
Lecture outline
• Nearest-neighbor search in low 

dimensions
– kd-trees

• Nearest-neighbor search in high 
dimensions
– LSH

• Applications to data mining



Definition
• Given: a set X of n points in Rd

• Nearest neighbor: for any query point 
qєRd return the point xєX minimizing 
D(x,q)

• Intuition: Find the point in X that is the 
closest to q



Motivation
• Learning: Nearest neighbor rule
• Databases: Retrieval
• Data mining: Clustering
• Donald Knuth in vol.3 of The Art of 

Computer Programming called it the 
post-office problem, referring to the 
application of assigning a resident to 
the nearest-post office



Nearest-neighbor rule



MNIST dataset “2”



Methods for computing NN 
• Linear scan: O(nd) time

• This is pretty much all what is known 
for exact algorithms with theoretical 
guarantees

• In practice:
– kd-trees work “well” in “low-medium” 

dimensions



2-dimensional kd-trees
• A data structure to support range 

queries in R2

– Not the most efficient solution in theory
– Everyone uses it in practice

• Preprocessing time: O(nlogn)
• Space complexity: O(n)
• Query time: O(n1/2+k)



2-dimensional kd-trees

• Algorithm:
– Choose x or y coordinate (alternate)
– Choose the median of the coordinate; this defines 

a horizontal or vertical line
– Recurse on both sides

• We get a binary tree:
– Size O(n)
– Depth O(logn)
– Construction time O(nlogn)



Construction of kd-trees



Construction of kd-trees



Construction of kd-trees



Construction of kd-trees



Construction of kd-trees



The complete kd-tree



Region of node v

Region(v) : the subtree rooted at v stores the 
points in black dots



Searching in kd-trees
• Range-searching in 2-d
– Given a set of n points, build a data 

structure that for any query rectangle R 
reports all point in R



kd-tree: range queries
• Recursive procedure starting from v = 

root
• Search (v,R)
– If v is a leaf, then report the point stored in v if it 

lies in R
– Otherwise, if Reg(v) is contained in R, report all 

points in the subtree(v)
– Otherwise:
• If Reg(left(v)) intersects R, then 

Search(left(v),R)
• If Reg(right(v)) intersects R, then 

Search(right(v),R)



Query time analysis
• We will show that Search takes at 

most O(n1/2+P) time, where P is 
the number of reported points
– The total time needed to report 

all points in all sub-trees is O(P)
– We just need to bound the 

number of nodes v such that 
region(v) intersects R but is not 
contained in R (i.e., boundary of R 
intersects the boundary of 
region(v))

– gross overestimation: bound the 
number of region(v) which are 
crossed by any of the 4 
horizontal/vertical lines



Query time (Cont’d)
• Q(n): max number of regions in an n-point kd-tree 

intersecting a (say, vertical) line?

• If  ℓ intersects region(v) (due to vertical line splitting), 
then after two  levels it intersects 2 regions (due to 2 
vertical splitting lines)

• The number of regions intersecting ℓ is Q(n)=2+2Q(n/
4)  Q(n)=(n1/2)



d-dimensional kd-trees
• A data structure to support range queries in Rd

• Preprocessing time: O(nlogn)
• Space complexity: O(n)
• Query time: O(n1-1/d+k)



Construction of the d-
dimensional kd-trees

• The construction algorithm is similar as in 2-d
• At the root we split the set of points into two 

subsets of same size by a hyperplane vertical to x1-
axis

• At the children of the root, the partition is based on 
the second coordinate: x2-coordinate

• At depth d, we start all over again by partitioning on 
the first coordinate

• The recursion stops until there is only one point left, 
which is stored as a leaf



Locality-sensitive hashing 
(LSH)

• Idea: Construct hash functions h: Rd U 
such that for any pair of points p,q:
– If D(p,q)≤r, then Pr[h(p)=h(q)] is high
– If D(p,q)≥cr, then Pr[h(p)=h(q)] is small

