
More on Rankings

• Comparing results of Link Analysis
Ranking algorithms

• Comparing and aggregating rankings

Comparing LAR vectors

• How close are the LAR vectors w1, w2?

w1 = [1 0.8 0.5 0.3 0]

w2 = [0.9 1 0.7 0.6 0.8]

Distance between LAR vectors
• Geometric distance: how close are the

numerical weights of vectors w1, w2?

w1 = [1.0 0.8 0.5 0.3 0.0]

w2 = [0.9 1.0 0.7 0.6 0.8]

d1(w1,w2) = 0.1+0.2+0.2+0.3+0.8 = 1.6

Distance between LAR vectors
• Rank distance: how close are the

ordinal rankings induced by the
vectors w1, w2?
– Kendal’s τ distance

Outline
• Rank Aggregation
– Computing aggregate scores
– Computing aggregate rankings - voting

Rank Aggregation
• Given a set of rankings R1,R2,…,Rm of a

set of objects X1,X2,…,Xn produce a
single ranking R that is in agreement
with the existing rankings

Examples
• Voting
– rankings R1,R2,…,Rm are the voters, the

objects X1,X2,…,Xn are the candidates.

Examples
• Combining multiple scoring functions
– rankings R1,R2,…,Rm are the scoring

functions, the objects X1,X2,…,Xn are data
items.
• Combine the PageRank scores with term-

weighting scores
• Combine scores for multimedia items

– color, shape, texture
• Combine scores for database tuples

– find the best hotel according to price and location

Examples
• Combining multiple sources
– rankings R1,R2,…,Rm are the sources, the

objects X1,X2,…,Xn are data items.
• meta-search engines for the Web
• distributed databases
• P2P sources

Variants of the problem
• Combining scores
– we know the scores assigned to objects by

each ranking, and we want to compute a
single score

• Combining ordinal rankings
– the scores are not known, only the

ordering is known
– the scores are known but we do not know

how, or do not want to combine them
• e.g. price and star rating

Combining scores
• Each object Xi has m

scores (ri1,ri2,…,rim)
• The score of object Xi is

computed using an
aggregate scoring
function f(ri1,ri2,…,rim)

R1 R2 R3

X1 1 0.3 0.2

X2 0.8 0.8 0

X3 0.5 0.7 0.6

X4 0.3 0.2 0.8

X5 0.1 0.1 0.1

Combining scores
• Each object Xi has m

scores (ri1,ri2,…,rim)
• The score of object Xi is

computed using an
aggregate scoring function
f(ri1,ri2,…,rim)
– f(ri1,ri2,…,rim) = min{ri1,ri2,

…,rim}

R1 R2 R3 R

X1 1 0.3 0.2 0.2

X2 0.8 0.8 0 0

X3 0.5 0.7 0.6 0.5

X4 0.3 0.2 0.8 0.2

X5 0.1 0.1 0.1 0.1

Combining scores
• Each object Xi has m scores

(ri1,ri2,…,rim)
• The score of object Xi is

computed using an
aggregate scoring function
f(ri1,ri2,…,rim)
– f(ri1,ri2,…,rim) = max{ri1,ri2,

…,rim}

R1 R2 R3 R

X1 1 0.3 0.2 1

X2 0.8 0.8 0 0.8

X3 0.5 0.7 0.6 0.7

X4 0.3 0.2 0.8 0.8

X5 0.1 0.1 0.1 0.1

Combining scores
• Each object Xi has m scores

(ri1,ri2,…,rim)
• The score of object Xi is

computed using an
aggregate scoring function
f(ri1,ri2,…,rim)
– f(ri1,ri2,…,rim) = ri1 + ri2 + …+

rim

R1 R2 R3 R

X1 1 0.3 0.2 1.5

X2 0.8 0.8 0 1.6

X3 0.5 0.7 0.6 1.8

X4 0.3 0.2 0.8 1.3

X5 0.1 0.1 0.1 0.3

Top-k
• Given a set of n objects and m scoring lists

sorted in decreasing order, find the top-k
objects according to a scoring function f

• top-k: a set T of k objects such that f(rj1,
…,rjm) ≤ f(ri1,…,rim) for every object Xi in T
and every object Xj not in T

