More on Rankings

- Comparing results of Link Analysis Ranking algorithms
- Comparing and aggregating rankings

Comparing LAR vectors

$$
\begin{aligned}
\square & \square \\
\square & \square \\
\mathrm{w}_{1} & =\left[\begin{array}{lllll}
1 & 0.8 & 0.5 & 0.3 & 0
\end{array}\right] \\
\mathrm{w}_{2} & =\left[\begin{array}{lllll}
0.9 & 1 & 0.7 & 0.6 & 0.8
\end{array}\right]
\end{aligned}
$$

- How close are the LAR vectors w_{1}, w_{2} ?

Distance between LAR vectors

- Geometric distance: how close are the numerical weights of vectors w_{1}, w_{2} ?

$$
\begin{aligned}
& \mathrm{d}_{1}\left(\mathrm{w}_{1}, \mathrm{w}_{2}\right)=\sum\left|\mathrm{w}_{1}[\mathrm{i}]-\mathrm{w}_{2}[\mathrm{i}]\right| \\
& \square \square \square \square \square \\
& \mathrm{w}_{1}=\left[\begin{array}{lllll}
1.0 & 0.8 & 0.5 & 0.3 & 0.0
\end{array}\right] \\
& \mathrm{w}_{2}=\left[\begin{array}{lllll}
0.9 & 1.0 & 0.7 & 0.6 & 0.8
\end{array}\right] \\
& \mathrm{d}_{1}\left(\mathrm{w}_{1}, \mathrm{w}_{2}\right)=0.1+0.2+0.2+0.3+0.8=1.6
\end{aligned}
$$

Distance between LAR vectors

- Rank distance: how close are the ordinal rankings induced by the vectors w_{1}, w_{2} ?
- Kendal's t distance

$$
\mathrm{d}_{\mathrm{r}}\left(\mathrm{w}_{1}, \mathrm{w}_{2}\right)=\frac{\text { pairs ranked in a different order }}{\text { total number of distinct pairs }}
$$

Outline

Rank Aggregation

- Computing aggregate scores
- Computing aggregate rankings - voting

Rank Aggregation

- Given a set of rankings $\mathrm{R}_{1}, \mathrm{R}_{2}, \ldots, \mathrm{R}_{\mathrm{m}}$ of a set of objects $X_{1}, X_{2}, \ldots, X_{n}$ produce a single ranking R that is in agreement with the existing rankings

Examples

- Voting
- rankings $R_{1}, R_{2}, \ldots, R_{m}$ are the voters, the objects $X_{1}, X_{2}, \ldots, X_{n}$ are the candidates.

Examples

- Combining multiple scoring functions
- rankings $R_{1}, R_{2}, \ldots, R_{m}$ are the scoring functions, the objects $X_{1}, X_{2}, \ldots, X_{n}$ are data items.
- Combine the PageRank scores with termweighting scores
- Combine scores for multimedia items
- color, shape, texture
- Combine scores for database tuples
- find the best hotel according to price and location

Examples

- Combining multiple sources
- rankings $R_{1}, R_{2}, \ldots, R_{m}$ are the sources, the objects $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$ are data items.
- meta-search engines for the Web
- distributed databases
- P2P sources

Variants of the problem

- Combining scores
- we know the scores assigned to objects by each ranking, and we want to compute a single score
- Combining ordinal rankings
- the scores are not known, only the ordering is known
- the scores are known but we do not know how, or do not want to combine them
- e.g. price and star rating

Combining scores

- Each object X_{i} has m scores ($r_{i 1}, r_{i 2}, \ldots, r_{i m}$)
- The score of object X_{i} is computed using an aggregate scoring function $f\left(r_{i 1}, r_{i 2}, \ldots, r_{i m}\right)$

	R_{1}	R_{2}	R_{3}
X_{1}	1	0.3	0.2
X_{2}	0.8	0.8	0
X_{3}	0.5	0.7	0.6
X_{4}	0.3	0.2	0.8
X_{5}	0.1	0.1	0.1

Combining scores

- Each object X_{i} has m scores ($r_{i 1}, r_{i 2}, \ldots, r_{i m}$)
- The score of object X_{i} is computed using an aggregate scoring function $\mathrm{f}\left(\mathrm{r}_{\mathrm{i} 1}, \mathrm{r}_{\mathrm{i} 2}, \ldots, \mathrm{r}_{\mathrm{im}}\right)$
$-f\left(r_{i 1}, r_{i 2}, \ldots, r_{i m}\right)=\min \left\{r_{i 1}, r_{i 2}\right.$,
$\left.\ldots, r_{i m}\right\}$

