
Basics of network analysis 
and network models



Measuring Networks
• Degree distributions
• Small world phenomena
• Clustering Coefficient
• Mixing patterns
• Degree correlations
• Communities and clusters



Degree distributions

• Problem: find the probability distribution that best 
fits the observed data
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Power-law distributions
• The degree distributions of most real-life networks follow a 

power law

• Right-skewed/Heavy-tail distribution
– there is a non-negligible fraction of nodes that has very high 

degree (hubs)
– scale-free: no characteristic scale, average is not informative

• In stark contrast with the random graph model!
– Poisson degree distribution, z=np

– highly concentrated around the mean
– the probability of very high degree nodes is exponentially small

p(k) = Ck-α



Power-law signature
• Power-law distribution gives a line in the log-

log plot

• α : power-law exponent (typically 2 ≤ α ≤ 3)
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log degree

log frequency α

log p(k) = -α logk + logC



Examples

Taken from [Newman 2003]



Exponential distribution
• Observed in some technological or collaboration 

networks

• Identified by a line in the log-linear plot
p(k) = λe-λk

log p(k) = - λk + log λ

degree

log frequency λ



The basic random graph model
• The measurements on real networks are usually 

compared against those on “random networks”

• The basic Gn,p (Erdös-Renyi) random graph 
model:
– n : the number of vertices
– 0 ≤ p ≤ 1
– for each pair (i,j), generate the edge (i,j) 

independently with probability p



A random graph example



Average/Expected degree
• For random graphs z = np

• For power-law distributed degree

– if α ≥ 2, it is a constant
– if α < 2, it diverges 



Maximum degree
• For random graphs, the maximum degree is 

highly concentrated around the average 
degree z

• For power law graphs



Clustering (Transitivity) coefficient

• Measures the density of triangles (local 
clusters) in the graph

• Two different ways to measure it:

• The ratio of the means
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Clustering (Transitivity) coefficient

• Clustering coefficient for node i

• The mean of the ratios



Example

• The two clustering coefficients give different 
measures 

• C(2) increases with nodes with low degree
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Clustering coefficient for random graphs

• The probability of two of your neighbors also being 
neighbors is p, independent of local structure
– clustering coefficient C = p
– when z is fixed C = z/n =O(1/n)



The C(k) distribution
• The C(k) distribution is supposed to capture the 

hierarchical nature of the network
– when constant: no hierarchy
– when power-law: hierarchy

degreek

C(k)

C(k) = average clustering coefficient
of nodes with degree k



The small-world experiment
• Milgram 1967
• Picked 300 people at random from Nebraska
• Asked them to get the letter to a stockbroker in 

Boston – they could bypass the letter through 
friends they knew on a first-name basis

• How many steps does it take?
– Six degrees of separation: (play of John Guare)



Six Degrees of Kevin Bacon
• Bacon number:

– Create a network of Hollywood actors
– Connect two actors if they co-appeared in some 

movie
– Bacon number: number of steps to Kevin Bacon

• As of Dec 2007, the highest (finite) Bacon 
number reported is 8

• Only approx 12% of all actors cannot be 
linked to Bacon

• What is the Bacon number of Elvis Prisley?



Erdos numbers?



The small-world experiment
• 64 chains completed

– 6.2 average chain length (thus “six 
degrees of separation”)

• Further observations
– People that owned the stock had shortest 

paths to the stockbroker than random 
people

– People from Boston area have even closer 
paths



Measuring the small world phenomenon

• dij = shortest path between i and j
• Diameter:

• Characteristic path length:

• Harmonic mean

• Also, distribution of all shortest paths



Is the path length enough?
• Random graphs have diameter

• d=logn/loglogn when z=ω(logn)

• Short paths should be combined with other 
properties
– ease of navigation
– high clustering coefficient



Degree correlations
• Do high degree nodes tend to link to high degree 

nodes?
• Pastor Satoras et al.