• Assumption: The function f is monotone
– f(r1,…,rm) ≤ f(r1’,…,rm’) if ri ≤ ri’ for all i

• Objective: Compute top-k with the minimum
cost

Cost function
• We want to minimize the number of accesses

to the scoring lists
• Sorted accesses: sequentially access the

objects in the order in which they appear in
a list
– cost Cs

• Random accesses: obtain the cost value for a
specific object in a list
– cost Cr

• If s sorted accesses and r random accesses
minimize s Cs + r Cr

Example

• Compute top-2 for the sum aggregate
function

R1R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0

Fagin’s Algorithm
1. Access sequentially all lists in parallel

until there are k objects that have
been seen in all lists

R1R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0

Fagin’s Algorithm
1. Access sequentially all lists in parallel

until there are k objects that have
been seen in all lists

R1R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0

Fagin’s Algorithm
1. Access sequentially all lists in parallel

until there are k objects that have
been seen in all lists

R1R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0

Fagin’s Algorithm
1. Access sequentially all lists in parallel

until there are k objects that have
been seen in all lists

R1R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0

Fagin’s Algorithm
1. Access sequentially all lists in parallel

until there are k objects that have
been seen in all lists

R1R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0

Fagin’s Algorithm
2. Perform random accesses to obtain

the scores of all seen objects

R1R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0

Fagin’s Algorithm
3. Compute score for all objects and

find the top-k

R1R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0

RR

X3 1.8

X2 1.6

X1 1.5

X4 1.3

Fagin’s Algorithm
• X5 cannot be in the top-2 because of

the monotonicity property
– f(X5) ≤ f(X1) ≤ f(X3)

R1R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0

RR

X3 1.8

X2 1.6

X1 1.5

X4 1.3

Fagin’s Algorithm
• The algorithm is cost optimal under

some probabilistic assumptions for a
restricted class of aggregate functions

Threshold algorithm
1. Access the elements sequentially

R1R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0

Threshold algorithm
1. At each sequential access

a. Set the threshold t to be the aggregate of
the scores seen in this access

R1R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0

t = 2.6

Threshold algorithm
1. At each sequential access

b. Do random accesses and compute the
score of the objects seen

R1R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0

X1 1.5

X2 1.6

X4 1.3

t = 2.6

Threshold algorithm
1. At each sequential access

c. Maintain a list of top-k objects seen so
far

R1R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0

X2 1.6

X1 1.5

t = 2.6

Threshold algorithm
1. At each sequential access

d. When the scores of the top-k are greater
or equal to the threshold, stop

R1R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0

t = 2.1

X3 1.8

X2 1.6

Threshold algorithm
1. At each sequential access

d. When the scores of the top-k are greater
or equal to the threshold, stop

R1R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0

t = 1.0

X3 1.8

X2 1.6

Threshold algorithm
2. Return the top-k seen so far

R1R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0

t = 1.0

X3 1.8

X2 1.6

Threshold algorithm
• From the monotonicity property for

any object not seen, the score of the
object is less than the threshold
– f(X5) ≤ t ≤ f(X2)

• The algorithm is instance cost-optimal
– within a constant factor of the best

algorithm on any database

Combining rankings
• In many cases the scores are not known

– e.g. meta-search engines – scores are proprietary
information

• … or we do not know how they were obtained
– one search engine returns score 10, the other 100. What

does this mean?
• … or the scores are incompatible

– apples and oranges: does it make sense to combine price
with distance?

• In this cases we can only work with the rankings

The problem
• Input: a set of rankings R1,R2,…,Rm of

the objects X1,X2,…,Xn. Each ranking Ri
is a total ordering of the objects
– for every pair Xi,Xj either Xi is ranked above

Xj or Xj is ranked above Xi

• Output: A total ordering R that
aggregates rankings R1,R2,…,Rm

Voting theory
• A voting system is a rank aggregation

mechanism
• Long history and literature
– criteria and axioms for good voting

systems

What is a good voting
system?

• The Condorcet criterion
– if object A defeats every other object in a

pairwise majority vote, then A should be ranked
first

• Extended Condorcet criterion
– if the objects in a set X defeat in pairwise

comparisons the objects in the set Y then the
objects in X should be ranked above those in Y

• Not all voting systems satisfy the Condorcet
criterion!

