Basics of network analysis
and network models



Measuring Networks

Degree distributions
Small world phenomena
Clustering Coefficient
Mixing patterns

Degree correlations
Communities and clusters



Degree distributions

frequency f, = fraction of nodes with degree
k
= probability of a randomly
S ’ selected node to have degree
! .
k degree

* Problem: find the probability distribution that best
fits the observed data



Power-law distributions

The degree distributions of most real-life networks follow a
power [aw
p(k) = Ck-

Right-skewed/Heavy-tail distribution

— there is a non-negligible fraction of nodes that has very high
degree (hubs)

— scale-free: no characteristic scale, average is not informative

In stark contrast with the random graph model!
— Poisson degree distribution, z=np

Zk

mw=ﬂha=ﬁe4

— highly concentrated around the mean
— the probability of very high degree nodes is exponentially small



Power-law signature

« Power-law distribution gives a line in the log-
log plot

log p(k) = - logk + IggC

A

frequency log frequency o

degree log degree

* a: power-law exponent (typically 2 < a < 3)
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Taken from [Newman 2003]



Exponential distribution

« Observed in some technological or collaboration
networks

p(k) = Ae-Ak
« |dentified by a line in the log-linear plot

log p(k) = - Ak + log A
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The basic random graph model

« The measurements on real networks are usually
compared against those on “random networks”

- The basic G, , (Erd0s-Renyi) random graph
model:

— n : the number of vertices
- 0<px1l

— for each pair (i,j), generate the edge (i,))
independently with probability p
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Average/Expected degree

* For random graphs z = np

* For power-law distributed degree
—if x = 2, it is a constant
—if o < 2, it diverges



Maximum degree

* For random graphs, the maximum degree is
highly concentrated around the average
degree

* For power law graphs
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Clustering (Transitivity) coefficient

* Measures the density of triangles (local
clusters) in the graph

* Two different ways to measure it:

E triangles centered at node i

cl _
E triples centered at node |

* The ratio of the means
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Clustering (Transitivity) coefficient

» Clustering coefficient for node i

C _ triangles centered at node i
triples centered at node |

co_Lc
N

* The mean of the ratios
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* The two clustering coefficients give different
measures

* C@ jncreases with nodes with low degree



Clustering coefficient for random graphs

* The probability of two of your neighbors also being
neighbors is p, independent of local structure
— clustering coefficient C = p
— when z is fixed C = z/n =0(1/n)

Table 1: Clustering coefficients, C, for a number of different networks; n is
the number of node, z is the mean degree. Taken from [146].

Network n 2 C C for
| I‘ measured | random graph
Internet [153) I 6374 3.8 0.24 0.00060
World Wide Web (sites) [2] 153,127 35.2 0.11 0.00023
" power grid [192) 4,941 27 0.080 0.00054
biology collaborations [140] 1,520,251 | 15.5 0.081 0.000010
mathematics collaborations [141] || 253,339 3.9 0.15 0.000015
' film actor collaborations [149] 449,913 | 1134 0.20 0.00025
company directors [149] 7.673 14.4 0.59 0.0019
word co-occurrence [90) 460,902 | 70.1 0.44 0.00015
' neural network [192] 282 14.0 0.28 0.049
metabolic network [69) 315 28.3 0.59 0.090
food web [138] 134 8.7 0.22 0.065




The C(k) distribution

 The C(k) distribution is supposed to capture the
hierarchical nature of the network

C(k) -

— when constant: no hierarchy
— when power-law: hierarchy

10 !

C(k) = average clustering coefficient C, '
of nodes with degree k g L

k degree



The small-world experiment

Milgram 1967
Picked 300 people at random from Nebraska

Asked them to get the letter to a stockbroker in
Boston - they could bypass the letter through
friends they knew on a first-name basis

How many steps does it take?

— Six degrees of separation: (play of John Guare)



Six Degrees of Kevin Bacon

Bacon number:
— Create a network of Hollywood actors

— Connect two actors if they co-appeared in
movie

— Bacon number: number of steps to Kevin Bacon

As of Dec 2007, the highest (finite) Bacon
number reported is 8

Only approx 12% of all actors cannot be
linked to Bacon

What is the Bacon number of Elvis Prisley?
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Frdos numbers?




The small-world experiment

* 64 chains completed

— 6.2 average chain length (thus “six
degrees of separation”)

 Further observations

— People that owned the stock had shortest
naths to the stockbroker than random
neople

— People from Boston area have even closer
naths




Measuring the small world phenomenon

= shortest path between i and

Diameter:

d-maxd
]

Characteristic path length:
1

“n(n-1)/2 zd”

Harmonic mean

n(n 1)/2;
Also, distribution of all shortest paths



Is the path length enough?

