
More on Rankings



• Comparing results of Link Analysis 
Ranking algorithms

• Comparing and aggregating rankings



Comparing LAR vectors

• How close are the LAR vectors w1, w2?

w1 = [  1   0.8  0.5  0.3   0  ]

w2 = [ 0.9   1   0.7  0.6  0.8 ]



Distance between LAR vectors
• Geometric distance: how close are the 

numerical weights of vectors w1, w2?

w1 = [ 1.0  0.8   0.5  0.3  0.0 ]

w2 = [ 0.9  1.0   0.7  0.6  0.8 ]

d1(w1,w2) =   0.1+0.2+0.2+0.3+0.8 = 1.6



Distance between LAR vectors
• Rank distance: how close are the 

ordinal rankings induced by the 
vectors w1, w2?
– Kendal’s τ distance



Outline
• Rank Aggregation
– Computing aggregate scores
– Computing aggregate rankings - voting



Rank Aggregation
• Given a set of rankings R1,R2,…,Rm of a 

set of objects X1,X2,…,Xn produce a 
single ranking R that is in agreement 
with the existing rankings



Examples
• Voting
– rankings R1,R2,…,Rm are the voters, the 

objects X1,X2,…,Xn are the candidates.



Examples
• Combining multiple scoring functions
– rankings R1,R2,…,Rm are the scoring 

functions, the objects X1,X2,…,Xn are data 
items.
• Combine the PageRank scores with term-

weighting scores
• Combine scores for multimedia items 

– color, shape, texture
• Combine scores for database tuples 

– find the best hotel according to price and location



Examples
• Combining multiple sources
– rankings R1,R2,…,Rm are the sources, the 

objects X1,X2,…,Xn are data items.
• meta-search engines for the Web
• distributed databases
• P2P sources



Variants of the problem
• Combining scores
– we know the scores assigned to objects by 

each ranking, and we want to compute a 
single score

• Combining ordinal rankings
– the scores are not known, only the 

ordering is known
– the scores are known but we do not know 

how, or do not want to combine them
• e.g. price and star rating



Combining scores
• Each object Xi has m 

scores (ri1,ri2,…,rim)
• The score of object Xi is 

computed using an 
aggregate scoring 
function f(ri1,ri2,…,rim)

R1 R2 R3

X1 1 0.3 0.2

X2 0.8 0.8 0

X3 0.5 0.7 0.6

X4 0.3 0.2 0.8

X5 0.1 0.1 0.1



Combining scores
• Each object Xi has m 

scores (ri1,ri2,…,rim)
• The score of object Xi is 

computed using an 
aggregate scoring function 
f(ri1,ri2,…,rim)
– f(ri1,ri2,…,rim) = min{ri1,ri2,

…,rim}

R1 R2 R3 R

X1 1 0.3 0.2 0.2

X2 0.8 0.8 0 0

X3 0.5 0.7 0.6 0.5

X4 0.3 0.2 0.8 0.2

X5 0.1 0.1 0.1 0.1



Combining scores
• Each object Xi has m scores 

(ri1,ri2,…,rim)
• The score of object Xi is 

computed using an 
aggregate scoring function 
f(ri1,ri2,…,rim)
– f(ri1,ri2,…,rim) = max{ri1,ri2,

…,rim}

R1 R2 R3 R

X1 1 0.3 0.2 1

X2 0.8 0.8 0 0.8

X3 0.5 0.7 0.6 0.7

X4 0.3 0.2 0.8 0.8

X5 0.1 0.1 0.1 0.1



Combining scores
• Each object Xi has m scores 

(ri1,ri2,…,rim)
• The score of object Xi is 

computed using an 
aggregate scoring function 
f(ri1,ri2,…,rim)
– f(ri1,ri2,…,rim) = ri1 + ri2 + …+ 

rim

R1 R2 R3 R

X1 1 0.3 0.2 1.5

X2 0.8 0.8 0 1.6

X3 0.5 0.7 0.6 1.8

X4 0.3 0.2 0.8 1.3

X5 0.1 0.1 0.1 0.3



Top-k
• Given a set of n objects and m scoring lists 

sorted in decreasing order, find the top-k 
objects according to a scoring function f

• top-k: a set T of k objects such that f(rj1,
…,rjm) ≤ f(ri1,…,rim) for every object Xi in T 
and every object Xj not in T

• Assumption: The function f is monotone
– f(r1,…,rm) ≤ f(r1’,…,rm’) if ri ≤ ri’ for all i

• Objective: Compute top-k with the minimum 
cost



Cost function
• We want to minimize the number of accesses 

to the scoring lists
• Sorted accesses: sequentially access the 

objects in the order in which they appear in 
a list
– cost Cs

• Random accesses: obtain the cost value for a 
specific object in a list
– cost Cr