	R_{1}	R_{2}	R_{3}	R
X_{1}	1	0.3	0.2	0.2
X_{2}	0.8	0.8	0	0
X_{3}	0.5	0.7	0.6	0.5
X_{4}	0.3	0.2	0.8	0.2
X_{5}	0.1	0.1	0.1	0.1

Combining scores

- Each object X_{i} has m scores $\left(r_{i 1}, r_{i 2}, \ldots, r_{i m}\right)$
- The score of object X_{i} is computed using an aggregate scoring function $f\left(r_{i 1}, r_{i 2}, \ldots, r_{i m}\right)$
$-f\left(r_{i 1}, r_{i 2}, \ldots, r_{i m}\right)=\max \left\{r_{i 1}, r_{i 2}\right.$, $\left.\ldots, r_{i m}\right\}$

	R_{1}	R_{2}	R_{3}	R
X_{1}	1	0.3	0.2	1
X_{2}	0.8	0.8	0	0.8
X_{3}	0.5	0.7	0.6	0.7
X_{4}	0.3	0.2	0.8	0.8
X_{5}	0.1	0.1	0.1	0.1

Combining scores

- Each object X_{i} has m scores $\left(r_{i 1}, r_{i 2}, \ldots, r_{i m}\right)$
- The score of object X_{i} is computed using an aggregate scoring function $\mathrm{f}\left(\mathrm{r}_{\mathrm{i} 1}, \mathrm{r}_{\mathrm{i} 2}, \ldots, \mathrm{r}_{\mathrm{im}}\right)$
$-f\left(r_{i 1}, r_{i 2}, \ldots, r_{i m}\right)=r_{i 1}+r_{i 2}+\ldots+$ $r_{i m}$

	R_{1}	R_{2}	R_{3}	R
X_{1}	1	0.3	0.2	1.5
X_{2}	0.8	0.8	0	1.6
X_{3}	0.5	0.7	0.6	1.8
X_{4}	0.3	0.2	0.8	1.3
X_{5}	0.1	0.1	0.1	0.3

Top-k

- Given a set of n objects and m scoring lists sorted in decreasing order, find the topobjects according to a scoring function f
- top-k: a set T of k objects such that $f\left(r_{j 1}\right.$, $\left.\ldots, r_{j m}\right) \leq f\left(r_{i 1}, \ldots, r_{i m}\right)$ for every object X_{i} in T and every object X_{j} not in T
- Assumption: The function f is monotone $-f\left(r_{1}, \ldots, r_{m}\right) \leq f\left(r_{1}{ }^{\prime}, \ldots, r_{m}{ }^{\prime}\right)$ if $r_{i} \leq r_{i}{ }^{\prime}$ for all i
- Objective: Compute top-k with the minimum cost

Cost function

- We want to minimize the number of accesses to the scoring lists
- Sorted accesses: sequentially access the objects in the order in which they appear in a list
- cost C_{s}
- Random accesses: obtain the cost value for a specific object in a list
- cost Cr
- If s sorted accesses and r random accesses minimize $s C_{s}+r C_{r}$

Example

- Compute top-2 for the sum aggregate function

Fagin's Algorithm

1. Access sequentially all lists in parallel until there are k objects that have been seen in all lists

R_{1}	
X_{1}	1
X_{2}	0.8
X_{3}	0.5
X_{4}	0.3
X_{5}	0.1

R_{2}	
X_{2}	0.8
X_{3}	0.7
X_{1}	0.3
X_{4}	0.2
X_{5}	0.1

R_{3}	
X_{4}	0.8
X_{3}	0.6
X_{1}	0.2
X_{5}	0.1
X_{2}	0

Fagin's Algorithm

1. Access sequentially all lists in parallel until there are k objects that have been seen in all lists

R_{1}				
X_{1}	1			
X_{2}	0.8			
X_{3}	0.5			
X_{4}	0.3			
X_{5}	0.1	\quad	R_{2}	
:---:	:---:			
X_{2}	0.8			
X_{3}	0.7			
X_{1}	0.3			
X_{4}	0.2			
X_{5}	0.1	\quad	R_{3}	
:---:	:---:			
X_{4}	0.8			
X_{1}	0.6			
X_{5}	0.1			
X_{2}	0			

