CS 565: Data mining

• Thanks A. Gionis and S. Vassilvitskii for the slides
What is clustering?

• a **grouping** of data objects such that the **objects within a group are similar** (or near) to one another and **dissimilar** (or far) from the **objects in other groups**
How to capture this objective?

A grouping of data objects such that the objects within a group are similar (or near) to one another and dissimilar (or far) from the objects in other groups.

Minimize intra-cluster distances.

Maximize inter-cluster distances.
The clustering problem

- **Given** a collection of data objects
- **Find** a grouping so that
 - similar objects are in the same cluster
 - dissimilar objects are in different clusters

- Why we care?
 - stand-alone tool to gain insight into the data
 - visualization
 - preprocessing step for other algorithms
 - indexing or compression often relies on clustering
Applications of clustering

- **image processing**
 - cluster images based on their visual content

- **web mining**
 - cluster groups of users based on their access patterns on webpages
 - cluster webpages based on their content

- **bioinformatics**
 - cluster similar proteins together (similarity wrt chemical structure and/or functionality etc)

- **many more...**
The clustering problem

- **Given** a collection of data objects
- **Find** a grouping so that
 - similar objects are in the same cluster
 - dissimilar objects are in different clusters

- **Basic questions:**
 - what does **similar** mean?
 - what is a **good partition** of the objects?
 - i.e., how is the quality of a solution measured?
 - **how to find** a good partition?
Notion of a cluster can be ambiguous

How many clusters?

- Four Clusters
- Two Clusters
- Six Clusters

Types of Clusterings

- Clustering is a set of clusters
- Important distinction between hierarchical and partitional sets of clusters
- Partitional Clustering – A division data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset
- Hierarchical clustering – A set of nested clusters organized as a hierarchical tree
Types of clusterings

- **Partitional**
 - each object belongs in exactly one cluster

- **Hierarchical**
 - a set of nested clusters organized in a tree
Hierarchical clustering

Hierarchical Clustering

Dendrogram

Hierarchical Clustering

Dendrogram

Traditional Hierarchical Clustering

Non-traditional Dendrogram
Partitional clustering

Original Points

A Partitional Clustering
Partitional algorithms

- partition the n objects into k clusters
 - each object belongs to exactly one cluster
 - the number of clusters k is given in advance
The \(k \)-means problem

- consider set \(X = \{x_1, \ldots, x_n\} \) of \(n \) points in \(\mathbb{R}^d \)
- assume that the number \(k \) is given
- problem:
 - find \(k \) points \(c_1, \ldots, c_k \) (named centers or means)
 so that the cost
 \[
 \sum_{i=1}^{n} \min_j \left\{ L_2^2(x_i, c_j) \right\} = \sum_{i=1}^{n} \min_j ||x_i - c_j||^2_2
 \]
 is minimized
The k-means problem

- consider set $X=\{x_1,\ldots,x_n\}$ of n points in \mathbb{R}^d
- assume that the number k is given
- problem:
 - find k points c_1,\ldots,c_k (named centers or means)
 - and partition X into $\{X_1,\ldots,X_k\}$ by assigning each point x_i in X to its nearest cluster center,
 - so that the cost
 $$\sum_{i=1}^{n} \min_{j} ||x_i - c_j||_2^2 = \sum_{j=1}^{k} \sum_{x \in X_j} ||x - c_j||_2^2$$
 is minimized
The k-means problem

- $k=1$ and $k=n$ are easy special cases (why?)
- an NP-hard problem if the dimension of the data is at least 2 ($d \geq 2$)
 - for $d \geq 2$, finding the optimal solution in polynomial time is infeasible
- for $d=1$ the problem is solvable in polynomial time
- in practice, a simple iterative algorithm works quite well
The k-means algorithm

- voted among the top-10 algorithms in data mining
- one way of solving the k-means problem
The k-means algorithm

1. **randomly** (or with another method) pick \(k \) cluster centers \(\{c_1, \ldots, c_k\} \)

2. for each \(j \), set the cluster \(X_j \) to be the set of points in \(X \) that are the closest to center \(c_j \)

3. for each \(j \) let \(c_j \) be the center of cluster \(X_j \) (mean of the vectors in \(X_j \))

4. repeat (go to step 2) until convergence
Sample execution

Fig. 1

Changes in cluster representative locations (indicated by ‘+’ signs) and data assignments (indicated by color) during an execution of the k-means algorithm.
Properties of the k-means algorithm

- finds a local optimum
- often converges quickly
 but not always
- the choice of initial points can have large influence in the result
Effects of bad initialization

Fig. 2: Effect of an inferior initialization on the k-means results.