• If s sorted accesses and r random accesses 
minimize s Cs + r Cr



Example

• Compute top-2 for the sum aggregate 
function

R1R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0



Fagin’s Algorithm
1. Access sequentially all lists in parallel 

until there are k objects that have 
been seen in all lists

R1R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0



Fagin’s Algorithm
1. Access sequentially all lists in parallel 

until there are k objects that have 
been seen in all lists

R1R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0



Fagin’s Algorithm
1. Access sequentially all lists in parallel 

until there are k objects that have 
been seen in all lists

R1R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0



Fagin’s Algorithm
1. Access sequentially all lists in parallel 

until there are k objects that have 
been seen in all lists

R1R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0



Fagin’s Algorithm
1. Access sequentially all lists in parallel 

until there are k objects that have 
been seen in all lists

R1R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0



Fagin’s Algorithm
2. Perform random accesses to obtain 

the scores of all seen objects 

R1R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0



Fagin’s Algorithm
3. Compute score for all objects and 

find the top-k 

R1R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0

RR

X3 1.8

X2 1.6

X1 1.5

X4 1.3



Fagin’s Algorithm
• X5 cannot be in the top-2 because of 

the monotonicity property
– f(X5) ≤ f(X1) ≤ f(X3) 

R1R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0

RR

X3 1.8

X2 1.6

X1 1.5

X4 1.3



Fagin’s Algorithm
• The algorithm is cost optimal under 

some probabilistic assumptions for a 
restricted class of aggregate functions



Threshold algorithm
1. Access the elements sequentially

R1R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0



Threshold algorithm
1. At each sequential access

a. Set the threshold t to be the aggregate of 
the scores seen in this access

R1R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0

t = 2.6



Threshold algorithm
1. At each sequential access

b. Do random accesses and compute the 
score of the objects seen

R1R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0

X1 1.5

X2 1.6

X4 1.3

t = 2.6



Threshold algorithm
1. At each sequential access

c. Maintain a list of top-k objects seen so 
far

R1R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0

X2 1.6

X1 1.5

t = 2.6



Threshold algorithm
1. At each sequential access

d. When the scores of the top-k are greater 
or equal to the threshold, stop

R1R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0

t = 2.1

X3 1.8

X2 1.6



Threshold algorithm
1. At each sequential access

d. When the scores of the top-k are greater 
or equal to the threshold, stop

R1R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0

t = 1.0

X3 1.8

X2 1.6



Threshold algorithm
2. Return the top-k seen so far

R1R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0

t = 1.0

X3 1.8

X2 1.6



Threshold algorithm
• From the monotonicity property for 

any object not seen, the score of the 
object is less than the threshold
– f(X5) ≤ t ≤ f(X2)

• The algorithm is instance cost-optimal
– within a constant factor of the best 

algorithm on any database



Combining rankings
• In many cases the scores are not known

– e.g. meta-search engines – scores are proprietary 
information

• … or we do not know how they were obtained
– one search engine returns score 10, the other 100. What 

does this mean?
• … or the scores are incompatible

– apples and oranges: does it make sense to combine price 
with distance?

• In this cases we can only work with the rankings



The problem
• Input: a set of rankings R1,R2,…,Rm of 

the objects X1,X2,…,Xn. Each ranking Ri 
is a total ordering of the objects
– for every pair Xi,Xj either Xi is ranked above 

Xj or Xj  is ranked above Xi

• Output: A total ordering R that 
aggregates rankings R1,R2,…,Rm 



Voting theory
• A voting system is a rank aggregation 

mechanism
• Long history and literature
– criteria and axioms for good voting 

systems



What is a good voting 
system?

• The Condorcet criterion
– if object A defeats every other object in a 

pairwise majority vote, then A should be ranked 
first

• Extended Condorcet criterion
– if the objects in a set X defeat in pairwise 

comparisons the objects in the set Y then the 
objects in X should be ranked above those in Y

• Not all voting systems satisfy the Condorcet 
criterion!