Pairwise majority
comparisons

• Unfortunately the Condorcet winner
does not always exist
– irrational behavior of groups

V1 V2 V3

1 A B C

2 B C A

3 C A B

A > B B > C C > A

Pairwise majority
comparisons

• Resolve cycles by imposing an agenda

V1 V2 V3

1 A D E

2 B E A

3 C A B

4 D B C

5 E C D

Pairwise majority
comparisons

• Resolve cycles by imposing an agenda

V1 V2 V3

1 A D E

2 B E A

3 C A B

4 D B C

5 E C D

A B

A

Pairwise majority
comparisons

• Resolve cycles by imposing an agenda

V1 V2 V3

1 A D E

2 B E A

3 C A B

4 D B C

5 E C D

A B

A E

E

Pairwise majority
comparisons

• Resolve cycles by imposing an agenda

V1 V2 V3

1 A D E

2 B E A

3 C A B

4 D B C

5 E C D

A B

A E

E D

D

Pairwise majority
comparisons

• Resolve cycles by imposing an agenda

• C is the winner

V1 V2 V3

1 A D E

2 B E A

3 C A B

4 D B C

5 E C D

A B

A E

E D

D C

C

Pairwise majority
comparisons

• Resolve cycles by imposing an agenda

• But everybody prefers A or B over C

V1 V2 V3

1 A D E

2 B E A

3 C A B

4 D B C

5 E C D

A B

A E

E D

D C

C

Pairwise majority
comparisons

• The voting system is not Pareto
optimal
– there exists another ordering that

everybody prefers

• Also, it is sensitive to the order of
voting

Plurality vote
• Elect first whoever has more 1st

position votes

• Does not find a Condorcet winner (C in
this case)

voters 10 8 7

1 A C B

2 B A C

3 C B A

Plurality with runoff
• If no-one gets more than 50% of the

1st position votes, take the majority
winner of the first two

voters 10 8 7 2

1 A C B B

2 B A C A

3 C B A C

first round: A 10, B 9, C 8
second round: A 18, B 9
winner: A

Plurality with runoff
• If no-one gets more than 50% of the

1st position votes, take the majority
winner of the first two

voters 10 8 7 2

1 A C B A

2 B A C B

3 C B A C

first round: A 12, B 7, C 8
second round: A 12, C 15
winner: C!

change the order
of
A and B in the last
column

Positive Association axiom
• Plurality with runoff violates the

positive association axiom

• Positive association axiom: positive
changes in preferences for an object
should not cause the ranking of the
object to decrease

Borda Count
• For each ranking, assign to object X,

number of points equal to the number
of objects it defeats
– first position gets n-1 points, second n-2,

…, last 0 points
• The total weight of X is the number of

points it accumulates from all rankings

Borda Count

• Does not always produce Condorcet
winner

voters 3 2 2

1 (3p) A B C

2 (2p) B C D

3 (1p) C D A

4 (0p) D A B

A: 3*3 + 2*0 + 2*1 = 11p
B: 3*2 + 2*3 + 2*0 = 12p
C: 3*1 + 2*2 + 2*3 = 13p
D: 3*0 + 2*1 + 2*2 = 6p

BC

C

B

A

D

Borda Count
• Assume that D is removed from the vote

• Changing the position of D changes the
order of the other elements!

voters 3 2 2

1 (2p) A B C

2 (1p) B C A

3 (0p) C A B

A: 3*2 + 2*0 + 2*1 = 7p
B: 3*1 + 2*2 + 2*0 = 7p
C: 3*0 + 2*1 + 2*2 = 6p

BC

B

A

C

Independence of Irrelevant
Alternatives

• The relative ranking of X and Y should
not depend on a third object Z
– heavily debated axiom

Borda Count
• The Borda Count of an an object X is

the aggregate number of pairwise
comparisons that the object X wins
– follows from the fact that in one ranking X

wins all the pairwise comparisons with
objects that are under X in the ranking

Voting Theory
• Is there a voting system that does not

suffer from the previous shortcomings?

