
CAS CS 565, Data Mining



Course logistics
• Course webpage:
– http://www.cs.bu.edu/~evimaria/

cs565-16.html
• Schedule: Mon – Wed, 4:00-5:30
• Instructor: Evimaria Terzi, 

evimaria@cs.bu.edu
• Office hours: Mon 5:30-7pm, Wed 

9:30pm-11:00am (or by appointment)
• Join the class on piazza to get updates
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Topics to be covered 
(tentative)

• What is data mining?
• Distance functions
• Finding similar entities
• Dimensionality reduction
• Clustering
• Classification
• Link analysis ranking
• Covering problems and submodular function 

optimization
• Applications: Web advertising, 

recommendation systems



Course workload

• Two programming assignments (25%)
• Three problem sets (25%)
• Midterm exam (20%)
• Final exam (30%)
• Late assignment policy: 10% per day up 

to three days; credit will be not given 
after that

• Incompletes will not be given



Learn what you (don’t)know

The main goal of the class is for you to 
get to know what you know and what 

you don’t know (20% rule)



Prerequisites
• Basic algorithms: sorting, set manipulation, hashing

• Analysis of algorithms: O-notation and its variants, 
perhaps some recursion equations, NP-hardness

• Programming: some programming language, ability to 
do small experiments reasonably quickly

• Probability: concepts of probability and conditional 
probability, expectations, binomial and other simple 
distributions

• Some linear algebra: e.g., eigenvector and eigenvalue 
computations



Above all 
• The goal of the course is to learn and enjoy

• The basic principle is to ask questions when you 
don’t understand

• Say when things are unclear; not everything can be 
clear from the beginning

• Participate in the class as much as possible

• We will do a lot of thinking together...better to think 
with company



Introduction to data mining
• Why do we need data analysis?

• What is data mining?

• Examples where data mining has been 
useful

• Data mining and other areas of computer 
science and statistics

• Some (basic) data-mining tasks



There are lots of data around

– Web 
– Online social networks 
– Recommendation systems 
– Wikipedia 
– Genomic sequences: 310^9 nucleotides per 

individual for 1000 people --> 310^12 
nucleotided...+ medical history + census 
information



Example: Netflix data

10

Want to predict all ratings, but we 
know only 1% of the entries!
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Data complexity
• Multiple types of data: tables, time 

series, images, graphs, etc

• Spatial and temporal aspects

• Large number of different variables

• Lots of observations  large datasets



What can data-mining methods do?

• Rank web-query results
– What are the most relevant web-pages to the query: 

“Student housing BU”?

• Find groups of entities that are similar (clustering)
– Find groups of facebook users that have similar 

friends/interests
– Find groups amazon users that buy similar products
– Find groups of walmart customers that buy similar 

products

• Find good recommendations for users
– Recommend amazon customers new books
– Recommend facebook users new friends/groups



Goal of this course
• Describe some problems that can be solved 

using data-mining methods

• Discuss the intuition behind data-mining 
methods that solve these problems

• Illustrate the theoretical underpinnings of 
these methods

• Show how these methods can be useful in 
practice



Data mining when datasets 
are large

• Time and space complexity are 
important

• Even for very simple tasks



Some simple data-analysis 
tasks

• Given a stream or set of numbers (identifiers, etc)

• How many numbers are there?

• How many distinct numbers are there?

• What are the most frequent numbers?

• How many numbers appear at least K times?

• How many numbers appear only once?

• etc



Finding the majority element
• A neat problem 

• A stream of identifiers; one of them 
occurs more than 50% of the time

• How can you find it using no more than a 
few memory locations?

• Suggestions?



Finding the majority element 

• A = first item you see; count = 1
• for each subsequent item B
 if (A==B) count = count + 1 
 else 
       count = count - 1  
       if (count == 0)  A=B; count = 1
endfor

return A

• Why does this work correctly?



Finding the majority element 
• A = first item you see; 
• count = 1
• for each subsequent item B
 if (A==B) 
        count = count + 1 
 else 
      count = count - 1  
      if (count == 0) 
           A=B; 
           count = 1
endfor
return A

• Basic observation:  
Whenever we 
discard element u 
we also discard a 
unique element v 
different from u



Finding a number in the top half
• Given a set of N numbers (N is very large)

• Find a number x such that x is *likely* to 
be larger than the median of the numbers

• Simple solution
– Sort the numbers and store them in sorted 

array A
– Any value larger than A[N/2] is a solution

• Other solutions?



Finding a number in the top half 
efficiently

• A solution that uses small number of 
operations
– Randomly sample K numbers from the file
– Output their maximum

• Failure probability (1/2)^K

median

N/2 items N/2 items



Sampling a sequence of items
• Problem: Given a sequence of items P of 

size N form a random sample S of P that 
has size n (n<N)  sampling without 
replacement

• What does random sample mean?
– Every element in P appears in S with 

probability n/N
– Equivalent as if you generate a random 

permutation of the N elements and take the 
first n elements of the permutation



Sampling algorithm v.0.
• R = {} // empty set
• for i=1 to n
  rnd = Random([1…N])
  while (rnd in R)
   rnd = Random([1…N])
  endwhile
  R = R U {rnd}
  S[i] = P[rnd]
 endfor
 return S

• Running time?

• The algorithm assumes that S and its size are known in 
advance!



Sampling algorithm v.1.

• Step 1: Create a random permutation 
π of the elements in P

• Step 2: Return the first n elements of 
the permutation, S[i] = π[i], for (1 ≤ i 
≤ n )

You can do Step 2 in 
linear time

Can you do Step 1 in linear 
time?



Creating a random permutation 
in linear time

• for i=1…N do
  j = Random([1…i-1])
  swap P[i] with P[j]
 endfor
• Is this really a random permutation? 

(see CLR for the proof)
• It runs in linear time



Sampling algorithm v.1.

• Step 1: Create a random permutation π 
of the elements in P

• Step 2: Return the first n elements of the 
permutation, S[i] = π[i], for (1 ≤ i ≤ n )

• The algorithm works in linear time O(N)
• The algorithm assumes that P is known in 

advance
• The algorithm makes 2 passes over the 

data



Sampling algorithm v.2.
• for i = 1 to n
  S[i] = P[i]
 endfor

• t = n+1

• while P has more 
elements 

 rnd =  Random([1…t])
 if (rnd <= n) 
  {S[rnd] = P[t]}
  t = t + 1
 endwhile

Correctness proof
• At iteration t+1 a new item is included 

in the sample with probability n/(t+1)
• At iteration (t+1) an old item is kept in 

the sample with probability n/(t+1)
• Inductive argument: at iteration t the 

old item was in the sample with 
probability n/t

• Pr(old item in sample at t+1) = 
 Pr(old item was in sample at t) x 

(Pr(rnd >n) + Pr(rnd<=n) x Pr(old 
item was not chosen for eviction))

= n/t((t+1-n)/(t+1)+n/(t+1)x(1-1/n))
= n/(t+1)



Sampling algorithm v.2.
• for i = 1 to n
  S[i] = P[i]
 endfor

• t = n+1

• while P has more 
elements {

 rnd =  Random([1…t])
 if (rnd <= n) 
  {S[rnd] = P[t]}
  t = t + 1
 endwhile

Advantages
• Linear time

• Single pass  over the data

• Any time;  the length of the 
sequence need not be known in 
advance


