
Lecture outline
• Nearest-neighbor search in low

dimensions
– kd-trees

• Nearest-neighbor search in high
dimensions
– LSH

• Applications to data mining

Definition
• Given: a set X of n points in Rd

• Nearest neighbor: for any query point
qєRd return the point xєX minimizing
D(x,q)

• Intuition: Find the point in X that is the
closest to q

Motivation
• Learning: Nearest neighbor rule
• Databases: Retrieval
• Data mining: Clustering
• Donald Knuth in vol.3 of The Art of

Computer Programming called it the
post-office problem, referring to the
application of assigning a resident to
the nearest-post office

Nearest-neighbor rule

MNIST dataset “2”

Methods for computing NN
• Linear scan: O(nd) time

• This is pretty much all what is known
for exact algorithms with theoretical
guarantees

• In practice:
– kd-trees work “well” in “low-medium”

dimensions

2-dimensional kd-trees
• A data structure to support range

queries in R2

– Not the most efficient solution in theory
– Everyone uses it in practice

• Preprocessing time: O(nlogn)
• Space complexity: O(n)
• Query time: O(n1/2+k)

2-dimensional kd-trees

• Algorithm:
– Choose x or y coordinate (alternate)
– Choose the median of the coordinate; this defines

a horizontal or vertical line
– Recurse on both sides

• We get a binary tree:
– Size O(n)
– Depth O(logn)
– Construction time O(nlogn)

Construction of kd-trees

Construction of kd-trees

Construction of kd-trees

Construction of kd-trees

Construction of kd-trees

The complete kd-tree

Region of node v

Region(v) : the subtree rooted at v stores the
points in black dots

Searching in kd-trees
• Range-searching in 2-d
– Given a set of n points, build a data

structure that for any query rectangle R
reports all point in R

kd-tree: range queries
• Recursive procedure starting from v =

root
• Search (v,R)
– If v is a leaf, then report the point stored in v if it

lies in R
– Otherwise, if Reg(v) is contained in R, report all

points in the subtree(v)
– Otherwise:
• If Reg(left(v)) intersects R, then

Search(left(v),R)
• If Reg(right(v)) intersects R, then

Search(right(v),R)

Query time analysis
• We will show that Search takes at

most O(n1/2+P) time, where P is
the number of reported points
– The total time needed to report

all points in all sub-trees is O(P)
– We just need to bound the

number of nodes v such that
region(v) intersects R but is not
contained in R (i.e., boundary of R
intersects the boundary of
region(v))

– gross overestimation: bound the
number of region(v) which are
crossed by any of the 4
horizontal/vertical lines

Query time (Cont’d)
• Q(n): max number of regions in an n-point kd-tree

intersecting a (say, vertical) line?

• If ℓ intersects region(v) (due to vertical line splitting),
then after two levels it intersects 2 regions (due to 2
vertical splitting lines)

• The number of regions intersecting ℓ is Q(n)=2+2Q(n/
4)  Q(n)=(n1/2)

d-dimensional kd-trees
• A data structure to support range queries in Rd

• Preprocessing time: O(nlogn)
• Space complexity: O(n)
• Query time: O(n1-1/d+k)

Construction of the d-
dimensional kd-trees

• The construction algorithm is similar as in 2-d
• At the root we split the set of points into two

subsets of same size by a hyperplane vertical to x1-
axis

• At the children of the root, the partition is based on
the second coordinate: x2-coordinate

• At depth d, we start all over again by partitioning on
the first coordinate

• The recursion stops until there is only one point left,
which is stored as a leaf

Locality-sensitive hashing
(LSH)

• Idea: Construct hash functions h: Rd U
such that for any pair of points p,q:
– If D(p,q)≤r, then Pr[h(p)=h(q)] is high
– If D(p,q)≥cr, then Pr[h(p)=h(q)] is small