Fagin's Algorithm

1. Access sequentially all lists in parallel until there are k objects that have been seen in all lists

R_{1}				
X_{1}	1			
X_{2}	0.8			
X_{3}	0.5			
X_{4}	0.3			
X_{5}	0.1	\quad	R_{2}	
:---:	:---:			
X_{2}	0.8			
	0.7			
X_{1}	0.3			
X_{4}	0.2			
X_{5}	0.1	\quad	R_{3}	
:---:	:---:	\quad		0.8
:---:	:---:			
X_{1}	0.2			
X_{5}	0.1			
X_{2}	0			

Fagin's Algorithm

1. Access sequentially all lists in parallel until there are k objects that have been seen in all lists

R_{1}					
X_{1}	1				
X_{2}	0.8				
	0.5				
X_{4}	0.3				
X_{5}	0.1	\quad	R_{2}		
:---:	:---:				
X_{2}	0.8				
	0.7				
X_{1}	0.3				
X_{4}	0.2				
X_{5}	0.1	\quad	R_{3}		
:---:	:---:	:---:	\quad		0.8
:---:	:---:				
X_{1}	0.2				
X_{2}	0.1				

Fagin's Algorithm

1. Access sequentially all lists in parallel until there are k objects that have been seen in all lists

R_{1}		R_{2}		R_{3}	
	1		0.8		0.8
	0.8		0.7		0.6
	0.5		0.3		0.2
X_{4}	0.3	X_{4}	0.2	X_{5}	0.1
X_{5}	0.1		0.1	X_{2}	0

Fagin's Algorithm

2. Perform random accesses to obtain the scores of all seen objects

R_{1}				
X_{1}	1			
X_{2}	0.8			
	0.5			
X_{4}	0.3			
X_{5}	0.1	\quad	R_{2}	
:---:	:---:			
X_{2}	0.8			
	0.7			
X_{1}	0.3			
X_{4}	0.2			
X_{5}	0.1	\quad	R_{3}	
:---:	:---:			
X_{4}	0.8			
X_{5}	0.2			

Fagin's Algorithm

3. Compute score for all objects and find the top-k

R_{1}				
X_{1}	1			
X_{2}	0.8			
	0.5			
X_{4}	0.3			
X_{5}	0.1	\quad	R_{2}	
:---	:---			
X_{2}	0.8			
	0.7			
X_{1}	0.3			
X_{4}	0.2			
X_{5}	0.1	\quad	R_{3}	
:---:	:---:			
X_{2}	0.8			

R	
X_{3}	1.8
X_{2}	1.6
X_{1}	1.5
X_{4}	1.3

Fagin's Algorithm

- X_{5} cannot be in the top- 2 because of the monotonicity property
$-f\left(X_{5}\right) \leq f\left(X_{1}\right) \leq f\left(X_{3}\right)$

R_{1}		R_{2}		R_{3}	
	1		0.8		0.8
	0.8		0.7		0.6
	0.5		0.3		0.2
	0.3		0.2	X_{5}	0.1
X_{5}	0.1				0

R	
X_{3}	1.8
X_{2}	1.6
X_{1}	1.5
X_{4}	1.3

Fagin's Algorithm

- The algorithm is cost optimal under some probabilistic assumptions for a restricted class of aggregate functions

Threshold algorithm

1. Access the elements sequentially

R_{1}	
X_{1}	1
X_{2}	0.8
X_{3}	0.5
X_{4}	0.3
X_{5}	0.1

R_{2}	
X_{2}	0.8
X_{3}	0.7
X_{1}	0.3
X_{4}	0.2
X_{5}	0.1

R_{3}	
X_{4}	0.8
X_{3}	0.6
X_{1}	0.2
X_{5}	0.1
X_{2}	0

Threshold algorithm

1. At each sequential access

a. Set the threshold t to be the aggregate of the scores seen in this access

R_{1}				
X_{1}	1			
X_{2}	0.8			
X_{3}	0.5			
X_{4}	0.3			
X_{5}	0.1	\quad	R_{2}	
:---:	:---:			
X_{2}	0.8			
X_{3}	0.7			
X_{1}	0.3			
X_{4}	0.2			
X_{5}	0.1	\quad	R_{3}	
:---:	:---:			
X_{3}	0.8			
X_{1}	0.2			
X_{5}	0.1			
X_{2}	0			