Pairwise majority 
comparisons

• Unfortunately the Condorcet winner 
does not always exist
– irrational behavior of groups

V1 V2 V3

1 A B C

2 B C A

3 C A B

A > B B > C C > A



Pairwise majority 
comparisons

• Resolve cycles by imposing an agenda

V1 V2 V3

1 A D E

2 B E A

3 C A B

4 D B C

5 E C D



Pairwise majority 
comparisons

• Resolve cycles by imposing an agenda

V1 V2 V3

1 A D E

2 B E A

3 C A B

4 D B C

5 E C D

A B

A



Pairwise majority 
comparisons

• Resolve cycles by imposing an agenda

V1 V2 V3

1 A D E

2 B E A

3 C A B

4 D B C

5 E C D

A B

A E

E



Pairwise majority 
comparisons

• Resolve cycles by imposing an agenda

V1 V2 V3

1 A D E

2 B E A

3 C A B

4 D B C

5 E C D

A B

A E

E D

D



Pairwise majority 
comparisons

• Resolve cycles by imposing an agenda

• C is the winner

V1 V2 V3

1 A D E

2 B E A

3 C A B

4 D B C

5 E C D

A B

A E

E D

D C

C



Pairwise majority 
comparisons

• Resolve cycles by imposing an agenda

• But everybody prefers A or B over C

V1 V2 V3

1 A D E

2 B E A

3 C A B

4 D B C

5 E C D

A B

A E

E D

D C

C



Pairwise majority 
comparisons

• The voting system is not Pareto 
optimal
– there exists another ordering that 

everybody prefers

• Also, it is sensitive to the order of 
voting



Plurality vote
• Elect first whoever has more 1st 

position votes

• Does not find a Condorcet winner (C in 
this case)

voters 10 8 7

1 A C B

2 B A C

3 C B A



Plurality with runoff
• If no-one gets more than 50% of the 

1st position votes, take the majority 
winner of the first two

voters 10 8 7 2

1 A C B B

2 B A C A

3 C B A C

first round: A 10, B 9, C 8
second round: A 18, B 9
winner: A



Plurality with runoff
• If no-one gets more than 50% of the 

1st position votes, take the majority 
winner of the first two

voters 10 8 7 2

1 A C B A

2 B A C B

3 C B A C

first round: A 12, B 7, C 8
second round: A 12, C 15
winner: C!

change the order 
of
A and B in the last 
column



Positive Association axiom
• Plurality with runoff violates the 

positive association axiom

• Positive association axiom: positive 
changes in preferences for an object 
should not cause the ranking of the 
object to decrease



Borda Count
• For each ranking, assign to object X, 

number of points equal to the number 
of objects it defeats
– first position gets n-1 points, second n-2, 

…, last 0 points
• The total weight of X is the number of 

points it accumulates from all rankings



Borda Count

• Does not always produce Condorcet 
winner

voters 3 2 2

1 (3p) A B C

2 (2p) B C D

3 (1p) C D A

4 (0p) D A B

A: 3*3 + 2*0 + 2*1 = 11p
B: 3*2 + 2*3 + 2*0 = 12p
C: 3*1 + 2*2 + 2*3 = 13p
D: 3*0 + 2*1 + 2*2 = 6p

BC

C

B

A

D



Borda Count
• Assume that D is removed from the vote

• Changing the position of D changes the 
order of the other elements!

voters 3 2 2

1 (2p) A B C

2 (1p) B C A

3 (0p) C A B

A: 3*2 + 2*0 + 2*1 = 7p
B: 3*1 + 2*2 + 2*0 = 7p
C: 3*0 + 2*1 + 2*2 = 6p

BC

B

A

C



Independence of Irrelevant 
Alternatives

• The relative ranking of X and Y should 
not depend on a third object Z
– heavily debated axiom



Borda Count
• The Borda Count of an an object X is 

the aggregate number of pairwise 
comparisons that the object X wins
– follows from the fact that in one ranking X 

wins all the pairwise comparisons with 
objects that are under X in the ranking



Voting Theory
• Is there a voting system that does not 

suffer from the previous shortcomings?



Arrow’s Impossibility Theorem
• No voting system satisfies the following axioms

– Universality
• all inputs are possible

– Completeness and Transitivity
• for each input we produce an answer and it is meaningful

– Positive Assosiation
• Promotion of a certain option cannot lead to a worse ranking of this 

option.
– Independence of Irrelevant Alternatives

• Changes in individuals' rankings of irrelevant alternatives (ones 
outside a certain subset) should have no impact on the societal 
ranking of the subset. 

– Non-imposition
• Every possible societal preference order should be achievable by some 

set of individual preference orders
– Non-dictatoriship

• KENNETH J. ARROW  Social Choice and Individual 
Values (1951). Won Nobel Prize in 1972



Kemeny Optimal Aggregation
• Kemeny distance K(R1,R2): The number of pairs of nodes 

that are ranked in a different order (Kendall-tau)

• Kemeny optimal aggregation minimizes

• Kemeny optimal aggregation satisfies the Condorcet 
criterion and the extended Condorcet criterion

• …but it is NP-hard to compute
– easy 2-approximation by obtaining the best of the input 

rankings, but it is not “interesting”

K(R,R1, . . . , Rm) =
mX

i=1

K(R,Ri)