• Then, we can solve the “approximate NN”
problem by hashing

• LSH is a general framework; for a given D
we need to find the right h

Approximate Nearest
Neighbor

• Given a set of points X in Rd and query point qєRd
c-Approximate r-Nearest Neighbor search returns:
– Returns p∈P, D(p,q) ≤ r
– Returns NO if there is no p’∈X, D(p’,q) ≤ cr

Locality-Sensitive Hashing
(LSH)

• A family H of functions h: RdU is called
(P1,P2,r,cr)-sensitive if for any p,q:
– if D(p,q)≤r, then Pr[h(p)=h(q)] ≥ P1
– If D(p,q)≥ cr, then Pr[h(p)=h(q)] ≤ P2

• P1 > P2

• Example: Hamming distance
– LSH functions: h(p)=pi, i.e., the i-th bit of p
– Probabilities: Pr[h(p)=h(q)]=1-D(p,q)/d

Algorithm -- preprocessing
• g(p) = <h1(p),h2(p),…,hk(p)>
• Preprocessing
– Select g1,g2,…,gL

– For all pєX hash p to buckets g1(p),…,gL(p)
– Since the number of possible buckets might be

large we only maintain the non empty ones

• Running time?

Algorithm -- query
• Query q:
– Retrieve the points from buckets g1(q),g2(q),…,

gL(q) and let points retrieved be x1,…,xL
• If D(xi,q)≤r report it
• Otherwise report that there does not exist such a NN

– Answer the query based on the retrieved points
– Time O(dL)

Applications of LSH in data
mining

• Numerous….

Applications
• Find pages with similar sets of words

(for clustering or classification)

• Find users in Netflix data that watch
similar movies

• Find movies with similar sets of users

• Find images of related things

How would you do it?
• Finding very similar items might be

computationally demanding task

• We can relax our requirement to
finding somewhat similar items

Running example: comparing
documents

• Documents have common text, but no
common topic

• Easy special cases:
– Identical documents
– Fully contained documents (letter by

letter)
• General case:
–Many small pieces of one document

appear out of order in another. What do
we do then?

Finding similar documents
• Given a collection of documents, find

pairs of documents that have lots of
text in common
– Identify mirror sites or web pages
– Plagiarism
– Similar news articles

Key steps
• Shingling: convert documents (news

articles, emails, etc) to sets

• LSH: convert large sets to small
signatures, while preserving the
similarity

• Compare the signatures instead of the
actual documents

Shingles
• A k-shingle (or k-gram) is a sequence

of k characters that appears in a
document

• If doc = abcab and k=3, then 2-
singles: {ab, bc, ca}

• Represent a document by a set of k-
shingles

Assumption
• Documents that have similar sets of k-

shingles are similar: same text appears
in the two documents; the position of
the text does not matter

• What should be the value of k?
–What would large or small k mean?

Data model: sets
• Data points are represented as sets

(i.e., sets of shingles)

• Similar data points have large
intersections in their sets

– Think of documents and shingles
– Customers and products
– Users and movies

Similarity measures for sets
• Now we have a set representation of

the data

• Jaccard coefficient

• A, B sets (subsets of some, large,
universe U)

Find similar objects using the
Jaccard similarity

• Naïve method?

• Problems with the naïve method?
– There are too many objects
– Each object consists of too many sets

Speedingup the naïve method
• Represent every object by a signature

(summary of the object)
• Examine pairs of signatures rather than

pairs of objects
• Find all similar pairs of signatures
• Check point: check that objects with

similar signatures are actually similar

Still problems
• Comparing large number of signatures

with each other may take too much
time (although it takes less space)

• The method can produce pairs of
objects that might not be similar (false
positives). The check point needs to be
enforced

Creating signatures
• For object x, signature of x (sign(x)) is

much smaller (in space) than x

• For objects x, y it should hold that
sim(x,y) is almost the same as
sim(sing(x),sign(y))

