Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation

 How to obtain reliable estimates?
- Methods for Model Comparison

– How to compare the relative performance of different models?

Metrics for Performance Evaluation

- Focus on the predictive capability of a model
 - Rather than how fast it takes to classify or build models, scalability, etc.
- Confusion Matrix:

	PRE	DICTED CL	ASS
		Class=Yes	Class=No
ACTUAL	Class=Yes	a: TP	b: FN
CLASS	Class=No	c: FP	d: TN

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Metrics for Performance Evaluation...

	PRE	DICTED CL	ASS
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	a (TP)	b (FN)
ULAUU	Class=No	c (FP)	d (TN)

• Most widely-used metric:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Limitation of Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class 1 example

Cost Matrix

	PR	EDICTED	CLASS
	C(i j)	Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	C(Yes Yes)	C(No Yes)
ULASS	Class=No	C(Yes No)	C(No No)

C(i|j): Cost of misclassifying class j example as class i

Computing Cost of Classification

Cost Matrix	PREDI	CTED (CLASS
	C(i j)	+	-
ACTUAL CLASS	+	-1	100
		1	0

Model M ₁	PREDI	CTED (CLASS
		+	-
ACTUAL CLASS	+	150	40
	-	60	250

Accuracy = 80% Cost = 3910

Model M ₂	PREDI	CTED (CLASS
		+	-
ACTUAL CLASS	+	250	45
	-	5	200

Accuracy = 90% Cost = 4255

Cost vs Accuracy

Count	PREI	DICTED CI	ASS
		Class=Yes	Class=No
ACTUAL	Class=Yes	а	b
CLASS	Class=No	С	d

Accuracy is proportional to cost if

- 1. C(Yes|No)=C(No|Yes) = q 2. C(Yes|Yes)=C(No|No) = p

$$N = a + b + c + d$$

Accuracy =
$$(a + d)/N$$

Cost	PREI	DICTED CL	ASS
		Class=Yes	Class=No
ACTUAL	Class=Yes	р	q
CLASS	Class=No	q	р

Cost = p (a + d) + q (b + c)= p (a + d) + q (N - a - d)= q N - (q - p)(a + d) $= N [q - (q-p) \times Accuracy]$

Cost-Sensitive Measures

Precision (p) =
$$\frac{a}{a+c} = \frac{TP}{TP+FP}$$

Recall (r) = $\frac{a}{a+b} = \frac{TP}{TP+FN}$
F - measure (F) = $\frac{2rp}{r+p} = \frac{2a}{2a+b+c} = \frac{2TP}{2TP+FP+FN}$

Precision is biased towards C(Yes|Yes) & C(Yes|No)

- Recall is biased towards C(Yes|Yes) & C(No|Yes)
- F-measure is biased towards all except C(No|No)

Weighted Accuracy =
$$\frac{w_1 a + w_4 d}{w_1 a + w_2 b + w_3 c + w_4 d}$$

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation

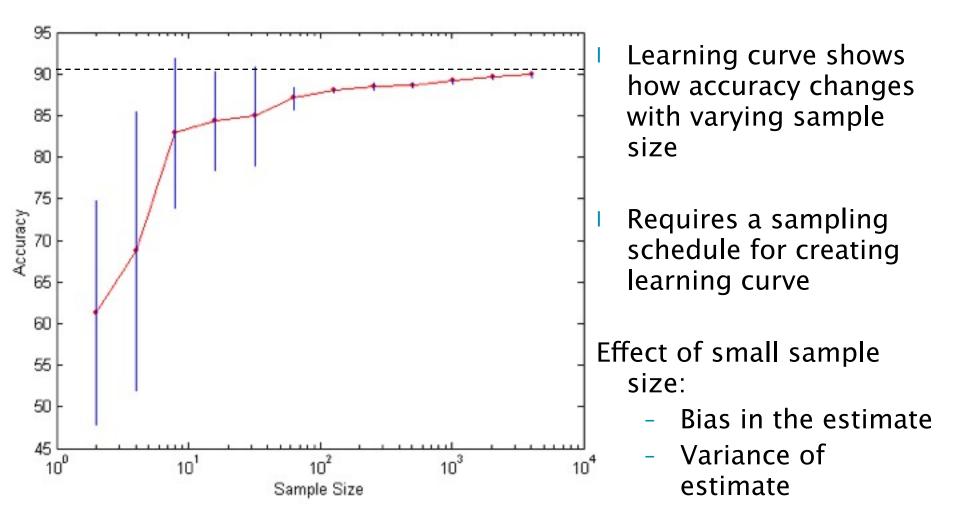
 How to obtain reliable estimates?
- Methods for Model Comparison

– How to compare the relative performance of different models?