Threshold algorithm

1. At each sequential access
b. Do random accesses and compute the score of the objects seen

R_{1}				
X_{1}	1			
X_{2}	0.8			
X_{3}	0.5			
	0.3			
X_{5}	0.1	\quad	R_{2}	
:---:	:---:			
X_{2}	0.8			
X_{3}	0.7			
X_{1}	0.3			
	0.2			
X_{5}	0.1	\quad	R_{3}	
:---:	:---:			
X_{3}	0.8			
X_{1}	0.2			
X_{5}	0.1			
X_{2}	0			

Threshold algorithm

1. At each sequential access

c. Maintain a list of top-k objects seen so far

R_{1}				
X_{1}	1			
X_{2}	0.8			
X_{3}	0.5			
X_{4}	0.3			
X_{5}	0.1	\quad	R_{2}	
:---:	:---:			
X_{2}	0.8			
X_{3}	0.7			
X_{1}	0.3			
X_{5}	0.2			
X_{2}	0.1			
X_{3}	0.6			
X_{1}	0.2			
X_{2}	0.1			

Threshold algorithm

1. At each sequential access d. When the scores of the top-k are greater or equal to the threshold, stop

R_{1}		R_{2}		R_{3}	
	1		0.8		0.8
	0.8		0.7		0.6
	0.5	X_{1}	0.3	X_{1}	0.2
X_{4}	0.3		0.2	X_{5}	0.1
X_{5}	0.1	X_{5}	0.1	X_{2}	0

Threshold algorithm

1. At each sequential access
d. When the scores of the top-k are greater or equal to the threshold, stop

R_{1}		R_{2}		R_{3}	
	1		0.8		0.8
	0.8		0.7		0.6
	0.5		0.3		0.2
X_{4}	0.3		0.2	x_{5}	0.1
	0.1		0.1	X_{2}	0

Threshold algorithm

2. Return the top-k seen so far

R_{1}		R_{2}		R_{3}	
	1		0.8		0.8
	0.8		0.7		0.6
	0.5	X_{1}	0.3	X_{1}	0.2
X_{4}	0.3	X_{4}	0.2	X_{5}	0.1
X_{5}	0.1	X_{5}	0.1	x_{2}	0

Threshold algorithm

- From the monotonicity property for any object not seen, the score of the object is less than the threshold $-\mathrm{f}\left(\mathrm{X}_{5}\right) \leq \mathrm{t} \leq \mathrm{f}\left(\mathrm{X}_{2}\right)$
- The algorithm is instance cost-optimal - within a constant factor of the best algorithm on any database

Combining rankings

- In many cases the scores are not known
- e.g. meta-search engines - scores are proprietary information
- ... or we do not know how they were obtained
- one search engine returns score 10, the other 100. What does this mean?
- ... or the scores are incompatible
- apples and oranges: does it make sense to combine price with distance?
- In this cases we can only work with the rankings

The problem

- Input: a set of rankings $\mathrm{R}_{1}, \mathrm{R}_{2}, \ldots, \mathrm{R}_{\mathrm{m}}$ of the objects $X_{1}, X_{2}, \ldots, X_{n}$. Each ranking R_{i} is a total ordering of the objects
- for every pair X_{i}, X_{j} either X_{i} is ranked above X_{j} or X_{j} is ranked above X_{i}
- Output: A total ordering R that aggregates rankings $\mathrm{R}_{1}, \mathrm{R}_{2}, \ldots, \mathrm{R}_{\mathrm{m}}$

Voting theory

- A voting system is a rank aggregation mechanism
- Long history and literature
- criteria and axioms for good voting systems

What is a good voting system?

- The Condorcet criterion
- if object A defeats every other object in a pairwise majority vote, then A should be ranked first
- Extended Condorcet criterion
- if the objects in a set X defeat in pairwise comparisons the objects in the set Y then the objects in X should be ranked above those in Y
- Not all voting systems satisfy the Condorcet criterion!

