Covering problems

Prototype problems: Covering problems

Setting:

- Universe of N elements $U = \{U_1, ..., U_N\}$
- $A set of n sets S = \{s_1, \dots, s_n\}$
- Find a collection C of sets in S (C subset of S) such that $U_{c \in C}$ contains many elements from U

Example:

- U: set of documents in a collection
- $-s_i$: set of documents that contain term t_i
- Find a collection of terms that cover most of the documents

Prototype covering problems

- Set cover problem: Find a small collection C of sets from S such that all elements in the universe U are covered by some set in C
- Best collection problem: find a collection C of k sets from S such that the collection covers as many elements from the universe U as possible
- Both problems are NP-hard
- Simple approximation algorithms with provable properties are available and very useful in practice

Set-cover problem

- Universe of N elements $U = \{U_1, ..., U_N\}$
- A set of n sets $S = \{s_1, ..., s_n\}$ such that $U_i s_i = U$

- Question: Find the smallest number of sets from S to form collection C (C subset of S) such that U_{CC}C=U
- The set-cover problem is NP-hard (what does this mean?)

Trivial algorithm

- Try all subcollections of S
- Select the smallest one that covers all the elements in U

- The running time of the trivial algorithm is O(2^{|S|}|U|)
- This is way too slow

Greedy algorithm for set cover

- Select first the largest-cardinality set s from S
- Remove the elements from s from U

- Recompute the sizes of the remaining sets in S
- Go back to the first step

As an algorithm

- X = U
- C = {}
- while X is not empty do
 - For all seS let $a_s = |s|$ intersection X|
 - Let s be such that a_s is maximal
 - $-C = C U \{s\}$
 - $-X = X \setminus s$

How can this go wrong?

 No global consideration of how good or bad a selected set is going to be

How good is the greedy algorithm?

- Consider a minimization problem
 - In our case we want to minimize the cardinality of set
- Consider an instance I, and cost a*(I) of the optimal solution
 - a*(I): is the minimum number of sets in C that cover all elements in U
- Let a(1) be the cost of the approximate solution
 - a(I): is the number of sets in C that are picked by the greedy algorithm
- An algorithm for a minimization problem has approximation factor F if for all instances I we have that

$$a(I) \le F \times a^*(I)$$

Can we prove any approximation bounds for the greedy algorithm for set cover?

How good is the greedy algorithm for set cover?

- (Trivial?) Observation: The greedy algorithm for set cover has approximation factor $\mathbf{F} = \mathbf{s}_{\text{max}}$, where \mathbf{s}_{max} is the set in \mathbf{S} with the largest cardinality
- Proof:
 - $-a^*(I) \ge N/|s_{max}|$ or $N \le |s_{max}|a^*(I)$
 - $-a(I) \le N \le |s_{max}|a^*(I)$

How good is the greedy algorithm for set cover? A tighter bound

• The greedy algorithm for set cover has approximation factor $F = O(log |s_{max}|)$

 Proof: (From CLR "Introduction to Algorithms")

Best-collection problem

- Universe of N elements U = {U₁,...,U_N}
- A set of n sets $S = \{s_1, ..., s_n\}$ such that $U_i s_i = U$
- Question: Find the a collection C consisting of k sets from S such that f (C) = |U_{c∈C}c| is maximized
- The best-colection problem is NP-hard
- Simple approximation algorithm has approximation factor F = (e-1)/e

Greedy approximation algorithm for the best-collection problem

- C = {}
- for every set s in S and not in C compute the gain of s:

$$g(s) = f(C \cup \{s\}) - f(C)$$

- Select the set s with the maximum gain
- $C = C U \{s\}$
- Repeat until C has k elements

Basic theorem

 The greedy algorithm for the bestcollection problem has approximation factor F = (e-1)/e

- C*: optimal collection of cardinality k
- C: collection output by the greedy algorithm
- $f(C) \ge (e-1)/e \times f(C^*)$