Rankings as pairwise 
comparisons

• If element u is before element v, then 
u is preferred to v

• From input rankings output majority 
tournaments G = (U,A): 
– for u,v in U, if the majority of the rankings 

prefer u to v,  then add (u,v) to A

60



The KwikSort algorithm
• KwikSort(G=(U,A))
– if U is empty return empty list
– U1 = U2 = empty set
– pick random pivot u from U
– For all v in U\{u}
• if (v,u) is in A then add v to U1
• else add v to U2

– G1 = (U1,A1)
– G2 = (U2,A2)
– Return KwikSort(G1),u,KwikSort(G2)

61



Properties of the KwikSort 
algorithm

• KwikSort algorithm is a 3-approximation 
algorithm to the Kemeny aggregation 
problem

62



Locally Kemeny optimal aggregation

• A ranking R is locally Kemeny optimal if 
there is no bubble-sort swap of two 
consecutively placed objects that produces a 
ranking R’ such that                    

• K(R’,R1,…,Rm)≤ K(R,R1,…,Rm)

• Locally Kemeny optimal is not necessarily 
Kemeny optimal

•



Locally Kemeny optimal aggregation

• Locally Kemeny optimal aggregation can be 
computed in polynomial time
– At the i-th iteration insert the i-th element x in 

the bottom of the list, and bubble it up until 
there is an element y such that the majority 
places y over x

• Locally Kemeny optimal aggregation satisfies 
the Condorcet and extended Condorcet 
criterion



Rank Aggregation algorithm [DKNS01]

• Start with an aggregated ranking and 
make it into a locally Kemeny optimal 
aggregation

• How do we select the initial 
aggregation?
– Use another aggregation method
– Create a Markov Chain where you move 

from an object X, to another object Y that 
is ranked higher by the majority



Spearman’s footrule distance
• Spearman’s footrule distance: The 

difference between the ranks R(i) and 
R’(i) assigned to object i

• Relation between Spearman’s footrule 
and Kemeny distance



Spearman’s footrule 
aggregation

• Find the ranking R, that minimizes

• The optimal Spearman’s footrule aggregation 
can be computed in polynomial time
– It also gives a 2-approximation to the Kemeny 

optimal aggregation

• If the median ranks of the objects are unique 
then this ordering is optimal

F (R,R1, . . . , Rm) =
mX

i=1

F (R,Ri)



Example

R1R1

1 A

2 B

3 C

4 D

R2R2

1 B

2 A

3 D

4 C

R3R3

1 B

2 C

3 A

4 D

A: ( 1 , 2 , 3 )
B: ( 1 , 1 , 2 )
C: ( 2 , 3 , 4 )
D: ( 3 , 4 , 4 )

RR

1 B

2 A

3 C

4 D



The MedRank algorithm
• Access the rankings sequentially

R1R1

1 A

2 B

3 C

4 D

R2R2

1 B

2 A

3 D

4 C

R3R3

1 B

2 C

3 A

4 D

RR

1

2

3

4



The MedRank algorithm
• Access the rankings sequentially
– when an element has appeared in more 

than half of the rankings, output it in the 
aggregated ranking
R1R1

1 A

2 B

3 C

4 D

R2R2

1 B

2 A

3 D

4 C

R3R3

1 B

2 C

3 A

4 D

RR

1 B

2

3

4



The MedRank algorithm
• Access the rankings sequentially
– when an element has appeared in more 

than half of the rankings, output it in the 
aggregated ranking
R1R1

1 A

2 B

3 C

4 D

R2R2

1 B

2 A

3 D

4 C

R3R3

1 B

2 C

3 A

4 D

RR

1 B

2 A

3

4



The MedRank algorithm
• Access the rankings sequentially
– when an element has appeared in more 

than half of the rankings, output it in the 
aggregated ranking
R1R1

1 A

2 B

3 C

4 D

R2R2

1 B

2 A

3 D

4 C

R3R3

1 B

2 C

3 A

4 D

RR

1 B

2 A

3 C

4



The MedRank algorithm
• Access the rankings sequentially
– when an element has appeared in more 

than half of the rankings, output it in the 
aggregated ranking
R1R1

1 A

2 B

3 C

4 D

R2R2

1 B

2 A

3 D

4 C

R3R3

1 B

2 C

3 A

4 D

RR

1 B

2 A

3 C

4 D



The Spearman’s rank 
correlation

• Spearman’s rank correlation

• Computing the optimal rank aggregation 
with respect to Spearman’s rank 
correlation is the same as computing 
Borda Count
– Computable in polynomial time

S(R,R0) =
nX

i=1

(R(i)�R0(i))
2



Extensions and Applications
• Rank distance measures between 

partial orderings and top-k lists
• Similarity search
• Ranked Join Indices
• Analysis of Link Analysis Ranking 

algorithms
• Connections with machine learning
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