Pairwise majority comparisons

- Unfortunately the Condorcet winner does not always exist
- irrational behavior of groups

	V_{1}	$\mathrm{~V}_{2}$	$\mathrm{~V}_{3}$
1	A	B	C
2	B	C	A
3	C	A	B

$$
A>B \quad B>C \quad C>A
$$

Pairwise majority comparisons

- Resolve cycles by imposing an agenda

	V_{1}	$\mathrm{~V}_{2}$	$\mathrm{~V}_{3}$
1	A	D	E
2	B	E	A
3	C	A	B
4	D	B	C
5	E	C	D

Pairwise majority comparisons

- Resolve cycles by imposing an agenda

	V_{1}	$\mathrm{~V}_{2}$	$\mathrm{~V}_{3}$
1	A	D	E
2	B	E	A
3	C	A	B
4	D	B	C
5	E	C	D

$$
\begin{gathered}
A \quad B \\
A
\end{gathered}
$$

Pairwise majority comparisons

- Resolve cycles by imposing an agenda

	V_{1}	$\mathrm{~V}_{2}$	$\mathrm{~V}_{3}$
1	A	D	E
2	B	E	A
3	C	A	B
4	D	B	C
5	E	C	D

Pairwise majority comparisons

- Resolve cycles by imposing an agenda

	V_{1}	$\mathrm{~V}_{2}$	$\mathrm{~V}_{3}$
1	A	D	E
2	B	E	A
3	C	A	B
4	D	B	C
5	E	C	D

Pairwise majority comparisons

- Resolve cycles by imposing an agenda

	V_{1}	$\mathrm{~V}_{2}$	$\mathrm{~V}_{3}$
1	A	D	E
2	B	E	A
3	C	A	B
4	D	B	C
5	E	C	D

- C is the winner

Pairwise majority comparisons

- Resolve cycles by imposing an agenda

	V_{1}	$\mathrm{~V}_{2}$	$\mathrm{~V}_{3}$
1	A	D	E
2	B	E	A
3	C	A	B
4	D	B	C
5	E	C	D

- But everybody prefers A or B over C

Pairwise majority comparisons

- The voting system is not Pareto optimal
- there exists another ordering that everybody prefers
- Also, it is sensitive to the order of voting

Plurality vote

- Elect first whoever has more 1st position votes

voters	10	8	7
1	A	C	B
2	B	A	C
3	C	B	A

- Does not find a Condorcet winner (C in this case)

Plurality with runoff

- If no-one gets more than 50% of the 1st position votes, take the majority winner of the first two

voters	10	8	7	2
1	A	C	B	B
2	B	A	C	A
3	C	B	A	C

first round: A 10, B 9, C 8 second round: A 18, B 9 winner: A

Plurality with runoff

- If no-one gets more than 50% of the 1 st position votes, take the majority winner of the first two

voters	10	8	7	2
1	A	C	B	A
2	B	A	C	B
3	C	B	A	C

first round: A 12, B 7, C 8 second round: A 12, C 15 winner: C!

Positive Association axiom

- Plurality with runoff violates the positive association axiom
- Positive association axiom: positive changes in preferences for an object should not cause the ranking of the object to decrease

Borda Count

- For each ranking, assign to object X, number of points equal to the number of objects it defeats
- first position gets $n-1$ points, second $n-2$, ..., last 0 points
- The total weight of X is the number of points it accumulates from all rankings

Borda Count

voters	3	2	2	$\begin{aligned} & \text { A: } 3 * 3+2 * 0+2 * 1=11 \mathrm{p} \\ & \text { B: } 3 * 2+2 * 3+2 * 0=12 \mathrm{p} \\ & \text { C: } 3 * 1+2 * 2+2 * 3=13 \mathrm{p} \\ & \text { D: } 3 * 0+2 * 1+2 * 2=6 \mathrm{p} \end{aligned}$	BC
1 (3p)	A	B	C		C
2 (2p)	B	C	D		B
3 (1p)	C	D	A		A
4 (0p)	D	A	B		D

- Does not always produce Condorcet winner

Borda Count

- Assume that D is removed from the vote

voters	3	2	2	$\begin{aligned} & \text { A: } 3 * 2+2 * 0+2 * 1=7 p \\ & \text { B: } 3 * 1+2 * 2+2 * 0=7 p \\ & \text { C: } 3 * 0+2 * 1+2 * 2=6 p \end{aligned}$	BC
1 (2p)	A	B	C		B
2 (1p)	B	C	A		A
3 (0p)	C	A	B		C

- Changing the position of D changes the order of the other elements!

