Lecture outline

- Classification
- Naïve Bayes classifier

•

Bayes Theorem

- X, Y random variables
- Joint probability: Pr(X=x,Y=y)
- Conditional probability: Pr(Y=y | X=x)
- Relationship between joint and conditional probability distributions

$$Pr(X, Y) = Pr(X \mid Y) \times Pr(Y) = Pr(Y \mid X) \times Pr(X)$$

Bayes Theorem:

$$Pr(Y \mid X) = \frac{Pr(X \mid Y) Pr(Y)}{Pr(X)}$$

Bayes Theorem for Classification

- X: attribute set
- Y: class variable
- Y depends on X in a nondetermininstic way
- · We can capture this dependence using

Pr(Y|X) : Posterior probability

VS

Pr(Y): Prior probability

Building the Classifier

Training phase:

 Learning the posterior probabilities Pr(Y|X) for every combination of X and Y based on training data

Test phase:

 For test record X', compute the class Y' that maximizes the posterior probability Pr(Y'|X')

Bayes Classification: Example

Figure 4.6. Training set for predicting borrowers who will default on loan payments.

X'=(Home Owner=No, Marital Status=Married, AnnualIncome=120K)

Compute: Pr(Yes|X'), Pr(No|X') pick No or Yes with max Prob.

How can we compute these probabilities??

Computing posterior probabilities

Bayes Theorem

$$Pr(Y \mid X) = \frac{Pr(X \mid Y) Pr(Y)}{Pr(X)}$$

- P(X) is constant and can be ignored
- P(Y): estimated from training data; compute the fraction of training records in each class
- P(X|Y)?

Naïve Bayes Classifier

$$Pr(X | Y = y) = \prod_{i=1}^{d} Pr(X_i | Y = y)$$

 Attribute set X = {X₁,...,X_d} consists of d attributes

- Conditional independence:
 - X conditionally independent of Y, given X:
 Pr(X|Y,Z) = Pr(X|Z)
 - -Pr(X,Y|Z) = Pr(X|Z)xPr(Y|Z)

Naïve Bayes Classifier

$$\Pr(X|Y=y) = \prod_{i=1}^{d} \Pr(X_i|Y=y)$$

• Attribute set $X = \{X_1, ..., X_d\}$ consists of d attributes

$$\Pr(X|Y) = \frac{\Pr(Y) \prod_{i=1}^{d} \Pr(X_i|Y)}{\Pr(X)}$$

Conditional probabilities for categorical attributes

- Categorical attribute X_i
- Pr(Xi = xi|Y=y): fraction of training instances in class y that take value x_i on the i-th attribute

Pr(homeOwner=yes|No) = 3/7

Pr(MaritalStatus=Single|Yes)= 2/3

		binary	catego	rical	JOUS CIRSS
I	Tid	Home Owner	Marital Status	Annual Income	Defaulted Borrower
ſ	1	Yes	Single	125K	No
ı	2	No	Married	100K	No

	Owner	Status	Income	Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Figure 4.6. Training set for predicting borrowers who will default on loan payments.

Estimating conditional probabilities for continuous attributes?

Discretization?

How can we discretize?

Naïve Bayes Classifier: Example

- X' = (HomeOwner=No, MaritalStatus=Married, Income=120K)
- Need to compute Pr(Y|X') or Pr(Y)xPr(X'|Y)
- But **Pr(X'|Y)** is
 - -Y = No
 - Pr(HO=No|No)xPr(MS=Married|No)
 xPr(Inc=120K|No) = 4/7x4/7x0.0072 = 0.0024
 - -Y=Yes
 - Pr(HO=No|Yes)xPr(MS=Married|Yes) $xPr(Inc=120K|Yes) = 1x0x1.2x10^{-9} = 0$

Naïve Bayes Classifier: Example

- X' = (HomeOwner = No, MaritalStatus = Married, Income=120K)
- Need to compute Pr(Y|X') or Pr(Y)xPr(X'|Y)
- But Pr(X'|Y = Yes) is 0?
- Correction process:

$$\Pr(X_i = x_i | Y = y_j) = \frac{n_c + mp}{n + m}$$

n_c: number of training examples from class y_j that take value x_i
 n: total number of instances from class y_j
 m: equivalent sample size (balance between prior and posterior)
 p: user-specified parameter (prior probability)

Characteristics of Naïve Bayes Classifier

- Robust to isolated noise points
 - noise points are averaged out
- Handles missing values
 - Ignoring missing-value examples
- Robust to irrelevant attributes
 - If X_i is irrelevant, $P(X_i|Y)$ becomes almost uniform
- Correlated attributes degrade the performance of NB classifier