
Graph Clustering



Outline
• Min s-t cut problem
• Min cut problem
• Multiway cut
• Minimum k-cut
• Other normalized cuts and spectral 

graph partitionings



Min s-t cut
• Weighted graph G(V,E)

• An s-t cut C = (S,T) of a graph G = (V, E) 
is a cut partition of V into S and T such 
that s∈S and t∈T

• Cost of a cut: Cost(C) = Σe(u,v) uЄS, v ЄT w(e)

• Problem: Given G, s and t find the 
minimum cost s-t cut



Max flow problem
• Flow network
– Abstraction for material flowing through 

the edges
– G = (V,E) directed graph with no parallel 

edges
– Two distinguished nodes: s = source, t= 

sink
– c(e) =  capacity of edge e



Cuts
• An s-t cut is a partition (S,T) of V with sЄS 

and tЄT

• capacity of a cut (S,T) is                     
cap(S,T) = Σe out of Sc(e)

• Find s-t cut with the minimum capacity: this 
problem can be solved optimally in 
polynomial time by using flow techniques



Flows
• An s-t flow is a function that satisfies
– For each eЄE 0≤f(e) ≤c(e) [capacity]
– For each vЄV-{s,t}:                                 
Σe in to vf(e) = Σe out of vf(e) [conservation]

• The value of a flow f is:                     
v(f) = Σe out of s f(e) 



Max flow problem
• Find s-t flow of maximum value



Flows and cuts
• Flow value lemma: Let f be any flow 

and let (S,T) be any s-t cut. Then, the 
net flow sent across the cut is equal to 
the amount leaving s


 
 Σe out of S f(e) – Σe in to S f(e) = v(f) 



Flows and cuts
• Weak duality: Let f be any flow and let 

(S,T) be any s-t cut. Then the value of 
the flow is at most the capacity of the 
cut defined by (S,T):


 
 
 
 v(f) ≤cap(S,T)



Certificate of optimality
• Let f be any flow and let (S,T) be any 

cut. If v(f) = cap(S,T) then f is a max 
flow and (S,T) is a min cut.

• The min-cut max-flow  problems can 
be solved optimally in polynomial time!



Setting
• Connected, undirected graph G=(V,E)

• Assignment of weights to edges: w: ER+

• Cut: Partition of V into two sets: V’, V-V’. The set 
of edges with one end point in V and the other in 
V’ define the cut

• The removal of the cut disconnects G

• Cost of a cut: sum of the weights of the edges 
that have one of their end point in V’ and the 
other in V-V’



Min cut problem
• Can we solve the min-cut problem 

using an algorithm for s-t cut?



Randomized min-cut 
algorithm

• Repeat : pick an edge uniformly at random and 
merge the two vertices at its end-points

– If as a result there are several edges between some 
pairs of (newly-formed) vertices retain them all

– Edges between vertices that are merged are removed 
(no self-loops)

• Until only two vertices remain

• The set of edges between these two vertices is a 
cut in G and is output as a candidate min-cut



Example of contraction

e



Observations on the 
algorithm

• Every cut in the graph at any 
intermediate stage is a cut in the 
original graph



Analysis of the algorithm
• C the min-cut of size k  G has at least kn/2 edges

– Why?
• E

i
:  the event of not picking an edge of C at the i-th step for 1≤i ≤n-2

• Step 1: 
– Probability that the edge randomly chosen is in C is at most 2k/(kn)=2/n  Pr(E1) 

≥ 1-2/n
• Step 2:

– If E1 occurs, then there are at least k(n-1)/2 edges remaining

– The probability of picking one from C is at most 2/(n-1)  Pr(E2|E1) = 1 – 2/(n-1)

• Step i:
– Number of remaining vertices: n-i+1
– Number of remaining edges: k(n-i+1)/2 (since we never picked an edge from the 

cut)
– Pr(Ei|Πj=1…i-1 Ej) ≥ 1 – 2/(n-i+1)

– Probability that no edge in C is ever picked: Pr(Πi=1…n-2 Ei) ≥ Πi=1…n-2(1-2/(n-i
+1))=2/(n2-n)

• The probability of discovering a particular min-cut is larger than 2/n2

• Repeat the above algorithm n2/2 times. The probability that a min-cut is not found is 
(1-2/n2)n^2/2 < 1/e



Multiway cut 
(analogue of s-t cut)

• Problem: Given a set of terminals S = {s1,…,sk} 
subset of V, a multiway cut is a set of edges whose 
removal disconnects the terminals from each other. 
The multiway cut problem asks for the minimum 
weight such set.

• The multiway cut problem is NP-hard (for k>2)



Algorithm for multiway cut
• For each i=1,…,k, compute the minimum weight 

isolating cut for si, say Ci

• Discard the heaviest of these cuts and output 
the union of the rest, say C

• Isolating cut for si:  The set of edges whose 
removal disconnects si from the rest of the 
terminals

• How can we find a minimum-weight isolating 
cut?
– Can we do it with a single s-t cut computation?



