Lecture outline

- Classification
- Naïve Bayes classifier
Bayes Theorem

- \(X, Y \) random variables
- Joint probability: \(\Pr(X=x, Y=y) \)
- Conditional probability: \(\Pr(Y=y \mid X=x) \)
- Relationship between joint and conditional probability distributions

\[
\Pr(X, Y) = \Pr(X \mid Y) \times \Pr(Y) = \Pr(Y \mid X) \times \Pr(X)
\]

- **Bayes Theorem:**

\[
\Pr(Y \mid X) = \frac{\Pr(X \mid Y) \Pr(Y)}{\Pr(X)}
\]
Bayes Theorem for Classification

- **X**: attribute set
- **Y**: class variable
- **Y** depends on **X** in a **non-deterministic** way
- We can capture this dependence using
 \[\text{Pr}(Y|X) \]: Posterior probability
 vs
 \[\text{Pr}(Y) \]: Prior probability
Building the Classifier

• Training phase:
 – Learning the posterior probabilities $\text{Pr}(Y|X)$ for every combination of X and Y based on training data

• Test phase:
 – For test record X', compute the class Y' that maximizes the posterior probability $\text{Pr}(Y'|X')$
Bayes Classification: Example

Figure 4.6. Training set for predicting borrowers who will default on loan payments.

\[X' = (\text{Home Owner}=\text{No}, \text{Marital Status}=\text{Married}, \text{Annual Income}=120K) \]

Compute: \(\Pr(\text{Yes}|X') \), \(\Pr(\text{No}|X') \) pick No or Yes with max Prob.

How can we compute these probabilities??
Computing posterior probabilities

• Bayes Theorem

\[\Pr(Y \mid X) = \frac{\Pr(X \mid Y) \Pr(Y)}{\Pr(X)} \]

• \(\Pr(X) \) is constant and can be ignored
• \(\Pr(Y) \): estimated from training data; compute the fraction of training records in each class
• \(\Pr(X \mid Y) \)?
Naïve Bayes Classifier

\[\Pr(X \mid Y = y) = \prod_{i=1}^{d} \Pr(X_i \mid Y = y) \]

• Attribute set \(X = \{X_1, \ldots, X_d\} \) consists of \(d \) attributes

• Conditional independence:
 – \(X \) conditionally independent of \(Y \), given \(X \): \(\Pr(X \mid Y, Z) = \Pr(X \mid Z) \)
 – \(\Pr(X, Y \mid Z) = \Pr(X \mid Z) \times \Pr(Y \mid Z) \)
Naïve Bayes Classifier

\[\Pr(X|Y = y) = \prod_{i=1}^{d} \Pr(X_i|Y = y) \]

- Attribute set \(X = \{X_1, \ldots, X_d\} \) consists of \(d \) attributes

\[\Pr(X|Y) = \frac{\Pr(Y) \prod_{i=1}^{d} \Pr(X_i|Y)}{\Pr(X)} \]
Conditional probabilities for categorical attributes

- Categorical attribute X_i
- $\Pr(X_i = x_i|Y=y)$: fraction of training instances in class y that take value x_i on the i-th attribute

Pr(homeOwner=yes|No) = $\frac{3}{7}$
Pr(MaritalStatus=Single|Yes) = $\frac{2}{3}$
Estimating conditional probabilities for continuous attributes?

- Discretization?
- How can we discretize?
Naïve Bayes Classifier: Example

- $X' = (\text{HomeOwner}=\text{No}, \text{MaritalStatus}=\text{Married}, \text{Income}=120\text{K})$
- Need to compute $\Pr(Y|X')$ or $\Pr(Y) \times \Pr(X'|Y)$
- But $\Pr(X'|Y)$ is
 - $Y = \text{No}$:
 - $\Pr(\text{HO}=\text{No}|\text{No}) \times \Pr(\text{MS}=\text{Married}|\text{No}) \times \Pr(\text{Inc}=120\text{K}|\text{No}) = \frac{4}{7} \times \frac{4}{7} \times 0.0072 = 0.0024$
 - $Y=\text{Yes}$:
 - $\Pr(\text{HO}=\text{No}|\text{Yes}) \times \Pr(\text{MS}=\text{Married}|\text{Yes}) \times \Pr(\text{Inc}=120\text{K}|\text{Yes}) = 1 \times 0 \times 1.2 \times 10^{-9} = 0$
Naïve Bayes Classifier: Example

- \(X' = (\text{HomeOwner} = \text{No}, \text{MaritalStatus} = \text{Married}, \text{Income}=120\text{K})\)
- Need to compute \(\Pr(Y|X')\) or \(\Pr(Y) \times \Pr(X'|Y)\)
- But \(\Pr(X'|Y = \text{Yes})\) is 0?
- Correction process:

\[
\Pr(X_i = x_i \mid Y = y_j) = \frac{n_c + mp}{n + m}
\]

- \(n_c\): number of training examples from class \(y_j\) that take value \(x_i\)
- \(n\): total number of instances from class \(y_j\)
- \(m\): equivalent sample size (balance between prior and posterior)
- \(p\): user-specified parameter (prior probability)
Characteristics of Naïve Bayes Classifier

• Robust to isolated noise points
 – noise points are averaged out
• Handles missing values
 – Ignoring missing-value examples
• Robust to irrelevant attributes
 – If X_i is irrelevant, $P(X_i|Y)$ becomes almost uniform
• Correlated attributes degrade the performance of NB classifier