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Min s—t cut

Weighted graph G(V,E)

An s-t cut C = (S,T) of a graph G = (V, E)
is a cut partition of Vinto S and T such
that seS and teT

Cost of a cut: Cost(C) = Ze(u,v) uES. v ET w(e)

Problem: Given G, s and t find the
minimum cost s-t cut



Max flow problem

* Flow network

— Abstraction for material flowing through
the edges

— G = (V,E) directed graph with no parallel
edges

— Two distinguished nodes: s = source, t=
sink

—c(e) = capacity of edge e



Cuts

* An s-t cut is a partition (S5,T) of V with s€S
and teT

* capacity of a cut (S,T) is
cap(S,T) = Ze out of SC(E)

* Find s-t cut with the minimum capacity: this
oroblem can be solved optimally in
nolynomial time by using flow techniques




Flows

« An s-t flow is a function that satisfies
— For each eeE 0<f(e) <c(e) [capacity]

— For each veV- {s t}:

f(e) = f(e) [conservation]

elntov eoutofv

 The value of a flow f is:
v(f) = X f(e)

e out of s



Max flow problem

* Find s-t flow of maximum value



Flows and cuts

* Flow value lemma: Let f be any flow
and let (S,T) be any s-t cut. Then, the
net flow sent across the cut is equal to

the amount leaving s

Ze out of S f(E) B Ze into S f(E) — V(f)



Flows and cuts

* Weak duality: Let f be any flow and let
(S,T) be any s-t cut. Then the value of
the flow is at most the capacity of the
cut defined by (S,T):

v(f) <cap(S,T)



Certificate of optimality

* Let f be any flow and let (S,T) be any
cut. If v(f) = cap(S,T) then f is a max
flow and (S,T) is a min cut.

* The min-cut max-flow problems can
be solved optimally in polynomial time!



Setting

Connected, undirected graph G=(V,E)
Assignment of weights to edges: w: E>R*

Cut: Partition of V into two sets: V’, V-V’. The set
of edﬁes with one end point in V and the other in
V’ define the cut

The removal of the cut disconnects G

Cost of a cut: sum of the weights of the edges
that have one of their end point in V’ and the
other in V-V’



Min cut problem

* Can we solve the min-cut problem
using an algorithm for s-t cut?



Randomized min-cut
algorithm

Repeat : pick an edge uniformly at random and
merge the two vertices at its end-points

— If as a result there are several edges between some
pairs of (newly-formed) vertices retain them all

— Edges between vertices that are merged are removed
(no self-loops)

Until only two vertices remain

The set of edges between these two vertices is a
cut in G and is output as a candidate min-cut



Example of contraction

)



Observations on the
algorithm

* Every cut in the graph at any
intermediate stage is a cut in the
original graph



Analysis of the algorithm

C the min-cut of size k > G has at least kn/2 edges
— Why?
E: the event of not picking an edge of C at the i-th step for 1<i <n-2

Step 1:
— Probability that the edge randomly chosen is in C is at most 2k/(kn)=2/n > Pr(El)
> 1-2/n
Step 2:
- If E1 occurs, then there are at least k(n-1)/2 edges remaining

— The probability of picking one from C is at most 2/(n-1) > Pr(E,|IE)) = 1-2/(n-1)

Step i:
— Number of remaining vertices: n-i+1

- Nur)nber of remaining edges: k(n-i+1)/2 (since we never picked an edge from the
cut

_ Pr(EiII'Ij=1._i_1 Ej) >21-2/(n-i+1)
— Probability that no edge in C is ever picked: Pr(l._E) =TI
+1))=2/(n%-n)
The probability of discovering a particular min-cut is larger than 2/n?

Repeat the above algorithm n2/2 times. The probability that a min-cut is not found is
(1-2/n2)m2/2 < 1 /e

(1-2/(n-i

i=1...n-2



Multiway cut
(analogue of s-t cut)

- Problem: Given a set of terminals S = {s,,...,s}

subset of V, a multiway cut is a set of edges whose
removal disconnects the terminals from each other.
The multiway cut problem asks for the minimum

weight such set.

 The multiway cut problem is NP-hard (for k>2)



Algorithm for multiway cut

For each i=1,...,k, compute the minimum weight
isolating cut for s, say C

Discard the heaviest of these cuts and output
the union of the rest, say C

Isolating cut for s.: The set of edges whose
removal disconnects s, from the rest of the
terminals

How can we find a minimum-weight isolating
cut?

— Can we do it with a single s-t cut computation?



