Dimensionality reduction



Outline

 Dimensionality Reductions or data
projections

 Random projections

* Singular Value Decomposition and Principal
Component Analysis (PCA)



The curse of dimensionality

* The efficiency of many algorithms
depends on the number of dimensions

— Distance/similarity computations are at
least linear to the number of dimensions

— Index structures fail as the dimensionality
of the data increases



Goals

* Reduce dimensionality of the data

* Maintain the meaningfulness of the
data



Dimensionality reduction
» Dataset X consisting of n points in a d-
dimensional space
 Data point x,eR“ (d-dimensional real
vector):
Xi = [Xi1s X255 Xigl
* Dimensionality reduction methods:

— Feature selection: choose a subset of the
features

— Feature extraction: create new features
by combining new ones



Dimensionality reduction

* Dimensionality reduction methods:

— Feature selection: choose a subset of the
features

— Feature extraction: create new features
by combining new ones

« Both methods map vector x.€R9, to
vector y, € R¥, (k<<d)

+ F: RISRK



Linear dimensionality
reduction

Function F is a linear projection
Yi = XA

Y=XA

Goal: Y is as close to X as possible



Closeness: Pairwise distances

 Johnson-Lindenstrauss lemma: Given
£>0, and an integer n, let k be a positive
integer such that k=k,=0(s"? logn). For

every set X of n points in RY there exists
F: Re>R*such that for all x;, x; €X

(1-8)|Ix; - x;1 2= [[FOx; )= FO) 2= (L+e)]x; - X2

What is the intuitive interpretation of
this statement?



JL Lemma: Intuition

. Vectors x.€RY are projected onto a k-
dimensional space (k<<d): y, = x. A

o If [[x||=1 for all i, then,

||xi—xj||2 is approximated by (d/k)IIyi—yjII2
* |Intuition:

— The expected squared norm of a projection of
a unit vector onto a random subspace
through the origin is k/d

— The probability that it deviates from
expectation is very small



Finding random projections

Vectors x.€RY, are projected onto a k-
dimensional space (k<<d)

Random projections can be

represented by linear transformation
matrix A

Yi =X A

What is the matrix A?
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Finding matrix A

Elements A(i,j) can be Gaussian distributed

Achlioptas®* has shown that the Gaussian
distribution can be replaced by

+ 1 with prob %

A, j) =4 O with prob%

— 1 with prob %

All zero mean, unit variance distributions for
,lA(l,J) would give a mapping that satisfies the JL
emma

Why is Achlioptas result useful?



Datasets in the form of

We are given n objects and d features describing the
objects.

(Each object has d numeric values describing it.)

Dataset
An n-by-d matrix A, A;; shows the “importance” of

feature j for object |i.
Every row of A represents an object.

Goal

1. Understand the structure of the data, e.g., the
underlying process generating the data.

2. Reduce the number of features representing the



Market basket matrices

d products
(e.g., milk, bread, wine,

e/zc.) \

o A
customers
A;; = quantity of j-th product
purchased by the i-th
\ customer /

Find a subset of the products that
characterize customer behavior



Social-network matrices

d groups
(e.g., BU group, opera,
etc.)
n users
A

A;; = partiticipation of
the i-th user in the j-th
group

Find a subset of the groups that accurately
clusters social-network users



Document matrices

d terms
(e.g., theorem, proof, etc.)

(

A

n

documents
A;; = frequency of the j-th

Qerm in the i-th document

Find a subset of the terms that accurately
clusters the documents



Recommendation systems

d products

n A

customers A;; = frequency of

the j-th product is
\ bought by the i—th /
customer

Find a subset of the products that
accurately describe the behavior or the
customers



The Singular Value
Decomposition (SVD)

Data matrices have n rows (one for
each object) and d columns (one
for each feature).

-(42)

Object d

feature 2

Rows: vectors in a Euclidean space,

Two objects are “close” if the angle
between their corresponding
vectors is small. feature 1

(d,x Object x




SVD: Example

Input: 2-d dimensional
points

Output:

2nd (right)

1st (right) singular vector:
direction of maximal
variance,

2nd (right) singular vector:
direction of maximal variance,
. after removing the projection
of the data along the first
singular vector.

1st (right)

singular vector
I I I

4.5 5.0 5.5 6.0



Singular values

5
2nd (right)
4+ |
3_ —
1st (right)
singular vector
2 I I I
4.0 4.5 5.0 5.5

6.0

0,: measures how much of

the data variance is
explained by the first
singular vector.

0,: measures how much of

the data variance is
explained by the second
singular vector.



SVD decomposition
( \ )
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nxd nx ¥4 2 x 2 2 xd

U (V): orthogonal matrix containing the left (right)

singular vectors of A.
>: diagonal matrix containing the singular values of A:

(020,22 ...20y)

Exact computation of the SVD takes O(min{mn?, m?n})

time.
The top k left/right singular vectors/values can be

computed faster using Lanczos/Arnoldi methods.



SVD and Rank-

A

|
-
M
<

_|

features

significant
U D (R SN R M=
= noise
— LEJ _g
I - — O
c
o =
%)}

objects



Rank-k approximations (A,)
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A, is an approximation of A



SVD as an optimization

problem
Find C to minimize:

min, | 44— C X

nxd  nxk kxd|| [ Frobenius norm:

|4 =24

Given C it is easy to find X from standard
least squares.

However, the fact that we can find the
optimal C is fascinating!




PCA and SVD

PCA is SVD done on centered data

PCA looks for such a direction that the data
projected to it has the maximal variance

PCA/SVD continues by seeking the next
direction that is orthogonal to all previously
found directions

All directions are orthogonal



How to compute the PCA

* Data matrix A, rows = data points,
columns = variables (attributes, features,
parameters)

1. Center the data by subtracting the mean of
each column

2. Compute the SVD of the centered matrix
(i.e., find the first k singular values/vectors)

3. The principal components are the columns of
, the coordinates of the data in the basis
defined by the principal components are



Singular values tell us something
about the variance

* The variance in the direction of the k-th principal

component is given by the corresponding singular
value

« Singular values can be used to estimate how many
components to keep

* Rule of thumb: keep enough to explain 85% of the

variation: L.
2.9
J

J=1

n
2
Sio
Jj=1

=~ 0.85




SVD is “the Rolls-Royce and the
Swiss Army Knife of Numerical

Linear Algebra.”*
*Dianne O’Leary, MMDS ’06



SVD as an optimization

problem

Find C to minimize:
2

min.|A—-C X

nxd  nxk kxd||F Frobenius norm:

I, -2

Given C it is easy to find X from standard least
squares.

However, the fact that we can find the optimal
C is fascinating!