Independence of Irrelevant Alternatives

- The relative ranking of X and Y should not depend on a third object Z
- heavily debated axiom

Borda Count

- The Borda Count of an an object X is the aggregate number of pairwise comparisons that the object X wins
- follows from the fact that in one ranking X wins all the pairwise comparisons with objects that are under X in the ranking

Voting Theory

- Is there a voting system that does not suffer from the previous shortcomings?

Arrow's Impossibility Theorem

- No voting system satisfies the following axioms
- Universality
- all inputs are possible
- Completeness and Transitivity
- for each input we produce an answer and it is meaningful
- Positive Assosiation
- Promotion of a certain option cannot lead to a worse ranking of this option.
- Independence of Irrelevant Alternatives
- Changes in individuals' rankings of irrelevant alternatives (ones outside a certain subset) should have no impact on the societal ranking of the subset.
- Non-imposition
- Every possible societal preference order should be achievable by some set of individual preference orders
- Non-dictatoriship
- KENNETH J. ARROW Social Choice and Individual Values (1951). Won Nobel Prize in 1972

Kemeny Optimal Aggregation

- Kemeny distance $K\left(R_{1}, R_{2}\right)$: The number of pairs of nodes that are ranked in a different order (Kendall-tau)
- Kemeny optimal aggregation minimizes

$$
K\left(R, R_{1}, \ldots, R_{m}\right)=\sum_{i=1}^{m} K\left(R, R_{i}\right)
$$

- Kemeny optimal aggregation satisfies the Condorcet criterion and the extended Condorcet criterion
- ...but it is NP-hard to compute
- easy 2-approximation by obtaining the best of the input rankings, but it is not "interesting"

Rankings as pairwise comparisons

- If element u is before element v, then u is preferred to v
- From input rankings output majority tournaments $G=(\mathrm{U}, \mathrm{A})$:
- for u, v in U, if the majority of the rankings prefer u to v, then add (u, v) to A

The KwikSort algorithm

- KwikSort(G=(U,A))
- if U is empty return empty list
- U1 = U2 = empty set
- pick random pivot u from U
- For all v in U
{u\} }
- if (v, u) is in A then add v to $U 1$
- else add v to U2
- G1 = (U1,A1)
$-\mathrm{G} 2=(\mathrm{U} 2, \mathrm{~A} 2)$
- Return KwikSort(G1),u,KwikSort(G2)

Properties of the KwikSort algorithm

- KwikSort algorithm is a 3-approximation algorithm to the Kemeny aggregation problem

Locally Kemeny optimal aggregation

- A ranking R is locally Kemeny optimal if there is no bubble-sort swap of two consecutively placed objects that produces a ranking R^{\prime} such that
- $K\left(R^{\prime}, R_{1}, \ldots, R_{m}\right) \leq K\left(R, R_{1}, \ldots, R_{m}\right)$
- Locally Kemeny optimal is not necessarily Kemeny optimal

Locally Kemeny optimal aggregation

- Locally Kemeny optimal aggregation can be computed in polynomial time
- At the i-th iteration insert the i-th element x in the bottom of the list, and bubble it up until there is an element y such that the majority places y over x
- Locally Kemeny optimal aggregation satisfies the Condorcet and extended Condorcet criterion

Rank Aggregation algorithm [DKNSO1]

- Start with an aggregated ranking and make it into a locally Kemeny optimal aggregation
- How do we select the initial aggregation?
- Use another aggregation method
- Create a Markov Chain where you move from an object X, to another object Y that is ranked higher by the majority

Spearman's footrule distance

- Spearman's footrule distance: The difference between the ranks $\mathrm{R}(\mathrm{i})$ and R'(i) assigned to object i

$$
F\left(R, R^{\prime}\right)=\sum_{i=1}^{n}\left|R(i)-R^{\prime}(i)\right|
$$

- Relation between Spearman's footrule and Kemeny distance

$$
K\left(R, R^{\prime}\right) \leq F\left(R, R^{\prime}\right) \leq 2 K\left(R, R^{\prime}\right)
$$

