
Graph Clustering

Outline
• Min s-t cut problem
• Min cut problem
• Multiway cut
• Minimum k-cut
• Other normalized cuts and spectral

graph partitionings

Min s-t cut
• Weighted graph G(V,E)

• An s-t cut C = (S,T) of a graph G = (V, E)
is a cut partition of V into S and T such
that s∈S and t∈T

• Cost of a cut: Cost(C) = Σe(u,v) uЄS, v ЄT w(e)

• Problem: Given G, s and t find the
minimum cost s-t cut

Max flow problem
• Flow network
– Abstraction for material flowing through

the edges
– G = (V,E) directed graph with no parallel

edges
– Two distinguished nodes: s = source, t=

sink
– c(e) = capacity of edge e

Cuts
• An s-t cut is a partition (S,T) of V with sЄS

and tЄT

• capacity of a cut (S,T) is
cap(S,T) = Σe out of Sc(e)

• Find s-t cut with the minimum capacity: this
problem can be solved optimally in
polynomial time by using flow techniques

Flows
• An s-t flow is a function that satisfies
– For each eЄE 0≤f(e) ≤c(e) [capacity]
– For each vЄV-{s,t}:
Σe in to vf(e) = Σe out of vf(e) [conservation]

• The value of a flow f is:
v(f) = Σe out of s f(e)

Max flow problem
• Find s-t flow of maximum value

Flows and cuts
• Flow value lemma: Let f be any flow

and let (S,T) be any s-t cut. Then, the
net flow sent across the cut is equal to
the amount leaving s

 Σe out of S f(e) – Σe in to S f(e) = v(f)

Flows and cuts
• Weak duality: Let f be any flow and let

(S,T) be any s-t cut. Then the value of
the flow is at most the capacity of the
cut defined by (S,T):

 v(f) ≤cap(S,T)

Certificate of optimality
• Let f be any flow and let (S,T) be any

cut. If v(f) = cap(S,T) then f is a max
flow and (S,T) is a min cut.

• The min-cut max-flow problems can
be solved optimally in polynomial time!

Setting
• Connected, undirected graph G=(V,E)

• Assignment of weights to edges: w: ER+

• Cut: Partition of V into two sets: V’, V-V’. The set
of edges with one end point in V and the other in
V’ define the cut

• The removal of the cut disconnects G

• Cost of a cut: sum of the weights of the edges
that have one of their end point in V’ and the
other in V-V’

Min cut problem
• Can we solve the min-cut problem

using an algorithm for s-t cut?

Randomized min-cut
algorithm

• Repeat : pick an edge uniformly at random and
merge the two vertices at its end-points

– If as a result there are several edges between some
pairs of (newly-formed) vertices retain them all

– Edges between vertices that are merged are removed
(no self-loops)

• Until only two vertices remain

• The set of edges between these two vertices is a
cut in G and is output as a candidate min-cut

Example of contraction

e

Observations on the
algorithm

• Every cut in the graph at any
intermediate stage is a cut in the
original graph

Analysis of the algorithm
• C the min-cut of size k  G has at least kn/2 edges

– Why?
• E

i
: the event of not picking an edge of C at the i-th step for 1≤i ≤n-2

• Step 1:
– Probability that the edge randomly chosen is in C is at most 2k/(kn)=2/n  Pr(E1)

≥ 1-2/n
• Step 2:

– If E1 occurs, then there are at least k(n-1)/2 edges remaining

– The probability of picking one from C is at most 2/(n-1)  Pr(E2|E1) = 1 – 2/(n-1)

• Step i:
– Number of remaining vertices: n-i+1
– Number of remaining edges: k(n-i+1)/2 (since we never picked an edge from the

cut)
– Pr(Ei|Πj=1…i-1 Ej) ≥ 1 – 2/(n-i+1)

– Probability that no edge in C is ever picked: Pr(Πi=1…n-2 Ei) ≥ Πi=1…n-2(1-2/(n-i
+1))=2/(n2-n)

• The probability of discovering a particular min-cut is larger than 2/n2

• Repeat the above algorithm n2/2 times. The probability that a min-cut is not found is
(1-2/n2)n^2/2 < 1/e

Multiway cut
(analogue of s-t cut)

• Problem: Given a set of terminals S = {s1,…,sk}
subset of V, a multiway cut is a set of edges whose
removal disconnects the terminals from each other.
The multiway cut problem asks for the minimum
weight such set.

• The multiway cut problem is NP-hard (for k>2)

Algorithm for multiway cut
• For each i=1,…,k, compute the minimum weight

isolating cut for si, say Ci

• Discard the heaviest of these cuts and output
the union of the rest, say C

• Isolating cut for si: The set of edges whose
removal disconnects si from the rest of the
terminals

• How can we find a minimum-weight isolating
cut?
– Can we do it with a single s-t cut computation?

Approximation result
• The previous algorithm achieves an

approximation guarantee of 2-2/k

• Proof

Minimum k-cut
• A set of edges whose removal leaves k

connected components is called a k-cut.
The minimum k-cut problem asks for a
minimum-weight k-cut

• Recursively compute cuts in G (and the
resulting connected components) until
there are k components left

• This is a (2-2/k)-approximation
algorithm

Minimum k-cut algorithm
• Compute the Gomory-Hu tree T for G

• Output the union of the lightest k-1
cuts of the n-1 cuts associated with
edges of T in G; let C be this union

• The above algorithm is a (2-2/k)-
approximation algorithm

Gomory-Hu Tree
• T is a tree with vertex set V

• The edges of T need not be in E

• Let e be an edge in T; its removal from T
creates two connected components with
vertex sets (S,S’)

• The cut in G defined by partition (S,S’) is
the cut associated with e in G

Gomory-Hu tree
• Tree T is said to be the Gomory-Hu

tree for G if
– For each pair of vertices u,v in V, the

weight of a minimum u-v cut in G is the
same as that in T

– For each edge e in T, w’(e) is the weight
of the cut associated with e in G

Min-cuts again
• What does it mean that a set of nodes are well or

sparsely interconnected?