In addition to being sensitive to initialization, the k-means algorithm suffers from several other problems. First, observe that k-means is a limiting case of fitting data by a mixture of k Gaussians with identical, isotropic covariance matrices ($\Sigma = \sigma^2 I$), when the soft assignments of data points to mixture components are hardened to allocate each data point solely to the most likely component. So, it will falter whenever the data is not well described by reasonably separated spherical balls, for example, if there are non-convex shaped clusters in the data. This problem may be alleviated by rescaling the data to “whiten” it before clustering, or by using a different distance measure that is more appropriate for the dataset. For example, information-theoretic clustering uses the KL-divergence to measure the distance between two data points representing two discrete probability distributions. It has been recently shown that if one measures distance by selecting any member of a very large class of divergences called Bregman divergences during the assignment step and makes no other changes, the essential properties of k-means, including guaranteed convergence, linear separation boundaries and scalability, are retained. This result makes k-means effective for a much larger class of datasets so long as an appropriate divergence is used.
Limitations of k-means: different sizes

Limitations of K-means
- Clusters of differing sizes
- Clusters of differing densities
- Non-globular shapes

K-means has problems when the data contains outliers.
Limitations of k-means: different density

Original Points

K-means (3 Clusters)
Limitations of k-means: non-spherical shapes

Original Points

K-means (2 Clusters)
Discussion on the k-means algorithm

- finds a local optimum
- often converges quickly but not always
- the choice of initial points can have large influence in the result
- tends to find spherical clusters
- outliers can cause a problem
- different densities may cause a problem
Initialization

- random initialization
- random, but repeat many times and take the best solution
 - helps, but solution can still be bad
- pick points that are distant to each other
 - k-means++
 - provable guarantees
k-means++

David Arthur and Sergei Vassilvitskii
k-means++: The advantages of careful seeding
SODA 2007
k-means algorithm: random initialization
k-means algorithm: random initialization
k-means algorithm: initialization with further-first traversal
k-means algorithm: initialization with further-first traversal
but... sensitive to outliers
but... sensitive to outliers
Here random may work well
k-means++ algorithm

- **interpolate** between the two methods
- let $D(x)$ be the distance between x and the nearest center selected so far
- choose next center with probability proportional to

$$
(D(x))^a = D^a(x)
$$

✦ $a = 0$ random initialization
✦ $a = \infty$ furthest-first traversal
✦ $a = 2$ k-means++
k-means++ algorithm

- **initialization phase:**
 - choose the first center uniformly at random
 - choose next center with probability proportional to $D^2(x)$

- **iteration phase:**
 - iterate as in the k-means algorithm until convergence
k-means++ initialization
k-means++ result
Theorem:

k-means++ is $O(\log k)$ approximate in expectation.
k-means++ provable guarantee

- approximation guarantee comes just from the first iteration (initialization)
- subsequent iterations can only improve cost
k-means++ analysis

- consider **optimal clustering** C^*

- **assume** that k-means++ selects a center from a new optimal cluster

- **then**
 - k-means++ is **8-approximate** in expectation

- intuition: if no points from a cluster are picked, then it probably does not contribute much to the overall error

- an **inductive proof** shows that the algorithm is $O(\log k)$ approximate
k-means++ proof : first cluster

- fix an optimal clustering C^*
- first center is selected uniformly at random
- bound the total error of the points in the optimal cluster of the first center
k-means++ proof: first cluster

- let A be the first cluster
- each point $a_0 \in A$ is equally likely to be selected as center

- expected error:

$$E[\phi(A)] = \sum_{a_0 \in A} \frac{1}{|A|} \sum_{a \in A} ||a - a_0||^2$$

$$= 2 \sum_{a \in A} ||a - \bar{A}||^2 = 2\phi^*(A)$$
k-means++ proof: other clusters

- suppose next center is selected from a new cluster in the optimal clustering C^*
- bound the total error of that cluster
k-means++ proof: other clusters

- Let B be the second cluster and b_0 the center selected.

\[
E[\phi(B)] = \sum_{b_0 \in B} \frac{D^2(b_0)}{\sum_{b \in B} D^2(b)} \sum_{b \in B} \min\{D(b), \|b - b_0\|^2\}
\]

Triangle inequality:

\[
D(b_0) \leq D(b) + \|b - b_0\|
\]

\[
D^2(b_0) \leq 2D^2(b) + 2\|b - b_0\|^2
\]
k-means++ proof: other clusters

\[D^2(b_0) \leq 2D^2(b) + 2\|b - b_0\|^2 \]

- average over all points \(b\) in \(B\)

\[
D^2(b_0) \leq \frac{2}{|B|} \sum_{b \in B} D^2(b) + \frac{2}{|B|} \sum_{b \in B} \|b - b_0\|^2
\]

- recall

\[
E[\phi(B)] = \sum_{b_0 \in B} \frac{D^2(b_0)}{\sum_{b \in B} D^2(b)} \sum_{b \in B} \min\{D(b), \|b - b_0\|^2\}
\]

\[
\leq 4 \sum_{b \in B} \frac{1}{|B|} \sum_{b_0 \in B} \|b - b_0\|^2 = 4 \sum_{b \in B} 2\|b - \bar{B}\|^2 = 8\phi^*(B)
\]
k-means++ analysis

- if that k-means++ selects a center from a new optimal cluster
- then
 - k-means++ is 8-approximate in expectation

