Epidemics and Information Propagation in Social Networks
Epidemic Processes

- Viruses, diseases
- Online viruses, worms
- Fashion
- Adoption of technologies
- Behavior
- Ideas
Example: Ebola virus

- First emerged in Zaire 1976 (now Democratic Republic of Kongo)
- Very lethal: it can kill somebody within a few days
- A small outbreak in 2000
- From 10/2000 – 01/2009 173 people died in African villages
Example: HIV

• Less lethal than Ebola
• Takes time to act, lots of time to infect
• First appeared in the 70s
• Initially confined in special groups: homosexual men, drug users, prostitutes
• Eventually escaped to the entire population
Example: Melissa computer worm

• Started on March 1999
• Infected MS Outlook users
• The user
 – Receives email with a word document with a virus
 – Once opened, the virus sends itself to the first 50 users in the outlook address book
• First detected on Friday, March 26
• On Monday had infected >100K computers
Example: Hotmail

- Example of Viral Marketing: Hotmail.com
- Jul 1996: Hotmail.com started service
- Aug 1996: 20K subscribers
- Dec 1996: 100K
- Jan 1997: 1 million
- Jul 1998: 12 million

Bought by Microsoft for $400 million

Marketing: At the end of each email sent there was a message to subscribe to Hotmail.com “Get your free email at Hotmail"
The Bass model

- Introduced in the 60s to describe product adoption
- Can be applied for viruses
- No network structure

\[F(t + 1) = F(t) + p(1 - F(t)) + q(1 - F(t))F(t) \]

- \(F(t) \): Ratio of infected at time \(t \)
- \(p \): Rate of infection by outside
- \(q \): Rate of contagion
The Bass model

- $F(t)$: Ratio of infected at time t
- p: Rate of infection by outside
- q: Rate of contagion

\[
F(t) = \frac{1 - e^{-(p+q)t}}{1 + \frac{q}{p} e^{-(p+q)t}}
\]
Network Structure

• The Bass model does not take into account network structure
• Let’s see some examples
Example: Black Death (Plague)

- Started in 1347 in a village in South Italy from a ship that arrived from China
- Propagated through rats, etc.
Example: Mad-cow disease

- Jan. 2001: First cases observed in UK
- Feb. 2001: 43 farms infected
- Sep. 2001: 9000 farms infected
- Measures to stop: Banned movement, killed millions of animals
Network Impact

• In the case of the plague it is like moving in a lattice
• In the mad cow we have weak ties, so we have a small world
 – Animals being bought and sold
 – Soil from tourists, etc.

• To protect:
 – Make contagion harder
 – Remove weak ties (e.g., mad cows, HIV)
Example: Join an online group

![Graph showing probability of joining a community when k friends are already members.](image-url)
Example: Publish in a conference

Probability of joining a conference when k coauthors are already 'members' of that conference

[Graph showing the probability of joining a conference as a function of k.]
Example: Use the same tag
Models of Influence

• We saw that often decision is correlated with the number/fraction of friends

• This suggests that there might be influence: the more the number of friends, the higher the influence

• Models to capture that behavior:
 – Linear threshold model
 – Independent cascade model
Linear Threshold Model

- A node v has threshold $\theta_v \sim U[0, 1]$
- A node v is influenced by each neighbor w according to a weight b_{vw} such that
 \[\sum_{w \in N(v)} b_{vw} \leq 1 \]
- A node v becomes \textbf{active} when at least (weighted) θ_v fraction of its neighbors are \textbf{active}
 \[\sum_{w \in N(v) \text{ and } w \text{ is active}} b_{vw} \geq \theta_v \]

Examples: riots, mobile phone networks
Example

Inactive Node
Active Node
Threshold
Active neighbors

Stop!
Independent Cascade Model

• When node \(v \) becomes active, it has a single chance of activating each currently inactive neighbor \(w \).

• The activation attempt succeeds with probability \(p_{vw} \).
Example

Stop!
Optimization problems

• Given a particular model, there are some natural optimization problems.