Methods for Performance Evaluation

- How to obtain a reliable estimate of performance?
- Performance of a model may depend on other factors besides the learning algorithm:
 - Class distribution
 - Cost of misclassification
 - Size of training and test sets

Learning Curve



Methods of Estimation

- Holdout
 - Reserve 2/3 for training and 1/3 for testing
- Random subsampling
 - Repeated holdout
- Cross validation
 - Partition data into k disjoint subsets
 - k-fold: train on k-1 partitions, test on the remaining one
 - Leave-one-out: k=n
- Bootstrap
 - Sampling with replacement

Model Evaluation

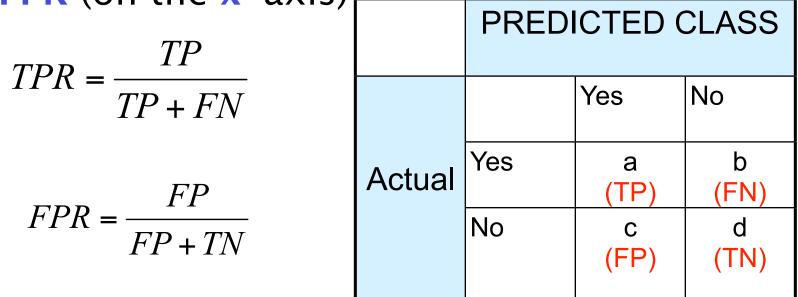
- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation

 How to obtain reliable estimates?
- Methods for Model Comparison

– How to compare the relative performance of different models?

ROC (Receiver Operating Characteristic)

- Developed in 1950s for signal detection theory to analyze noisy signals
 - Characterize the trade-off between positive hits and false alarms
- ROC curve plots TPR (on the y-axis) against FPR (on the x-axis)

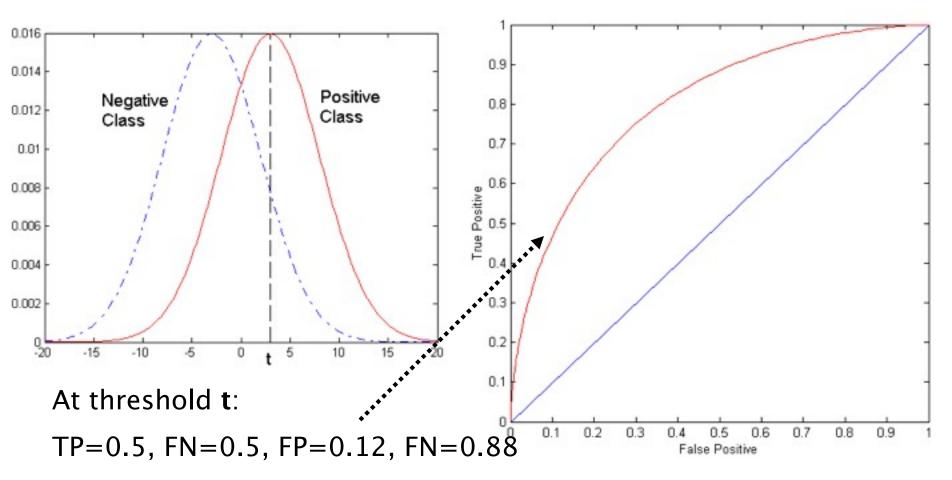


ROC (Receiver Operating Characteristic)

- Performance of each classifier represented as a point on the ROC curve
 - changing the threshold of algorithm, sample distribution or cost matrix changes the location of the point

ROC Curve

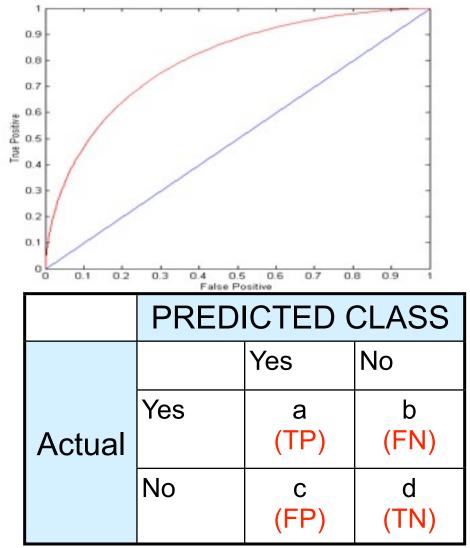
- 1-dimensional data set containing 2 classes (positive and negative)
- any points located at x > t is classified as **positive**



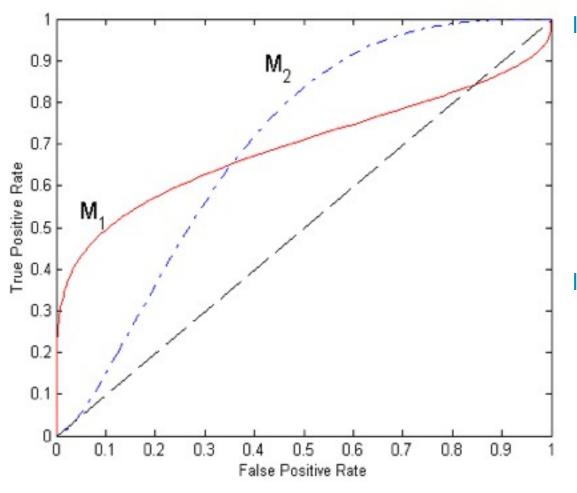
ROC Curve

(TP,FP):

