
CAS CS 565, Data Mining

Course logistics
• Course webpage:
– http://www.cs.bu.edu/~evimaria/

cs565-16.html
• Schedule: Mon – Wed, 4:00-5:30
• Instructor: Evimaria Terzi,

evimaria@cs.bu.edu
• Office hours: Mon 5:30-7pm, Wed

9:30pm-11:00am (or by appointment)
• Join the class on piazza to get updates

http://www.cs.bu.edu/~evimaria/cs565-12.html
http://www.cs.bu.edu/~evimaria/cs565-12.html
http://www.cs.bu.edu/~evimaria/cs565-12.html
http://www.cs.bu.edu/~evimaria/cs565-12.html
http://www.cs.bu.edu/~evimaria/cs565-12.html
http://www.cs.bu.edu/~evimaria/cs565-12.html
mailto:evimaria@cs.bu.edu
mailto:evimaria@cs.bu.edu

Topics to be covered
(tentative)

• What is data mining?
• Distance functions
• Finding similar entities
• Dimensionality reduction
• Clustering
• Classification
• Link analysis ranking
• Covering problems and submodular function

optimization
• Applications: Web advertising,

recommendation systems

Course workload

• Two programming assignments (25%)
• Three problem sets (25%)
• Midterm exam (20%)
• Final exam (30%)
• Late assignment policy: 10% per day up

to three days; credit will be not given
after that

• Incompletes will not be given

Learn what you (don’t)know

The main goal of the class is for you to
get to know what you know and what

you don’t know (20% rule)

Prerequisites
• Basic algorithms: sorting, set manipulation, hashing

• Analysis of algorithms: O-notation and its variants,
perhaps some recursion equations, NP-hardness

• Programming: some programming language, ability to
do small experiments reasonably quickly

• Probability: concepts of probability and conditional
probability, expectations, binomial and other simple
distributions

• Some linear algebra: e.g., eigenvector and eigenvalue
computations

Above all
• The goal of the course is to learn and enjoy

• The basic principle is to ask questions when you
don’t understand

• Say when things are unclear; not everything can be
clear from the beginning

• Participate in the class as much as possible

• We will do a lot of thinking together...better to think
with company

Introduction to data mining
• Why do we need data analysis?

• What is data mining?

• Examples where data mining has been
useful

• Data mining and other areas of computer
science and statistics

• Some (basic) data-mining tasks

There are lots of data around

– Web
– Online social networks
– Recommendation systems
– Wikipedia
– Genomic sequences: 310^9 nucleotides per

individual for 1000 people --> 310^12
nucleotided...+ medical history + census
information

Example: Netflix data

10

Want to predict all ratings, but we
know only 1% of the entries!

Us
er

s

Movies

Data complexity
• Multiple types of data: tables, time

series, images, graphs, etc

• Spatial and temporal aspects

• Large number of different variables

• Lots of observations large datasets

What can data-mining methods do?

• Rank web-query results
– What are the most relevant web-pages to the query:

“Student housing BU”?

• Find groups of entities that are similar (clustering)
– Find groups of facebook users that have similar

friends/interests
– Find groups amazon users that buy similar products
– Find groups of walmart customers that buy similar

products

• Find good recommendations for users
– Recommend amazon customers new books
– Recommend facebook users new friends/groups

Goal of this course
• Describe some problems that can be solved

using data-mining methods

• Discuss the intuition behind data-mining
methods that solve these problems

• Illustrate the theoretical underpinnings of
these methods

• Show how these methods can be useful in
practice

Data mining when datasets
are large

• Time and space complexity are
important

• Even for very simple tasks

Some simple data-analysis
tasks

• Given a stream or set of numbers (identifiers, etc)

• How many numbers are there?

• How many distinct numbers are there?

• What are the most frequent numbers?

• How many numbers appear at least K times?

• How many numbers appear only once?

• etc

Finding the majority element
• A neat problem

• A stream of identifiers; one of them
occurs more than 50% of the time

• How can you find it using no more than a
few memory locations?

• Suggestions?

Finding the majority element

• A = first item you see; count = 1
• for each subsequent item B
 if (A==B) count = count + 1
 else
 count = count - 1
 if (count == 0) A=B; count = 1
endfor

return A

• Why does this work correctly?

Finding the majority element
• A = first item you see;
• count = 1
• for each subsequent item B
 if (A==B)
 count = count + 1
 else
 count = count - 1
 if (count == 0)
 A=B;
 count = 1
endfor
return A

• Basic observation:
Whenever we
discard element u
we also discard a
unique element v
different from u

Finding a number in the top half
• Given a set of N numbers (N is very large)

• Find a number x such that x is *likely* to
be larger than the median of the numbers

• Simple solution
– Sort the numbers and store them in sorted

array A
– Any value larger than A[N/2] is a solution

• Other solutions?

Finding a number in the top half
efficiently

• A solution that uses small number of
operations
– Randomly sample K numbers from the file
– Output their maximum

• Failure probability (1/2)^K

median

N/2 items N/2 items

Sampling a sequence of items
• Problem: Given a sequence of items P of

size N form a random sample S of P that
has size n (n<N) sampling without
replacement

• What does random sample mean?
– Every element in P appears in S with

probability n/N
– Equivalent as if you generate a random

permutation of the N elements and take the
first n elements of the permutation

Sampling algorithm v.0.
• R = {} // empty set
• for i=1 to n
 rnd = Random([1…N])
 while (rnd in R)
 rnd = Random([1…N])
 endwhile
 R = R U {rnd}
 S[i] = P[rnd]
 endfor
 return S

• Running time?

• The algorithm assumes that S and its size are known in
advance!

Sampling algorithm v.1.

• Step 1: Create a random permutation
π of the elements in P

• Step 2: Return the first n elements of
the permutation, S[i] = π[i], for (1 ≤ i
≤ n)

You can do Step 2 in
linear time

Can you do Step 1 in linear
time?

Creating a random permutation
in linear time

• for i=1…N do
 j = Random([1…i-1])
 swap P[i] with P[j]
 endfor
• Is this really a random permutation?

(see CLR for the proof)
• It runs in linear time

Sampling algorithm v.1.

• Step 1: Create a random permutation π
of the elements in P

• Step 2: Return the first n elements of the
permutation, S[i] = π[i], for (1 ≤ i ≤ n)

• The algorithm works in linear time O(N)
• The algorithm assumes that P is known in

advance
• The algorithm makes 2 passes over the

data

Sampling algorithm v.2.
• for i = 1 to n
 S[i] = P[i]
 endfor

• t = n+1

• while P has more
elements

 rnd = Random([1…t])
 if (rnd <= n)
 {S[rnd] = P[t]}
 t = t + 1
 endwhile

Correctness proof
• At iteration t+1 a new item is included

in the sample with probability n/(t+1)
• At iteration (t+1) an old item is kept in

the sample with probability n/(t+1)
• Inductive argument: at iteration t the

old item was in the sample with
probability n/t

• Pr(old item in sample at t+1) =
 Pr(old item was in sample at t) x

(Pr(rnd >n) + Pr(rnd<=n) x Pr(old
item was not chosen for eviction))

= n/t((t+1-n)/(t+1)+n/(t+1)x(1-1/n))
= n/(t+1)

Sampling algorithm v.2.
• for i = 1 to n
 S[i] = P[i]
 endfor

• t = n+1

• while P has more
elements {

 rnd = Random([1…t])
 if (rnd <= n)
 {S[rnd] = P[t]}
 t = t + 1
 endwhile

Advantages
• Linear time

• Single pass over the data

• Any time; the length of the
sequence need not be known in
advance