Approximation result
• The previous algorithm achieves an 

approximation guarantee of 2-2/k

• Proof



Minimum k-cut 
• A set of edges whose removal leaves k 

connected components is called a k-cut. 
The minimum k-cut problem asks for a 
minimum-weight k-cut

• Recursively compute cuts in G (and the 
resulting connected components) until 
there are k components left

• This is a (2-2/k)-approximation 
algorithm



Minimum k-cut algorithm
• Compute the Gomory-Hu  tree T for G

• Output the union of the lightest k-1 
cuts of the n-1 cuts associated with 
edges of T in G; let C be this union

• The above algorithm is a (2-2/k)-
approximation algorithm



Gomory-Hu Tree
• T is a tree with vertex set V

• The edges of T need not be in E

• Let e be an edge in T; its removal from T 
creates two connected components with 
vertex sets (S,S’)

• The cut in G defined by partition (S,S’) is 
the cut associated with e in G



Gomory-Hu tree
• Tree T is said to be the Gomory-Hu 

tree for G if
– For each pair of vertices u,v in V, the 

weight of a minimum u-v cut in G is the 
same as that in T

– For each edge e in T, w’(e) is the weight 
of the cut associated with e in G



Min-cuts again
• What does it mean that a set of nodes are well or 

sparsely interconnected?

• min-cut: the min number of edges such that when 
removed cause the graph to become disconnected
– small min-cut implies sparse connectivity
–  

U V-U

min
U

E(U, V \ U) =
X

i2U

X

j2V \U

A[i, j]



Measuring connectivity
• What does it mean that a set of nodes are well 

interconnected?

• min-cut: the min number of edges such that when 
removed cause the graph to become disconnected
– not always a good idea!

U UV-U V-U



Graph expansion
• Normalize the cut by the size of the smallest 

component
• Cut ratio:

• Graph expansion:

• We will now see how the graph expansion 
relates to the eigenvalue of the adjacency 
matrix A

↵ =
E(U, V \ U)

min{|U |, |V \ U |}

↵(G) = min
U

E(U, V \ U)

min{|U |, |V \ U |}



Spectral analysis
• The Laplacian matrix L = D – A where
– A = the adjacency matrix
– D = diag(d1,d2,…,dn)
• di = degree of node i

• Therefore
– L(i,i) = di

– L(i,j) = -1, if there is an edge (i,j)



Laplacian Matrix properties
• The matrix L is symmetric and positive 

semi-definite
– all eigenvalues of L are positive

• The matrix L has 0 as an eigenvalue, 
and corresponding eigenvector w1 = 
(1,1,…,1)
– λ1 = 0 is the smallest eigenvalue



The second smallest 
eigenvalue

• The second smallest eigenvalue (also 
known as Fielder value) λ2 satisfies

• The vector that minimizes λ2 is called 
the Fielder vector. It minimizes 

where 
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Spectral ordering
• The values of x minimize

• For weighted matrices

• The ordering according to the xi values will group 
similar (connected) nodes together

• Physical interpretation: The stable state of springs 
placed on the edges of the graph  
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Spectral partition
• Partition the nodes according to the ordering 

induced by the Fielder vector
• If u = (u1,u2,…,un) is the Fielder vector, then 

split nodes according to a value s
– bisection: s is the median value in u
– ratio cut: s is the value that minimizes α
– sign: separate positive and negative values (s=0)
– gap: separate according to the largest gap in the 

values of u
• This works well (provably for special cases)



Fielder Value
• The value λ2 is a good approximation of the graph expansion

• If the max degree d is bounded we obtain a good 
approximation of the minimum expansion cut

d = maximum degree
↵(G)2

2d
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Conductance

• The expansion does not capture the 
inter-cluster similarity well
– The nodes with high degree are more 

important
• Graph Conductance

–  weighted degrees of nodes in U

�(G) = min
U

E(U, V \ U)

min{d(U), d(V � U)}

d(U) =
X

i2U

X

j2U

A[i, j]
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Conductance and random 
walks

• Consider the normalized stochastic matrix M = D-1A
• The conductance of the Markov Chain M is

– the probability that the random walk escapes set U 

• The conductance of the graph is the same as that of 
the Markov Chain, φ(G) = φ(M) 

• Conductance φ is related to the second eigenvalue 
of the matrix M

�(M) = min
U

P
i2U

P
j /2U ⇡(i)M [i, j]

min{⇡(U),⇡(V \ U)}



Interpretation of conductance
• Low conductance means that there is 

some bottleneck in the graph
– a subset of nodes not well connected with 

the rest of the graph.

• High conductance means that the 
graph is well connected



Clustering Conductance
• The conductance of a clustering is 

defined as the maximum conductance 
over all clusters in the clustering.

• Minimizing the conductance of 
clustering seems like a natural choice



A spectral algorithm

• Create matrix M = D-1A
• Find the second largest eigenvector v
• Find the best ratio-cut (minimum 

conductance cut) with respect to v
• Recurse on the pieces induced by the 

cut.

• The algorithm has provable guarantees



A divide and merge 
methodology

• Divide phase:
– Recursively partition the input into two 

pieces until singletons are produced
– output: a tree hierarchy

• Merge phase:
– use dynamic programming to merge the 

leafs in order to produce a tree-respecting 
flat clustering



Merge phase or dynamic-
progamming on trees

• The merge phase finds the optimal 
clustering in the tree T produced by 
the divide phase

• k-means objective with cluster centers 
c1,…,ck: 

F ({C1, . . . , Ck})
X

i

X

u2Ci

d(u, ci)
2



Dynamic programming on 
trees

• OPT(C,i): optimal clustering for C 
using i clusters

• Cl, Cr the left and the right children of 
node C

• Dynamic-programming recurrence


