Covering problems
Prototype problems: Covering problems

• Setting:
 – Universe of \(N \) elements \(U = \{U_1, \ldots, U_N\} \)
 – A set of \(n \) sets \(S = \{s_1, \ldots, s_n\} \)
 – Find a collection \(C \) of sets in \(S \) (\(C \) subset of \(S \)) such that \(U_{c \in C} \) contains many elements from \(U \)

• Example:
 – \(U \): set of documents in a collection
 – \(s_i \): set of documents that contain term \(t_i \)
 – Find a collection of terms that cover most of the documents
Prototype covering problems

• **Set cover problem:** Find a small collection \(C \) of sets from \(S \) such that all elements in the universe \(U \) are covered by some set in \(C \)

• **Best collection problem:** find a collection \(C \) of \(k \) sets from \(S \) such that the collection covers as many elements from the universe \(U \) as possible

• Both problems are NP-hard

• Simple approximation algorithms with provable properties are available and very useful in practice
Set-cover problem

• Universe of N elements $U = \{U_1, \ldots, U_N\}$
• A set of n sets $S = \{s_1, \ldots, s_n\}$ such that $U_i s_i = U$

Question: Find the smallest number of sets from S to form collection C (C subset of S) such that $U_{c \in C} C = U$

• The set-cover problem is NP-hard (what does this mean?)
Trivial algorithm

• Try all subcollections of S

• Select the smallest one that covers all the elements in U

• The running time of the trivial algorithm is $O(2^{|S|}|U|)$

• This is way too slow
Greedy algorithm for set cover

- Select first the largest-cardinality set s from S
- Remove the elements from s from U
- Recompute the sizes of the remaining sets in S
- Go back to the first step
As an algorithm

- $X = U$
- $C = {}$
- **while** X is not empty **do**
 - For all $s \in S$ let $a_s = |s \text{ intersection } X|$
 - Let s be such that a_s is **maximal**
 - $C = C \cup \{s\}$
 - $X = X \setminus s$
How can this go wrong?

• No global consideration of how good or bad a selected set is going to be
How good is the greedy algorithm?

• Consider a minimization problem
 – In our case we want to minimize the \textbf{cardinality} of set C

• Consider an instance I, and cost $a^*(I)$ of the optimal solution
 – $a^*(I)$: is the minimum number of sets in C that cover all elements in U

• Let $a(I)$ be the cost of the approximate solution
 – $a(I)$: is the number of sets in C that are picked by the greedy algorithm

• An algorithm for a minimization problem has approximation factor F if for all instances I we have that
 \[a(I) \leq F \times a^*(I) \]

• Can we prove any approximation bounds for the greedy algorithm for set cover?
How good is the greedy algorithm for set cover?

• (Trivial?) Observation: The greedy algorithm for set cover has approximation factor $F = s_{\text{max}}$, where s_{max} is the set in S with the largest cardinality

• Proof:

 – $a^*(I) \geq N/|s_{\text{max}}|$ or $N \leq |s_{\text{max}}|a^*(I)$

 – $a(I) \leq N \leq |s_{\text{max}}|a^*(I)$
How good is the greedy algorithm for set cover? A tighter bound

• The greedy algorithm for set cover has approximation factor $F = O(\log |s_{\text{max}}|)$

• **Proof**: (From CLR “Introduction to Algorithms”)
Best-collection problem

- Universe of \(N \) elements \(U = \{U_1, \ldots, U_N\} \)
- A set of \(n \) sets \(S = \{s_1, \ldots, s_n\} \) such that \(U_i \cap s_i = U \)

- **Question:** Find the a collection \(C \) consisting of \(k \) sets from \(S \) such that \(f(C) = |U_{c \in C} c| \) is maximized

- The best-collection problem is NP-hard

- Simple approximation algorithm has approximation factor \(F = (e-1)/e \)
Greedy approximation algorithm for the best–collection problem

• \(C = {} \)

• **for every** set \(s \) in \(S \) and **not** in \(C \) compute the gain of \(s \):

\[
g(s) = f(C \cup \{s\}) - f(C)
\]

• Select the set \(s \) with the **maximum** gain

• \(C = C \cup \{s\} \)

• **Repeat until** \(C \) has \(k \) elements
Basic theorem

• The **greedy** algorithm for the best-collection problem has approximation factor $F = (e-1)/e$

• C^*: optimal collection of cardinality k
• C: collection output by the **greedy** algorithm
• $f(C) \geq (e-1)/e \times f(C^*)$