• Then, we can solve the “approximate NN” 
problem by hashing

• LSH is a general framework; for a given D 
we need to find the right h



Approximate Nearest 
Neighbor

• Given a set of points X in Rd and query point qєRd 
c-Approximate r-Nearest Neighbor search returns: 
– Returns  p∈P, D(p,q) ≤ r
–  Returns NO if there is no p’∈X, D(p’,q) ≤ cr



Locality-Sensitive Hashing 
(LSH)

• A family H of functions h: RdU is called 
(P1,P2,r,cr)-sensitive if for any p,q:
– if D(p,q)≤r, then Pr[h(p)=h(q)] ≥ P1
– If D(p,q)≥ cr, then Pr[h(p)=h(q)] ≤ P2

• P1 > P2

• Example: Hamming distance
– LSH functions: h(p)=pi, i.e., the i-th bit of p
– Probabilities: Pr[h(p)=h(q)]=1-D(p,q)/d



Algorithm -- preprocessing
• g(p) = <h1(p),h2(p),…,hk(p)>
• Preprocessing
– Select g1,g2,…,gL

– For all pєX hash p to buckets g1(p),…,gL(p)
– Since the number of possible buckets might be 

large we only maintain the non empty ones

• Running time?



Algorithm -- query
• Query q:
– Retrieve the points from buckets  g1(q),g2(q),…, 

gL(q) and let points retrieved be x1,…,xL 
• If D(xi,q)≤r report it
• Otherwise report that there does not exist such a NN 

– Answer the query based on the retrieved points
– Time O(dL)



Applications of LSH in data 
mining

• Numerous….



Applications
• Find pages with similar sets of words 

(for clustering or classification)

• Find users in Netflix data that watch 
similar movies

• Find movies with similar sets of users

• Find images of related things



How would you do it? 
• Finding very similar items might be 

computationally demanding task

• We can relax our requirement to 
finding somewhat similar items 



Running example: comparing 
documents

• Documents have common text, but no 
common topic

• Easy special cases:
– Identical documents
– Fully contained documents (letter by 

letter)
• General case:
–Many small pieces of one document 

appear out of order in another. What do 
we do then?



Finding similar documents
• Given a collection of documents, find 

pairs of documents that have lots of 
text in common
– Identify mirror sites or web pages
– Plagiarism
– Similar news articles



Key steps
• Shingling: convert documents (news 

articles, emails, etc) to sets

• LSH: convert large sets to small 
signatures, while preserving the 
similarity

• Compare the signatures instead of the 
actual documents



Shingles
• A k-shingle (or k-gram) is a sequence 

of k characters that appears in a 
document

• If doc = abcab and k=3, then 2-
singles: {ab, bc, ca}

• Represent a document by a set of k-
shingles



Assumption
• Documents that have similar sets of k-

shingles are similar: same text appears 
in the two documents; the position of 
the text does not matter

• What should be the value of k?
–What would large or small k mean?



Data model: sets
• Data points are represented as sets 

(i.e., sets of shingles)

• Similar data points have large 
intersections in their sets

– Think of documents and shingles
– Customers and products
– Users and movies



Similarity measures for sets
• Now we have a set representation of 

the data

• Jaccard coefficient

• A, B sets (subsets of some, large, 
universe U)



Find similar objects using the 
Jaccard similarity

• Naïve method?

• Problems with the naïve method?
– There are too many objects
– Each object consists of too many sets



Speedingup the naïve method
• Represent every object by a signature 

(summary of the object)
• Examine pairs of signatures rather than 

pairs of objects
• Find all similar pairs of signatures
• Check point: check that objects with 

similar signatures are actually similar



Still problems
• Comparing large number of signatures 

with each other may take too much 
time (although it takes less space)

• The method can produce pairs of 
objects that might not be similar (false 
positives). The check point needs to be 
enforced



Creating signatures
• For object x, signature of x (sign(x)) is 

much smaller (in space) than x

• For objects x, y it should hold that 
sim(x,y) is almost the same as 
sim(sing(x),sign(y)) 