Spearman's footrule aggregation

- Find the ranking R, that minimizes

$$
F\left(R, R_{1}, \ldots, R_{m}\right)=\sum_{i=1}^{m} F\left(R, R_{i}\right)
$$

- The optimal Spearman's footrule aggregation can be computed in polynomial time - It also gives a 2-approximation to the Kemeny optimal aggregation
- If the median ranks of the objects are unique then this ordering is optimal

Example

A: $\left(1, \frac{2}{2}, 3\right)$
B: $\left(1, \frac{1}{2}, 2\right)$
C: $\left(2, \frac{3}{2}, 4\right)$
D: $(3,4,4)$

The MedRank algorithm

- Access the rankings sequentially

R_{1}	
1	A
2	B
3	C
4	D

R	
1	
2	
3	
4	

The MedRank algorithm

- Access the rankings sequentially
- when an element has appeared in more than half of the rankings, output it in the aggregated ranking

R_{1}				
1				
2	B			
3	C			
4	D	\quad	R_{2}	
:---	:---			
1	B			
2	A			
3	D			
4	C	\quad	R_{3}	
:---	:---			
1	B			
2	C			
3	A			
4	D			

R	
1	B
2	
3	
4	

The MedRank algorithm

- Access the rankings sequentially
- when an element has appeared in more than half of the rankings, output it in the aggregated ranking

	R_{1}	R_{2}			R_{3}	
1		1				
2		2				
3	C				A	
4	D		C		D	

R	
1	B
2	A
3	
4	

The MedRank algorithm

- Access the rankings sequentially
- when an element has appeared in more than half of the rankings, output it in the aggregated ranking

	R_{1}	R_{2}				R_{3}	
1		1					
2		2					
3	-	3					
4	D						

R	
1	B
2	A
3	C
4	

The MedRank algorithm

- Access the rankings sequentially
- when an element has appeared in more than half of the rankings, output it in the aggregated ranking

R_{1}		R_{2}		R_{3}	
1		1	B	1	B
2	B	2		2	C
3	C	3	D	3	
4	D	4	C	4	D

R	
1	B
2	A
3	C
4	D

The Spearman's rank correlation

- Spearman's rank correlation

$$
S\left(R, R^{\prime}\right)=\sum_{i=1}^{n}\left(R(i)-R^{\prime}(i)\right)^{2}
$$

- Computing the optimal rank aggregation with respect to Spearman's rank correlation is the same as computing Borda Count
- Computable in polynomial time

Extensions and Applications

- Rank distance measures between partial orderings and top-k lists
- Similarity search
- Ranked Join Indices
- Analysis of Link Analysis Ranking algorithms
- Connections with machine learning

References

- A. Borodin, G. Roberts, J. Rosenthal, P. Tsaparas, Link Analysis Ranking: Algorithms, Theory and Experiments, ACM Transactions on Internet Technologies (TOIT), 5(1), 2005
- Ron Fagin, Ravi Kumar, Mohammad Mahdian, D. Sivakumar, Erik Vee, Comparing and aggregating rankings with ties, PODS 2004
- M. Tennenholtz, and Alon Altman, "On the Axiomatic Foundations of Ranking Systems", Proceedings of IJCAI, 2005
- Ron Fagin, Amnon Lotem, Moni Naor. Optimal aggregation algorithms for middleware, J. Computer and System Sciences 66 (2003), pp. 614-656. Extended abstract appeared in Proc. 2001 ACM Symposium on Principles of Database Systems (PODS '01), pp. 102-113.
- Alex Tabbarok Lecture Notes
- Ron Fagin, Ravi Kumar, D. Sivakumar Efficient similarity search and classification via rank aggregation, Proc. 2003 ACM SIGMOD Conference (SIGMOD '03), pp. 301-312.
- Cynthia Dwork, Ravi Kumar, Moni Naor, D. Sivakumar. Rank Aggregation Methods for the Web. 10th International World Wide Web Conference, May 2001.
- C. Dwork, R. Kumar, M. Naor, D. Sivakumar "Rank Aggregation Revisited," WWW10; selected as Web Search Area highlight, 2001.