– plot the mean degree of the neighbors as a function of the 
degree



Connected components
• For undirected graphs, the size and 

distribution of the connected 
components
– is there a giant component?

• For directed graphs, the size and 
distribution of strongly and weakly 
connected components



Generative models of graphs



What is a network model?
• Informally, a network model is a process 

(randomized or deterministic) for generating 
a graph

• Models of static graphs
– input: a set of parameters Π, and the size of the 

graph n
– output: a graph G(Π,n) 

• Models of evolving graphs
– input: a set of parameters Π, and an initial graph 

G0

– output: a graph Gt for each time t



Erdös-Renyi Random graphs

Paul Erdös (1913-1996)



Erdös-Renyi Random Graphs
• The Gn,p model

– input: the number of vertices n, and a 
parameter p, 0 ≤ p ≤ 1

– process: for each pair (i,j), generate the 
edge (i,j) independently with probability p

• Related, but not identical: The Gn,m 
model
– process: select m edges uniformly at 

random



The giant component
• Let z=np be the average degree
• If z < 1, then almost surely, the largest 

component has size at most O(ln n)
• if z > 1, then almost surely, the largest 

component has size Θ(n). The second 
largest component has size O(ln n)

• if z =ω(ln n), then the graph is almost 
surely connected.



The phase transition
• When z=1, there is a phase transition

– The largest component is O(n2/3)
– The sizes of the components follow a 

power-law distribution.



Random graphs degree distributions

• The degree distribution follows a binomial

• Assuming z=np is fixed, as n→∞, p(k) is 
approximated by a Poisson distribution

• Highly concentrated around the mean, with a 
tail that drops exponentially

p(k) =
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k
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pk(1� p)n�k



A random graph degree 
distribution



Random graphs and real life
• A beautiful and elegant theory studied 

exhaustively

• Random graphs had been used as 
idealized network models

• Unfortunately, they don’t capture 
reality…



Departing from the Random 
Graph model

• We need models that better capture 
the characteristics of real graphs
– degree sequences
– clustering coefficient
– short paths



How can we generate data with 
power-law degree distributions?



Preferential Attachment in Networks

• First considered by [Price 65] as a model for 
citation networks
– each new paper is generated with m citations 

(mean)
– new papers cite previous papers with probability 

proportional to their indegree (citations)
– what about papers without any citations?

• each paper is considered to have a “default” citation
• probability of citing a paper with degree k, proportional 

to k+1

• Power law with exponent α = 2+1/m



Barabasi-Albert model
• The BA model (undirected graph)

– input: some initial subgraph G0, and m the number 
of edges per new node

– the process: 
• nodes arrive one at the time
• each node connects to m other nodes selecting them with 

probability proportional to their degree
• if [d1,…,dt] is the degree sequence at time t, the node t+1 

links to node i with probability

• Results in power-law with exponent α = 3



Small world Phenomena
• So far we focused on obtaining graphs 

with power-law distributions on the 
degrees. What about other properties?
– Clustering coefficient: real-life networks 

tend to have high clustering coefficient
– Short paths: real-life networks are “small 

worlds”
• this property is easy to generate

– Can we combine these two properties?



Small-world Graphs
• According to Watts [W99]

– Large networks (n >> 1)
– Sparse connectivity (avg degree z << n)
– No central node (kmax << n)
– Large clustering coefficient (larger than in 

random graphs of same size)
– Short average paths (~log n, close to those 

of random graphs of the same size)



Watts and Strogatz model [WS98]

• Start with a ring, where every node is connected to 
the next z nodes

• With probability p, rewire every edge (or, add a 
shortcut) to a uniformly chosen destination.
– Granovetter, “The strength of weak ties”

order randomness

p = 0 p = 10 < p < 1
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Clustering Coefficient – Characteristic 
Path Length

log-scale in p

When p = 0, C = 3(k-2)/4(k-1) ~ ¾

         L = n/k

For small p, C ~ ¾

        L ~ logn