1. How do I select a set of users to give coupons to in order to maximize the total number of users infected?
2. How do I select a set of people to vaccinate in order to minimize influence/infection?
3. If I have some sensors, where do I place them to detect an epidemic ASAP?
Influence Maximization Problem

• Influence of node set S: $f(S)$
 – expected number of active nodes at the end, if set S is the initial active set

• Problem:
 – Given a parameter k (budget), find a k-node set S to maximize $f(S)$
 – Constrained optimization problem with $f(S)$ as the objective function
f(S): properties (to be demonstrated)

- Non-negative (obviously)
- Monotone: $f(S \cup \{v\}) \geq f(S)$
- Submodular:
 - Let N be a finite set
 - A set function $f: 2^N \rightarrow \mathbb{R}$ is submodular iff
 $\forall S \subset T \subset N, \forall v \in N \setminus T$
 $f(S \cup \{v\}) - f(S) \geq f(T \cup \{v\}) - f(T)$
 (diminishing returns)
Bad News

• For a submodular function f, if f only takes non-negative value, and is monotone, finding a k-element set S for which $f(S)$ is maximized is an NP-hard optimization problem[GFN77, NWF78].

• It is NP-hard to determine the optimum for influence maximization for both independent cascade model and linear threshold model.
Good News

• We can use Greedy Algorithm!
 – Start with an empty set S
 – For k iterations:
 Add node v to S that maximizes $f(S \cup \{v\}) - f(S)$

• How good (bad) it is?
 – Theorem: The greedy algorithm is a $(1 - 1/e)$ approximation.
 – The resulting set S activates at least $(1 - 1/e) > 63\%$ of the number of nodes that any size-k set S could activate.
Key 1: Prove submodularity

\[\forall S \subset T \subset N, \forall v \in N \setminus T \]
\[f(S \cup \{v\}) - f(S) \geq f(T \cup \{v\}) - f(T) \]
Submodularity for Independent Cascade

- Coins for edges are flipped during activation attempts.
Submodularity for Independent Cascade

- Coins for edges are flipped during activation attempts.
- Can pre-flip all coins and reveal results immediately.

- Active nodes in the end are reachable via green paths from initially targeted nodes.
- Study reachability in green graphs
Submodularity, Fixed Graph

- Fix “green graph” G; $g(S)$ are nodes reachable from S in G.

- Submodularity: for $S \subseteq T$

 \[g(T \cup \{v\}) - g(T) \leq g(S \cup \{v\}) - g(S) \]

 - $g(S \cup \{v\}) - g(S)$ nodes reachable from $(S \cup \{v\})$, but not from S.
 - From the picture: g is submodular!
Submodularity of the Function

Fact: A non-negative linear combination of submodular functions is submodular

\[f(S) = \sum_G \text{Prob}(G \text{ is green graph}) \times g_G(S) \]

- \(g_G(S) \): nodes reachable from \(S \) in \(G \).
- Each \(g_G(S) \): is submodular (previous slide).
- Probabilities are non-negative.
Submodularity for Linear Threshold

- Use similar “green graph” idea.
- Once a graph is fixed, “reachability” argument is identical.
- How do we fix a green graph now?
- Each node picks at most one incoming edge, with probabilities proportional to edge weights.
- Equivalent to linear threshold model (trickier proof).
Key 2: Evaluating $f(S)$
Evaluating $f(S)$

- How to evaluate $f(S)$?
- Still an open question of how to compute efficiently
- But: very good estimates by simulation
 - repeating the diffusion process enough times
Experiment Data

• A collaboration graph obtained from co-authorships in papers of the arXiv high-energy physics theory section

• co-authorship networks arguably capture many of the key features of social networks more generally

• Resulting graph: 10748 nodes, 53000 distinct edges
Experiment Settings

• Linear Threshold Model: multiplicity of edges as weights
 – weight($v \rightarrow \omega$) = C_{vw} / dv, weight($\omega \rightarrow v$) = C_{wv} / dw

• Independent Cascade Model:
 – uniform probabilities p on each edge

• Simulate the process 10000 times for each targeted set, re-choosing thresholds or edge outcomes pseudo-randomly from [0, 1] every time

• Compare with other 3 common heuristics
 – (in)degree centrality, distance centrality, random nodes.
Results: linear threshold model
Independent Cascade Model

P = 1%

P = 10%