Measuring distance/similarity of data objects
Multiple data types

- Records of users
- Graphs
- Images
- Videos
- Text (webpages, books)
- Strings (DNA sequences)
- Timeseries
- How do we compare them?
Feature space representation

- Usually data objects consist of a set of attributes (also known as dimensions)

- J. Smith, 20, 200K

- If all \(d \) dimensions are real-valued then we can visualize each data point as points in a \(d \)-dimensional space

- If all \(d \) dimensions are binary then we can think of each data point as a binary vector
Distance functions

• The distance $d(x, y)$ between two objects x and y is a metric if

 – $d(i, j) \geq 0$ (non-negativity)
 – $d(i, i) = 0$ (isolation)
 – $d(i, j) = d(j, i)$ (symmetry)
 – $d(i, j) \leq d(i, h) + d(h, j)$ (triangular inequality) [Why do we need it?]

• The definitions of distance functions are usually different for real, boolean, categorical, and ordinal variables.

• Weights may be associated with different variables based on applications and data semantics.
Data Structures

- **data** matrix

\[
\begin{bmatrix}
x_{11} & \ldots & x_{1l} & \ldots & x_{1d} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
x_{il} & \ldots & x_{il} & \ldots & x_{id} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
x_{nl} & \ldots & x_{nl} & \ldots & x_{nd}
\end{bmatrix}
\]

- **Distance** matrix

\[
\begin{bmatrix}
0 & \ldots & \ldots & \ldots & d(n,1) & d(n,2) & \ldots & \ldots & 0 \\
\end{bmatrix}
\]
Distance functions for real-valued vectors

- L_p norms or Minkowski distance:

 $$L_p(x, y) = \left(\sum_{i=1}^{d} |x_i - y_i|^p \right)^{\frac{1}{p}}$$

- $p = 1$, L_1, Manhattan (or city block) or Hamming distance:

 $$L_1(x, y) = \left(\sum_{i=1}^{d} |x_i - y_i| \right)$$
Distance functions for real-valued vectors

- L_p norms or Minkowski distance:

$$L_p(x, y) = \left(\sum_{i=1}^{d} |x_i - y_i|^p \right)^{\frac{1}{p}}$$

- $p = 2$, L_2, Euclidean distance:

$$L_2(x, y) = \left(\sum_{i=1}^{d} (x_i - y_i)^2 \right)^{1/2}$$
Distance functions for real–valued vectors

- Dot product or cosine similarity

\[\cos(x, y) = \frac{x \cdot y}{||x|| \cdot ||y||} \]

- Can we construct a distance function out of this?
- When use the one and when the other?
Hamming distance for 0–1 vectors

\[L_1(x, y) = \left(\sum_{i=1}^{d} |x_i - y_i| \right) \]
How good is Hamming distance for 0–1 vectors?

• Drawback

• Documents represented as sets (of words)
• Two cases

 – Two very large documents -- almost identical -- but for 5 terms
 – Two very small documents, with 5 terms each, disjoint
Distance functions for binary vectors or sets

- **Jaccard** similarity between binary vectors x and y (Range?):
 \[
 \text{JSim}(x, y) = \frac{|x \cap y|}{|x \cup y|}
 \]

- **Jaccard** distance (Range?):
 \[
 \text{JDist}(x, y) = 1 - \frac{|x \cap y|}{|x \cup y|}
 \]
The previous example

- Case 1 (very large almost identical documents)

\[J(x, y) \] almost 1

- Case 2 (small disjoint documents)

\[J(x, y) = 0 \]
Jaccard similarity/distance

- Example:
 - JSim = 1/6
 - Jdist = 5/6

<table>
<thead>
<tr>
<th></th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>Q5</th>
<th>Q6</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Y</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Distance functions for strings

- **Edit distance** between two strings x and y is the \min number of operations required to transform one string to another.

- Operations: replace, delete, insert, transpose etc.
Distance functions between strings

• Strings x and y have **equal length**
• Modification of **Hamming** distance
• Add 1 for all positions that are different

Hamming distance = 4

• **Drawbacks?**
Hamming distance between strings -- drawbacks

• Strings should have equal length

• What about

```
x a g a t t a c a
y g a t t a c a
```

• String Hamming distance = 6
• **Edit distance** between two strings x and y of length n and m resp. is the *minimum* number of single-character edits (insertion, deletion, substitution) required to change one word to the other.
Example

- INTENTION
- EXECUTION
- INTENTION
- EXECUTION
- dss is
Computing the edit distance

- Dynamic programming
- Form nxm distance matrix D (x of length n, y of length m)

\[
\begin{array}{cccc}
 & D & & y \\
 x & & & \\
\end{array}
\]

- $D(i,j)$ is the optimal distance between strings $x[1..i]$ and $y[1..j]$
Computing the edit distance

• How to compute $D(i,j)$?
• Either
 – match the last two characters (substitution)
 – match by deleting the last char in one string
 – match by deleting the last character in the other string
Computing edit distance

\[D(i, j) = \min \{ D(i - 1, j) + \text{del}(X[i]), \]
\[D(i, j - 1) + \text{ins}(Y[j]), \]
\[D(i - 1, j - 1) + \text{sub}(X[i], Y[j]) \} \]

- Running time? Metric?
Distance function between time series

- time series can be seen as vectors
- apply existing distance metrics
- L–norms

- what can go wrong?
Distance functions between time series

• Euclidean distance between time series

figures from Eamonn Keogh [www.cs.ucr.edu/~eamonn/DTW_myths.ppt]
Dynamic time warping

• Alleviate the problems with Euclidean distance
Dynamic time warping

• Quite useful in practice

Sign language

figures from Eamonn Keogh www.cs.ucr.edu/~eamonn/DTW_myths.ppt
Dynamic time warping

• how to compute it?

Dynamic programming

figures from Eamonn Keogh www.cs.ucr.edu/~eamonn/DTW_myths.ppt
Dynamic time warping

• constraints for more efficient computation

figures from Eamonn Keogh www.cs.ucr.edu/~eamonn/DTW_myths.ppt