
Dimensionality reduction



Outline

• Dimensionality Reductions or data 
projections

• Random projections

• Singular Value Decomposition and Principal 
Component Analysis (PCA)



The curse of dimensionality
• The efficiency of many algorithms 

depends on the number of dimensions d

– Distance/similarity computations are at 
least linear to the number of dimensions

– Index structures fail as the dimensionality 
of the data increases



Goals
• Reduce dimensionality of the data

• Maintain the meaningfulness of the 
data



Dimensionality reduction
• Dataset X consisting of n points in a d-

dimensional space
• Data point xiєRd (d-dimensional real 

vector): 
 xi = [xi1, xi2,…, xid]
• Dimensionality reduction methods:
– Feature selection: choose a subset of the 

features
– Feature extraction: create new features 

by combining new ones



Dimensionality reduction
• Dimensionality reduction methods:
– Feature selection: choose a subset of the 

features
– Feature extraction: create new features 

by combining new ones
• Both methods map vector xiєRd, to 

vector yi є Rk, (k<<d)

• F : RdRk



Linear dimensionality 
reduction

• Function F is a linear projection
• yi = xi A

• Y = X A

• Goal: Y is as close to X as possible



Closeness: Pairwise distances
• Johnson-Lindenstrauss lemma: Given 
ε>0, and an integer n, let k be a positive 
integer such that k≥k0=O(ε-2 logn). For 
every set X of n points in Rd there exists 
F: RdRk such that for all xi, xj єX

 (1-ε)||xi - xj||2≤ ||F(xi )- F(xj)||2≤ (1+ε)||xi - xj||2

What is the intuitive interpretation of 
this statement?



JL Lemma: Intuition
• Vectors xiєRd, are projected onto a k-

dimensional space (k<<d): yi = xi A
• If ||xi||=1 for all i, then, 
 ||xi-xj||2 is approximated by (d/k)||yi-yj||2 
• Intuition: 
– The expected squared norm of a projection of 

a unit vector onto a random subspace 
through the origin is k/d

– The probability that it deviates from 
expectation is very small



Finding random projections
• Vectors xiєRd, are projected onto a k-

dimensional space (k<<d)
• Random projections can be 

represented by linear transformation 
matrix A

• yi = xi A 

• What is the matrix A? 
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Finding matrix A
• Elements A(i,j) can be Gaussian distributed 
• Achlioptas* has shown that the Gaussian 

distribution can be replaced by

• All zero mean, unit variance distributions for 
A(i,j) would give a mapping that satisfies the JL 
lemma

• Why is Achlioptas result useful?



Datasets in the form of 

We are given n objects and d features describing the 
objects. 
(Each object has d numeric values describing it.)

Dataset
An n-by-d matrix A, Aij shows the “importance” of 
feature j for object i.
Every row of A represents an object.

Goal
1. Understand the structure of the data, e.g., the 

underlying process generating the data.
2. Reduce the number of features representing the 

data



Market basket matrices

n 
customers

d products 
(e.g., milk, bread, wine, 
etc.)

Aij = quantity of j-th product 
purchased by the i-th 
customer

Find  a subset of the products that 
characterize customer behavior



Social-network matrices

n users

d groups 
(e.g., BU group, opera, 
etc.)

Aij = partiticipation of 
the i-th user in the  j-th 
group

Find  a subset of the groups that accurately 
clusters social-network users



Document matrices

n 
documents

d terms 
(e.g., theorem, proof, etc.)

Aij = frequency of the j-th 
term in the i-th document

Find  a subset of the terms that accurately 
clusters the documents



Recommendation systems

n 
customers

d products 

Aij = frequency of 
the j-th  product is 
bought by the i-th 
customer

Find  a subset of the products that 
accurately describe the behavior or the 

customers



The Singular Value 
Decomposition (SVD)

Data matrices have n rows (one for 
each object) and d columns (one 
for each feature).

Rows: vectors in a Euclidean space,

Two objects are “close” if the angle 
between their corresponding 
vectors is small. 



SVD: Example
Input: 2-d dimensional 
points

Output: 

1st (right) 
singular vector

1st (right) singular vector: 
direction of maximal 
variance,

2nd (right) 
singular 
vector

2nd (right) singular vector: 
direction of maximal variance, 
after removing the projection 
of the data along the first 
singular vector.



Singular values

σ1: measures how much of 
the data variance is 
explained by the first 
singular vector.

σ2: measures how much of 
the data variance is 
explained by the second 
singular vector.

σ1
1st (right) 
singular vector

2nd (right) 
singular 
vector



SVD decomposition

U (V): orthogonal matrix containing the left (right) 
singular vectors of A.
Σ: diagonal matrix containing the singular values of A: 
(σ1 ≥ σ2 ≥ … ≥ σℓ )

    
 Exact computation of the SVD takes O(min{mn2 , m2n}) 

time. 
 The top k left/right singular vectors/values can be 

computed faster using Lanczos/Arnoldi methods.
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Rank-k approximations (Ak)

Uk (Vk): orthogonal matrix containing the top k left 
(right) singular vectors of A.
Σk: diagonal matrix containing the top k singular 
values of A

Ak is an approximation of A

n x d n x k k x k k x d

Ak is the best 
approximation 

of A



SVD as an optimization 
problem

Given C it is easy to find X from standard 
least squares.
However, the fact that we can find the 
optimal C  is fascinating!

Frobenius norm:

Find C to minimize:



PCA and SVD
• PCA is SVD done on centered data

• PCA looks for such a direction that the data 
projected to it has the maximal variance

• PCA/SVD continues by seeking the next 
direction that is orthogonal to all previously 
found directions

• All directions are orthogonal



How to compute the PCA
• Data matrix A, rows = data points, 

columns = variables (attributes, features, 
parameters)

1. Center the data by subtracting the mean of 
each column

2. Compute the SVD of the centered matrix 
A’ (i.e., find the first k singular values/vectors)                     
A’ = UΣVT

3. The principal components are the columns of 
V, the coordinates of the data in the basis 
defined by the principal components are UΣ



Singular values tell us something 
about the variance

• The variance in the direction of the k-th principal 
component is given by the corresponding singular 
value σk

2

• Singular values can be used to estimate how many 
components to keep

• Rule of thumb: keep enough to explain 85% of the 
variation: 



SVD is “the Rolls-Royce and the 
Swiss Army Knife of Numerical 
Linear Algebra.”*
*Dianne O’Leary, MMDS ’06



SVD as an optimization 
problem

Given C it is easy to find X from standard least 
squares.
However, the fact that we can find the optimal 
C  is fascinating!

Frobenius norm:

Find C to minimize:


