Measuring distance/ similarity of data objects

Multiple data types

- Records of users
- Graphs
- Images
- Videos
- Text (webpages, books)
- Strings (DNA sequences)
- Timeseries
- How do we compare them?

Feature space representation

- Usually data objects consist of a set of attributes (also known as dimensions)
- J. Smith, 20, 200K
- If all dimensions are real-valued then we can visualize each data point as points in a d-dimensional space
- If all dimensions are binary then we can think of each data point as a binary vector

Distance functions

- The distance $d(x, y)$ between two objects xand y is a metric if
$-d(i, j) \geq 0$ (non-negativity)
- d(i, i) $=0$ (isolation)
- d(i, j) $=d(\mathrm{j}, \mathrm{i})$ (symmetry)
$-\mathrm{d}(\mathrm{i}, \mathrm{j}) \leq \mathrm{d}(\mathrm{i}, \mathrm{h})+\mathrm{d}(\mathrm{h}, \mathrm{j})$ (triangular inequality) [Why do we
- The definitions of distance functions are usually different for real, boolean, categorical, and ordinal variables.
- Weights may be associated with different variables based on applications and data semantics.

Data Structures

- data matrix
- Distance matrix
$\stackrel{\ddots}{\stackrel{\sim}{\circ}} \underset{\sim}{\circ}\left\{\left[\begin{array}{ccccc}0 & & & & \\ d(2,1) & 0 & & & \\ d(3,1) & d(3,2) & 0 & & \\ : & : & : & & \\ d(n, 1) & d(n, 2) & \ldots & \ldots & 0\end{array}\right]\right.$

Distance functions for real-valued vectors

- L_{p} norms or Minkowski distance:

$$
L_{p}(x, y)=\left(\sum_{i=1}^{d}\left|x_{i}-y_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

- $\mathrm{p}=1, \mathrm{~L}_{1}$, Manhattan (or city block) or Hamming distance:

$$
L_{1}(x, y)=\left(\sum_{i=1}^{d}\left|x_{i}-y_{i}\right|\right)
$$

Distance functions for real-valued vectors

- L_{p} norms or Minkowski distance:

$$
L_{p}(x, y)=\left(\sum_{i=1}^{d}\left|x_{i}-y_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

- $\mathrm{p}=2, \mathrm{~L}_{2}$, Euclidean distance:

$$
L_{2}(x, y)=\left(\sum_{i=1}^{d}\left(x_{i}-y_{i}\right)^{2}\right)^{1 / 2}
$$

Distance functions for real-valued vectors

- Dot product or cosine similarity

$$
\cos (x, y)=\frac{x \cdot y}{\|x\|\|y\|}
$$

- Can we construct a distance function out of this?
- When use the one and when the other?

Hamming distance for $0-1$ vectors

| x | | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| y | | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |

$$
L_{1}(x, y)=\left(\sum_{i=1}^{d}\left|x_{i}-y_{i}\right|\right)
$$

How good is Hamming distance for $0-1$ vectors?

- Drawback
- Documents represented as sets (of words)
- Two cases
- Two very large documents -- almost identical -but for 5 terms
- Two very small documents, with 5 terms each, disjoint

Distance functions for binary vectors or sets

- Jaccard similarity between binary vectors x and y (Range?)
$\operatorname{JSim}(x, y)=\frac{|x \cap y|}{|x \cup y|}$

- Jaccard distance (Range?):

$$
\operatorname{JDist}(x, y)=1-\frac{|x \cap y|}{|x \cup y|}
$$

The previous example

- Case 1 (very large almost identical documents)

$J(x, y)$ almost 1

- Case 2 (small disjoint documents)

$$
J(x, y)=0
$$

Jaccard similarity/distance

- Example:
- JSim $=1 / 6$
- Jdist $=5 / 6$

	Q 1	Q 2	Q 3	Q 4	Q 5	Q 6
X	1	0	0	1	1	1
Y	0	1	1	0	1	0

Distance functions for strings

- Edit distance between two strings x and y is the min number of operations required to transform one string to another
- Operations: replace, delete, insert, transpose etc.

Distance functions between strings

- Strings x and y have equal length
- Modification of Hamming distance
- Add 1 for all positions that are different

- Hamming distance $=4$
- Drawbacks?

Hamming distance between strings -- drawbacks

- Strings should have equal length
- What about

- String Hamming distance $=6$

Edit Distance

- Edit distance between two strings x and y of length n and m resp. is the minimum number of single-character edits (insertion, deletion, substitution) required to change one word to the other

Example

- INTENTION
- E X E C U T O N
- INTE*NTION
-*EXECUTION
- dss is

Computing the edit distance

- Dynamic programming
- Form $n \times m$ distance matrix D (x of length n, y of length m)

- $D(i, j)$ is the optimal distance between strings $\times[1 . . i]$ and y [1..j]

Computing the edit distance

- How to compute $\mathrm{D}(\mathrm{i}, \mathrm{j})$?
- Either
- match the last two characters (substitution)
- match by deleting the last char in one string
- match by deleting the last character in the other string

Computing edit distance

$$
\begin{array}{r}
D(i, j)=\min \{D(i-1, j)+\operatorname{del}(X[i]), \\
D(i, j-1)+\operatorname{ins}(Y[j]), \\
D(i-1, j-1)+\operatorname{sub}(X[i], Y[j])\}
\end{array}
$$

- Running time? Metric?

Distance function between time series

- time series can be seen as vectors
- apply existing distance metrics
- L-norms
- what can go wrong?

Distance functions between time series

- Euclidean distance between time series

figures from Eamonn Keogh www.cs.ucr.edu/~eamonn/DTW_myths.ppt

Dynamic time warping

- Alleviate the problems with Euclidean distance

figures from Eamonn Keogh www.cs.ucr.edu/~eamonn/DTW_myths.ppt

Dynamic time warping

Dynamic time warping

- how to compute it?

- Dynamic programming

figures from Eamonn Keogh www.cs.ucr.edu/~eamonn/DTW_myths.ppt

Dynamic time warping

- constraints for more efficient computation

figures from Eamonn Keogh www.cs.ucr.edu/~eamonn/DTW_myths.ppt