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (1,0): ideal
- Diagonal line:
 - Random guessing
 - Below diagonal line:
 - prediction is opposite of the true class



Using ROC for Model Comparison



No model consistently outperform the other

- M₁ is better for small FPR
- I M₂ is better for large FPR
- Area Under the ROC curve
 - I Ideal: Area = 1
 - Random guess:

• Area = 0.5

How to Construct an ROC curve

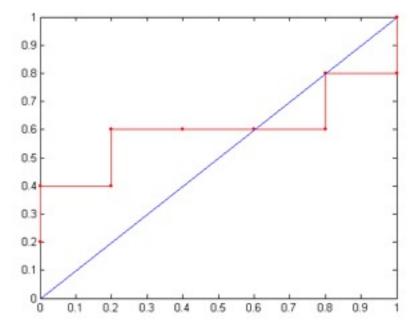
Instance	P(+ A)	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

• Use classifier that produces posterior probability for each test instance P(+|A)

- Sort the instances according to P(+|A) in decreasing order
- Apply threshold at each unique value of P(+|A)
- Count the number of TP, FP, TN, FN at each threshold
- TP rate, TPR = TP/(TP+FN)
- FP rate, FPR = FP/(FP + TN)

How to construct an ROC

	Class	+	-	+	-	-	-	+	-	+	+	
Threshold	>=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	ТР	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1	1	2	3	4	4	5	5	5
	FN	0	1	1	2	2	2	2	3	3	4	5
\rightarrow	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
→	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0



Ensemble Methods

- Construct a set of classifiers from the training data
- Predict class label of previously unseen records by aggregating predictions made by multiple classifiers

Why does it work?

- Suppose there are 25 base classifiers
 - Each classifier has error rate, $\epsilon = 0.35$
 - -Assume classifiers are independent
 - Probability that the ensemble classifier makes a wrong prediction:

$$\sum_{i=13}^{25} \binom{25}{i} \frac{1}{25} \varepsilon^{i} (1-\varepsilon)^{25-i} = 0.06$$

Examples of Ensemble Methods

- How to generate an ensemble of classifiers?
 - Bagging
 - Boosting

Bagging

• Sampling with replacement

Original Data	1	2	3	4	5	6	7	8	9	10
Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7

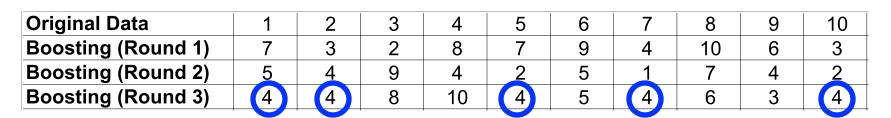
- Build classifier on each bootstrap sample
- Each sample has probability 1-(1 1/ n)ⁿ of being selected

Boosting

- An iterative procedure to adaptively change distribution of training data by focusing more on previously misclassified records
 - Initially, all N records are assigned equal weights
 - Unlike bagging, weights may change at the end of boosting round

Boosting

- Records that are wrongly classified will have their weights increased
- Records that are classified correctly will have their weights decreased



- Example 4 is hard to classify
- Its weight is increased, therefore it is more likely to be chosen again in subsequent rounds

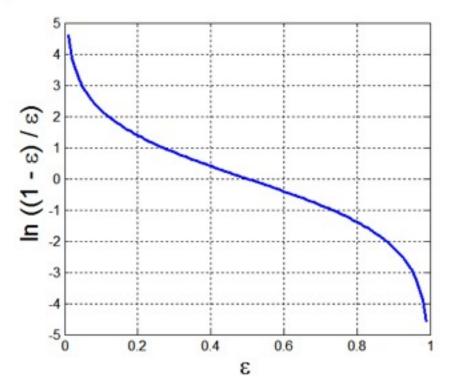
Example: AdaBoost

- Base classifiers: C₁, C₂, ..., C_T
- Data pairs: (x_i,y_i)
- Error rate:

$$\varepsilon_i = \frac{1}{N} \sum_{j=1}^N w_j \delta\left(C_i(x_j) \neq y_j\right)$$

• Importance of a classifier:

$$\alpha_i = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_i}{\varepsilon_i} \frac{1}{\overline{j}} \right)$$



Example: AdaBoost

- Classification: $C^*(x) = \arg \max_{y} \sum_{j=1}^{r} \alpha_j \delta\left(C_j(x) = y\right)$ • Weight update for every iteration t and
- classifier j :

$$w_i^{(t+1)} = \frac{w_i^{(t)}}{Z_t} \begin{cases} \exp^{-\alpha_j} & \text{if } C_j(x_i) = y_i \\ \exp^{\alpha_j} & \text{if } C_j(x_i) \neq y_i \end{cases}$$

where Z_j is the normalization factor

• If any intermediate rounds produce error rate higher than 50%, the weights are reverted back to 1/n