence in the i-th recursive level ($n_1=n$) then
 - running time of the algorithm is $O(n\log\log n)$
 - the segmentation error is at most $O(\log n)$ worse than the optimal

- If $\chi=\text{const}$, the running time of the algorithm is $O(n)$, but there are no guarantees for the segmentation error
Real datasets – DnS algorithm
Real datasets – DnS algorithm

- Balloon dataset
- Darwin dataset
- Shuttle dataset
- Exchange-rates dataset
Speed vs. accuracy in practice

![Graph showing error ratio vs. number of recursive calls for different scenarios: balloon, darwin, winding, and phone. Each line represents a scenario with distinct markers and colors, indicating variations in accuracy and speed.](image-url)