Intuition behind Jaccard
similarity

• Consider two objects: x,y

• a: # of rows of form same as a
• sim(x,y)= a /(a+b+c)

x y
a 1 1
b 1 0
c 0 1
d 0 0

A type of signatures --
minhashes

• Randomly permute the rows

• h(x): first row (in permuted data)

 in which column x has an 1

• Use several (e.g., 100) independent

 hash functions to design a signature

x y
a 1 1
b 1 0
c 0 1
d 0 0

x y
a 0 1
b 0 0
c 1 1
d 1 0

“Surprising” property
• The probability (over all permutations

of rows) that h(x)=h(y) is the same as
sim(x,y)

• Both of them are a/(a+b+c)

• So?
– The similarity of signatures is the

fraction of the hash functions on which
they agree

Minhash algorithm
• Pick k (e.g., 100) permutations of the

rows

• Think of sign(x) as a new vector

• Let sign(x)[i]: in the i-th permutation,
the index of the first row that has 1
for object x

Example of minhash
signatures

• Input matrix
x1 x2 x3 X4

1 1 0 1 0
2 1 0 0 1
3 0 1 0 1
4 0 1 0 1
5 0 1 0 1
6 1 0 1 0
7 1 0 1 0

1
3
7
6
2
5
4

x1 x2 x3 X4
1 1 0 1 0
3 0 1 0 1
7 1 0 1 0
6 1 0 1 0
2 1 0 0 1
5 0 1 0 1
4 0 1 0 1

1 2 1 2

Example of minhash
signatures

• Input matrix
x1 x2 x3 X4

1 1 0 1 0
2 1 0 0 1
3 0 1 0 1
4 0 1 0 1
5 0 1 0 1
6 1 0 1 0
7 1 0 1 0

4
2
1
3
6
7
5

x1 x2 x3 X4
4 0 1 0 1
2 1 0 0 1
1 1 0 1 0
3 0 1 0 1
6 1 0 1 0
7 1 0 1 0
5 0 1 0 1

2 1 3 1

Example of minhash
signatures

• Input matrix
x1 x2 x3 X4

1 1 0 1 0
2 1 0 0 1
3 0 1 0 1
4 0 1 0 1
5 0 1 0 1
6 1 0 1 0
7 1 0 1 0

3
4
7
6
1
2
5

x1 x2 x3 X4
3 0 1 0 1
4 0 1 0 1
7 1 0 1 0
6 1 0 1 0
1 1 0 1 0
2 1 0 0 1
5 0 1 0 1

3 1 3 1

Example of minhash
signatures

• Input matrix
x1 x2 x3 X4

1 1 0 1 0
2 1 0 0 1
3 0 1 0 1
4 0 1 0 1
5 0 1 0 1
6 1 0 1 0
7 1 0 1 0

x1 x2 x3 X4
1 2 1 2
2 1 3 1
3 1 3 1

≈

actua
l

signs
(x1,x2) 0 0
(x1,x3) 0.75 2/3
(x1,x4) 1/7 0
(x2,x3) 0 0
(x2,x4) 0.75 1
(x3,x4) 0 0

Is it now feasible?
• Assume a billion rows
• Hard to pick a random permutation of

1…billion
• Even representing a random

permutation requires 1 billion
entries!!!

• How about accessing rows in permuted
order?

• 

Being more practical
• Approximating row permutations: pick

k=100 (?) hash functions (h1,…,hk)
for each row r
 for each column c

 if c has 1 in row r

 for each hash function hi do

 if hi (r) is a smaller value than M(i,c)
then

 M (i,c) = hi (r);

M(i,c) will become the
smallest value of
hi(r) for which
column c has 1 in
row r; i.e., hi (r)
gives order of
rows for i-th
permutation.

Example of minhash
signatures

• Input matrix

x1 x2
1 1 0
2 0 1
3 1 1
4 1 0
5 0 1

x1 x2
1 0 1
2 2 0

h(r) = r + 1 mod 5
g(r) = 2r + 1 mod 5