- an *inductive proof* shows that the algorithm is $O(\log k)$ approximate
Lesson learned

- no reason to use k-means and not k-means++

- k-means++ :
 - easy to implement
 - provable guarantee
 - works well in practice
The k-median problem

- consider set $X = \{x_1, \ldots, x_n\}$ of n points in \mathbb{R}^d
- assume that the number k is given
- problem:
 - find k points c_1, \ldots, c_k (named medians)
 - and partition X into $\{X_1, \ldots, X_k\}$ by assigning each point x_i in X to its nearest cluster median,
 - so that the cost

$$
\sum_{i=1}^{n} \min_j ||x_i - c_j||_2 = \sum_{j=1}^{k} \sum_{x \in X_j} ||x - c_j||_2
$$

is minimized
the k-medoids algorithm

or PAM (partitioning around medoids)

1. randomly (or with another method) choose k medoids $\{c_1, \ldots, c_k\}$ from the original dataset X

2. assign the remaining $n-k$ points in X to their closest medoid c_j

3. for each cluster, replace each medoid by a point in the cluster that improves the cost

4. repeat (go to step 2) until convergence
Discussion on the k-medoids algorithm

- very similar to the k-means algorithm
- same advantages and disadvantages
- how about efficiency?
The k-center problem

- consider set $X=\{x_1,\ldots,x_n\}$ of n points in \mathbb{R}^d
- assume that the number k is given
- problem:
 - find k points c_1,\ldots,c_k (named centers)
 - and partition X into $\{X_1,\ldots,X_k\}$ by assigning each point x_i in X to its nearest cluster center,
 - so that the cost

\[
\max_{i=1}^{n} \min_{j=1}^{k} \|x_i - c_j\|_2
\]
Properties of the k-center problem

- NP-hard for dimension $d \geq 2$
- for $d=1$ the problem is solvable in polynomial time (how?)
- a simple combinatorial algorithm works well
The k-center problem

• consider set $X = \{x_1, \ldots, x_n\}$ of n points in \mathbb{R}^d

• assume that the number k is given

• problem:
 • find k points c_1, \ldots, c_k (named centers)
 • and partition X into $\{X_1, \ldots, X_k\}$ by assigning each point x_i in X to its nearest cluster center,
 • so that the cost

$$\max_{i=1}^{n} \min_{j=1}^{k} ||x_i - c_j||_2$$
Furthest-first traversal algorithm

- **pick any data point** and label it 1
- **for** \(i=2,\ldots,k \)
 - find the unlabeled point that is **furthest from** \(\{1,2,\ldots,i-1\} \)
 - \(\text{// use } d(x,S) = \min_{y \in S} d(x,y) \)
 - label that point \(i \)
- **assign** the remaining unlabeled data points to the **closest** labeled data point
Furthest-first traversal algorithm: example
Furthest-first traversal algorithm

- furthest-first traversal algorithm gives a factor 2 approximation
Furthest-first traversal algorithm

- pick any data point and label it 1
- for i=2,...,k
 - find the unlabeled point that is furthest from \{1,2,...,i-1\}
 - // use \(d(x,S) = \min_{y \in S} d(x,y)\)
 - label that point i
 - \(p(i) = \arg\min_{j<i} d(i,j)\)
 - \(R_i = d(i,p(i))\)
- assign the remaining unlabeled data points to the closest labeled data point
Analysis

• Claim 1: $R_1 \geq R_2 \geq \ldots \geq R_k$

• proof:
 • $R_j = d(j,p(j))$
 $= d(j,\{1,2,\ldots,j-1\})$
 $\leq d(j,\{1,2,\ldots,i-1\})$ // $j > i$
 $\leq d(i,\{1,2,\ldots,i-1\}) = R_i$
Analysis

- **Claim 2:**
 - let C be the clustering produced by the FFT algorithm
 - let $R(C)$ be the cost of that clustering
 - then $R(C) = R_{k+1}$

- **proof:**
 - for any $i > k$ we have:
 \[d(i,\{1,2,...,k\}) \leq d(k+1,\{1,2,...,k\}) = R_{k+1} \]
Analysis

• **Theorem**
 - let C be the clustering produced by the FFT algorithm
 - let C^* be the optimal clustering
 - then $R(C) \leq 2R(C^*)$

• **proof:**
 - let C^*_1, \ldots, C^*_k be the clusters of the optimal k-clustering
 - if these clusters contain points $\{1, \ldots, k\}$ then
 \[R(C) \leq 2R(C^*) \]
 - otherwise suppose that one of these clusters contains two or more of the points in $\{1, \ldots, k\}$
 - these points are at distance at least R_k from each other
 - this (optimal) cluster must have radius
 \[\frac{1}{2} R_k \geq \frac{1}{2} R_{k+1} = \frac{1}{2} R(C) \]
A labeled point in the cluster

\[R(C) \leq 2R(C^*) \]

\[R(C) \leq x \leq z + R(C^*) \leq 2R(C^*) \]