Intuition behind Jaccard 
similarity

• Consider two objects: x,y

• a: # of rows of form same as a
• sim(x,y)= a /(a+b+c) 

x y
a 1 1
b 1 0
c 0 1
d 0 0



A type of signatures -- 
minhashes

• Randomly permute the rows

• h(x): first row (in permuted data) 

 in which column x has an 1

• Use several (e.g., 100) independent

 hash functions to design a signature

x y
a 1 1
b 1 0
c 0 1
d 0 0

x y
a 0 1
b 0 0
c 1 1
d 1 0



“Surprising” property
• The probability (over all permutations 

of rows) that h(x)=h(y) is the same as 
sim(x,y)

• Both of them are a/(a+b+c)

• So?
– The similarity of signatures is the 

fraction of the hash functions on which 
they agree 



Minhash algorithm
• Pick k (e.g., 100) permutations of the 

rows

• Think of sign(x) as a new vector

• Let sign(x)[i]: in the i-th permutation, 
the index of the first row that has 1 
for object x



Example of minhash 
signatures

• Input matrix
x1 x2 x3 X4

1 1 0 1 0
2 1 0 0 1
3 0 1 0 1
4 0 1 0 1
5 0 1 0 1
6 1 0 1 0
7 1 0 1 0

1
3
7
6
2
5
4

x1 x2 x3 X4
1 1 0 1 0
3 0 1 0 1
7 1 0 1 0
6 1 0 1 0
2 1 0 0 1
5 0 1 0 1
4 0 1 0 1

1 2 1 2



Example of minhash 
signatures

• Input matrix
x1 x2 x3 X4

1 1 0 1 0
2 1 0 0 1
3 0 1 0 1
4 0 1 0 1
5 0 1 0 1
6 1 0 1 0
7 1 0 1 0

4
2
1
3
6
7
5

x1 x2 x3 X4
4 0 1 0 1
2 1 0 0 1
1 1 0 1 0
3 0 1 0 1
6 1 0 1 0
7 1 0 1 0
5 0 1 0 1

2 1 3 1



Example of minhash 
signatures

• Input matrix
x1 x2 x3 X4

1 1 0 1 0
2 1 0 0 1
3 0 1 0 1
4 0 1 0 1
5 0 1 0 1
6 1 0 1 0
7 1 0 1 0

3
4
7
6
1
2
5

x1 x2 x3 X4
3 0 1 0 1
4 0 1 0 1
7 1 0 1 0
6 1 0 1 0
1 1 0 1 0
2 1 0 0 1
5 0 1 0 1

3 1 3 1



Example of minhash 
signatures

• Input matrix
x1 x2 x3 X4

1 1 0 1 0
2 1 0 0 1
3 0 1 0 1
4 0 1 0 1
5 0 1 0 1
6 1 0 1 0
7 1 0 1 0

x1 x2 x3 X4
1 2 1 2
2 1 3 1
3 1 3 1

≈

actua
l

signs
(x1,x2) 0 0
(x1,x3) 0.75 2/3
(x1,x4) 1/7 0
(x2,x3) 0 0
(x2,x4) 0.75 1
(x3,x4) 0 0



Is it now feasible?
• Assume a billion rows
• Hard to pick a random permutation of 

1…billion
• Even representing a random 

permutation requires 1 billion 
entries!!!

• How about accessing rows in permuted 
order?

• 



Being more practical
• Approximating row permutations: pick 

k=100 (?) hash functions (h1,…,hk)
for each row r 
    for each column c 

 
 if c has 1 in row r 

 
    for each hash function hi  do

 
 
 if hi (r ) is a smaller value than M(i,c) 
then


 
 
 M (i,c) = hi (r);

M(i,c) will become the 
smallest value of 
hi(r) for which 
column c has 1 in 
row r; i.e., hi (r) 
gives order of 
rows for i-th 
permutation.



Example of minhash 
signatures

• Input matrix

x1 x2
1 1 0
2 0 1
3 1 1
4 1 0
5 0 1

x1 x2
1 0 1
2 2 0

h(r) = r + 1 mod 5
g(r) = 2r + 1 mod 5