• min-cut: the min number of edges such that when
removed cause the graph to become disconnected
– small min-cut implies sparse connectivity
–

U V-U

min
U

E(U, V \ U) =
X

i2U

X

j2V \U

A[i, j]

Measuring connectivity
• What does it mean that a set of nodes are well

interconnected?

• min-cut: the min number of edges such that when
removed cause the graph to become disconnected
– not always a good idea!

U UV-U V-U

Graph expansion
• Normalize the cut by the size of the smallest

component
• Cut ratio:

• Graph expansion:

• We will now see how the graph expansion
relates to the eigenvalue of the adjacency
matrix A

↵ =
E(U, V \ U)

min{|U |, |V \ U |}

↵(G) = min
U

E(U, V \ U)

min{|U |, |V \ U |}

Spectral analysis
• The Laplacian matrix L = D – A where
– A = the adjacency matrix
– D = diag(d1,d2,…,dn)
• di = degree of node i

• Therefore
– L(i,i) = di

– L(i,j) = -1, if there is an edge (i,j)

Laplacian Matrix properties
• The matrix L is symmetric and positive

semi-definite
– all eigenvalues of L are positive

• The matrix L has 0 as an eigenvalue,
and corresponding eigenvector w1 =
(1,1,…,1)
– λ1 = 0 is the smallest eigenvalue

The second smallest
eigenvalue

• The second smallest eigenvalue (also
known as Fielder value) λ2 satisfies

• The vector that minimizes λ2 is called
the Fielder vector. It minimizes

where

�2 = min
kxk=1,x?w1

x

T

Lx

�2 = min
x 6=0

P
(i,j)2E

(x
i

� x

j

)2
P

i

x

2
i

X

i

xi = 0

Spectral ordering
• The values of x minimize

• For weighted matrices

• The ordering according to the xi values will group
similar (connected) nodes together

• Physical interpretation: The stable state of springs
placed on the edges of the graph

X

i

xi = 0min
x 6=0

P
(i,j)2E

(x
i

� xj)2
P

i

x

2
i

min
x 6=0

P
(i,j) A[i, j](x

i

� xj)2
P

i

x

2
i

X

i

xi = 0

Spectral partition
• Partition the nodes according to the ordering

induced by the Fielder vector
• If u = (u1,u2,…,un) is the Fielder vector, then

split nodes according to a value s
– bisection: s is the median value in u
– ratio cut: s is the value that minimizes α
– sign: separate positive and negative values (s=0)
– gap: separate according to the largest gap in the

values of u
• This works well (provably for special cases)

Fielder Value
• The value λ2 is a good approximation of the graph expansion

• If the max degree d is bounded we obtain a good
approximation of the minimum expansion cut

d = maximum degree
↵(G)2

2d
 �2  2↵(G)

�2

2
 ↵(G) 

p
�2(2d� �2)

Conductance

• The expansion does not capture the
inter-cluster similarity well
– The nodes with high degree are more

important
• Graph Conductance

– weighted degrees of nodes in U

�(G) = min
U

E(U, V \ U)

min{d(U), d(V � U)}

d(U) =
X

i2U

X

j2U

A[i, j]

�2

8
 1� µ2  �

Conductance and random
walks

• Consider the normalized stochastic matrix M = D-1A
• The conductance of the Markov Chain M is

– the probability that the random walk escapes set U

• The conductance of the graph is the same as that of
the Markov Chain, φ(G) = φ(M)

• Conductance φ is related to the second eigenvalue
of the matrix M

�(M) = min
U

P
i2U

P
j /2U ⇡(i)M [i, j]

min{⇡(U),⇡(V \ U)}

Interpretation of conductance
• Low conductance means that there is

some bottleneck in the graph
– a subset of nodes not well connected with

the rest of the graph.

• High conductance means that the
graph is well connected

Clustering Conductance
• The conductance of a clustering is

defined as the maximum conductance
over all clusters in the clustering.

• Minimizing the conductance of
clustering seems like a natural choice

A spectral algorithm

• Create matrix M = D-1A
• Find the second largest eigenvector v
• Find the best ratio-cut (minimum

conductance cut) with respect to v
• Recurse on the pieces induced by the

cut.

• The algorithm has provable guarantees

A divide and merge
methodology

• Divide phase:
– Recursively partition the input into two

pieces until singletons are produced
– output: a tree hierarchy

• Merge phase:
– use dynamic programming to merge the

leafs in order to produce a tree-respecting
flat clustering

Merge phase or dynamic-
progamming on trees

• The merge phase finds the optimal
clustering in the tree T produced by
the divide phase

• k-means objective with cluster centers
c1,…,ck:

F ({C1, . . . , Ck})
X

i

X

u2Ci

d(u, ci)
2

Dynamic programming on
trees

• OPT(C,i): optimal clustering for C
using i clusters

• Cl, Cr the left and the right children of
node C

• Dynamic-programming recurrence