 Random graphs have diameter

_logn

d =
logz

when

* Short paths should be combined with other
properties
— ease of navigation
— high clustering coefficient



Degree correlations

* Do high degree nodes tend to link to high degree
nodes?

 Pastor Satoras et al.

— plot the mean degree of the neighbors as a function of the
degree

Fic, 3.13. Correlations of the degrees of nearest-neighbour vertices (au
tonomous systems) in the Internet at the interdomain level (after Pas-
tor-Satorras, Vazquez, and Vespignani 2001). The empirical dependence of
the average degree of the nearest neighbours of a vertex on the degree of this
vertex is shown in a log-log scale. This empirical dependence was fitted by a

ower law with exponent approximately 0.5,
}



Connected components

* For undirected graphs, the size and
distribution of the connected
components

—is there a giant component?

* For directed graphs, the size and
distribution of strongly and weakly
connected components



Generative models of graphs



What is a network model?

* Informally, a network model is a process
(randomized or deterministic) for generating
a graph
* Models of static graphs
— input: a set of parameters [1, and the size of the
graph n
— output: a graph G(I1,n)
* Models of evolving graphs
— input: a set of parameters [1, and an initial graph
GO
— output: a graph G, for each time t



Erdos-Renyi Random graphs

Paul Erdos (1913-1996)




Erdos-Renyi Random Graphs

» The G, , model

— input: the number of vertices n, and a
parameter p, 0 <= p = 1

— process: for each pair (i,j), generate the
edge (i,j) independently with probability p

- Related, but not identical: The G

model

— process: select m edges uniformly at
random



The giant component

Let z=np be the average degree

If z < 1, then almost surely, the largest
component has size at most

if z > 1, then almost surely, the largest
component has size O(n). The second
largest component has size O(ln n)

if z =w(ln n), then the graph is almost
surely connected.



The phase transition

* When z=1, there is a phase transition
— The largest component is O(n?/3)

— The sizes of the components follow a
power-law distribution.



Random graphs degree distributions

* The degree distribution follows a binomial
n _
p(k) = (k>pk(1 —p)" "

« Assuming z=np is fixed, as n—oo, p(k) is
approximated by a Poisson distribution

k

mm=wma=%e4

* Highly concentrated around the mean, with a
tail that drops exponentially
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Random graphs and real life

* A beautiful and elegant theory studied
exhaustively

« Random graphs had been used as
idealized network models

» Unfortunately, they don’t capture
reality...



Departing from the Random
Graph model

 We need models that better capture
the characteristics of real graphs
—degree sequences
— clustering coefficient
— short paths



How can we generate data with
power-law dedgree distributions?



Preferential Attachment in Networks

* First considered by [Price 65] as a model for

citation networks

— each new paper is generated with m citations
(mean)

— new papers cite previous papers with probability
proportional to their indegree (citations)

— what about papers without any citations?

« each paper is considered to have a “default” citation

« probability of citing a paper with degree k, proportional
to k+1

* Power law with exponenta=2+1/m



Barabasi-Albert model

 The BA model (undirected graph)

— input: some initial subgraph G, and m the number
of edges per new node

— the process:
* nodes arrive one at the time

« each node connects to m other nodes selecting them with
probability proportional to their degree

. if [d,,...,d,] is the degree sequence at time t, the node t+1
links to node i with probability

d d

d " 2mt
* Results in power-law with exponent a = 3




Small world Phenomena

« So far we focused on obtaining graphs
with power-law distributions on the
degrees. What about other properties?

— Clustering coefficient: real-life networks
tend to have high clustering coefficient

— Short paths: real-life networks are “small
worlds”
* this property is easy to generate

— Can we combine these two properties?



Small-world Graphs

» According to Watts [W99]

— Large networks (n >> 1)
— Sparse connectivity (avg degree z << n)
— No central node (k << n)

MaxX

— Large clustering coefficient (larger than in
random graphs of same size)

— Short average paths (~log n, close to those
of random graphs of the same size)



Watts and Strogatz model [WS98]

« Start with a ring, where every node is connected to
the next z nodes

« With probability p, rewire every edge (or, add a
shortcut) to a uniformly chosen destination.
— Granovetter, “The strength of weak ties”
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Watts and Strogatz model [WS98]

« Start with a ring, where every node is connected to
the next z nodes

« With probability p, rewire every edge (or, add a
shortcut) to a uniformly chosen destination.
— Granovetter, “The strength of weak ties”
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Clustering Coefficient - Characteristic

08

06

04

0.2

0.0001

Path Length

- B B - i BN - ER e

°
-

-

5 Cip)|/ C(0)

L(p)/ L(O) *

1 1 PR ST |

(=)

- ® 0O

0.001 001

When p = 0, C = 3(k-2)/4(k-1) ~ 34
L =n/k

log-scale in p

For small p, C ~ 34

L ~ logn