Approximation result

* The previous algorithm achieves an
approximation guarantee of 2-2/k

* Proof



Minimum k-cut

* A set of edges whose removal leaves k
connected components is called a k-cut.
The minimum k-cut problem asks for a
minimum-weight k-cut

* Recursively compute cuts in G (and the
resulting connected components) until
there are k components left

* Thisis a (2-2/k)-approximation
algorithm



Minimum k-cut algorithm

 Compute the Gomory-Hu tree T for G

* Output the union of the lightest k-1
cuts of the n-1 cuts associated with
edges of T in G; let C be this union

* The above algorithm is a (2-2/k)-
approximation algorithm



Gomory-Hu Tree

T is a tree with vertex set V
The edges of T need not be in E

Let e be an edge in T; its removal from T
creates two connected components with
vertex sets (S,S’)

he cut in G defined by partition (S,S’) is
the cut associated with e in G



Gomory-Hu tree

* Tree T is said to be the Gomory-Hu
tree for G if
— For each pair of vertices u,v in V, the

weight of a minimum u-v cut in G is the
same as thatin T

— For each edge e in T, w'(e) is the weight
of the cut associated with e in G



Min-cuts again

« What does it mean that a set of nodes are well or
sparsely interconnected?

: the min number of edges such that when
removed cause the graph to become disconnected
— small min-cut implies sparse connectivity
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Measuring connectivity

What does it mean that a set of nodes are well
interconnected?

min-cut: the min number of edges such that when

removed cause the graph to become disconnected
— not always a good idea!




Graph expansion

 Normalize the cut by the size of the smallest

compone.nt - BE(U.V\U)
- min{|U[, [V \ U}
a(G) = min EWU,V\U)

v min{|U|, [V \U|}
* We will now see how the graph expansion

relates to the eigenvalue of the adjacency
matrix A



Spectral analysis

* The Laplacian matrix L = D - A where

— A = the adjacency matrix
— D = diag(d,,d,,...,d,)

- d. = degree of node |

* Therefore
—L(Gi,i) = d,
—LG,j) = -1, if there is an edge (i,j)



Laplacian Matrix properties

* The matrix L is and

— all eigenvalues of L are positive

 The matrix L has 0 as an eigenvalue,
and corresponding eigenvector w, =

(1,1,...,1)
—A; = 0 is the smallest eigenvalue



The second smallest
eigenvalue

* The second smallest eigenvalue (also
known as ) A, satisfies

Ao = min  z! Lx
|x||=1,x Lw

» The vector that minimizes A, is called
the It minimizes

> iinep (@i — ;)
Ao = gcn;g (])EEE::E 2 where Z%—O




Spectral ordering

The values of x minimize

min Z(% J)EE Z x; =0

x#0
For weighted matrlces

> gy Alds gl (@i — 5)? ZZU@—O
min

x#0 Zl LU,L

The ordering according to the x. values will group
similar (connected) nodes together

Physical interpretation: The stable state of springs
placed on the edges of the graph



Spectral partition

Partition the nodes according to the ordering
induced by the Fielder vector

If u = (u;,u,,...,u.) is the Fielder vector, then

split nodes according to a value

— bisection: s is the median value in u

— ratio cut: s is the value that minimizes «

— sign: separate positive and negative values ( )

— gap: separate according to the largest gap in the
values of u

This works well (provably for special cases)



Fielder Value

« The value A, is a good approximation of the graph expansion

d = maximum degree

— << Oz(G) < \/)\Q(Qd— )\2)

 If the max degree d is bounded we obtain a good
approximation of the minimum expansion cut



Conductance

 The expansion does not capture the
inter-cluster similarity well

— The nodes with high degree are more
Important

EU,V\U)
v min{d(U),d(V —U)}

o(G) = mln

weighted degrees of nodes in U

eU gelU



Conductance and random
walks

Consider the normalized stochastic matrix M = D-1A
The conductance of the Markov Chain M is

. D icu ngU m(4) Mz, j]
AM) = min (). 2 (V\ T}

— the probability that the random walk escapes set U

The conductance of the graph is the same as that of
the Markov Chain, @(G) = (M)

Conductance o is related to the second eigenvalue
of the matrix M



Interpretation of conductance

 Low conductance means that there is
some in the graph

— a subset of nodes not well connected with
the rest of the graph.

» High conductance means that the
graph is well connected



Clustering Conductance

* The conductance of a clustering is
defined as the maximum conductance
over all clusters in the clustering.

* Minimizing the conductance of
clustering seems like a natural choice



A spectral algorithm

Create matrix M = D-1A
Find the second largest eigenvector v

Find the best ratio-cut (minimum
conductance cut) with respect to v

Recurse on the pieces induced by the

CuUt.

The algorithm has provable guarantees




A divide and merge
methodology

phase:

— Recursively partition the input into two
pieces until singletons are produced

— output: a tree hierarchy
* Merge phase:

— use dynamic programming to merge the
leafs in order to produce a tree-respecting
flat clustering



Merge phase or dynamic-
progamming on trees

 The merge phase finds the optimal

clustering in the tree T produced by
the divide phase

* k-means objective with cluster centers
Cqy.nryCpl

F{Cr,....Ce}) Y > d(u,c;)?

1 ued;



Dynamic programming on
trees
* OPT(C,i): optimal clustering for C
using i clusters

- C,, C_the left and the right children of
hode C

* Dynamic-programming recurrence
C,wheni=1

OPT(C,i) = . .
(C.0) {arg min,_._. F(OPT(C,, j)UOPT(C,,i- j)), otherwise