Arrow’s Impossibility Theorem
• No voting system satisfies the following axioms

– Universality
• all inputs are possible

– Completeness and Transitivity
• for each input we produce an answer and it is meaningful

– Positive Assosiation
• Promotion of a certain option cannot lead to a worse ranking of this

option.
– Independence of Irrelevant Alternatives

• Changes in individuals' rankings of irrelevant alternatives (ones
outside a certain subset) should have no impact on the societal
ranking of the subset.

– Non-imposition
• Every possible societal preference order should be achievable by some

set of individual preference orders
– Non-dictatoriship

• KENNETH J. ARROW Social Choice and Individual
Values (1951). Won Nobel Prize in 1972

Kemeny Optimal Aggregation
• Kemeny distance K(R1,R2): The number of pairs of nodes

that are ranked in a different order (Kendall-tau)

• Kemeny optimal aggregation minimizes

• Kemeny optimal aggregation satisfies the Condorcet
criterion and the extended Condorcet criterion

• …but it is NP-hard to compute
– easy 2-approximation by obtaining the best of the input

rankings, but it is not “interesting”

K(R,R1, . . . , Rm) =
mX

i=1

K(R,Ri)

Rankings as pairwise
comparisons

• If element u is before element v, then
u is preferred to v

• From input rankings output majority
tournaments G = (U,A):
– for u,v in U, if the majority of the rankings

prefer u to v, then add (u,v) to A

60

The KwikSort algorithm
• KwikSort(G=(U,A))
– if U is empty return empty list
– U1 = U2 = empty set
– pick random pivot u from U
– For all v in U\{u}
• if (v,u) is in A then add v to U1
• else add v to U2

– G1 = (U1,A1)
– G2 = (U2,A2)
– Return KwikSort(G1),u,KwikSort(G2)

61

Properties of the KwikSort
algorithm

• KwikSort algorithm is a 3-approximation
algorithm to the Kemeny aggregation
problem

62

Locally Kemeny optimal aggregation

• A ranking R is locally Kemeny optimal if
there is no bubble-sort swap of two
consecutively placed objects that produces a
ranking R’ such that

• K(R’,R1,…,Rm)≤ K(R,R1,…,Rm)

• Locally Kemeny optimal is not necessarily
Kemeny optimal

•

Locally Kemeny optimal aggregation

• Locally Kemeny optimal aggregation can be
computed in polynomial time
– At the i-th iteration insert the i-th element x in

the bottom of the list, and bubble it up until
there is an element y such that the majority
places y over x

• Locally Kemeny optimal aggregation satisfies
the Condorcet and extended Condorcet
criterion

Rank Aggregation algorithm [DKNS01]

• Start with an aggregated ranking and
make it into a locally Kemeny optimal
aggregation

• How do we select the initial
aggregation?
– Use another aggregation method
– Create a Markov Chain where you move

from an object X, to another object Y that
is ranked higher by the majority

Spearman’s footrule distance
• Spearman’s footrule distance: The

difference between the ranks R(i) and
R’(i) assigned to object i

• Relation between Spearman’s footrule
and Kemeny distance

Spearman’s footrule
aggregation

• Find the ranking R, that minimizes

• The optimal Spearman’s footrule aggregation
can be computed in polynomial time
– It also gives a 2-approximation to the Kemeny

optimal aggregation

• If the median ranks of the objects are unique
then this ordering is optimal

F (R,R1, . . . , Rm) =
mX

i=1

F (R,Ri)

Example

R1R1

1 A

2 B

3 C

4 D

R2R2

1 B

2 A

3 D

4 C

R3R3

1 B

2 C

3 A

4 D

A: (1 , 2 , 3)
B: (1 , 1 , 2)
C: (2 , 3 , 4)
D: (3 , 4 , 4)

RR

1 B

2 A

3 C

4 D

The MedRank algorithm
• Access the rankings sequentially

R1R1

1 A

2 B

3 C

4 D

R2R2

1 B

2 A

3 D

4 C

R3R3

1 B

2 C

3 A

4 D

RR

1

2

3

4

The MedRank algorithm
• Access the rankings sequentially
– when an element has appeared in more

than half of the rankings, output it in the
aggregated ranking
R1R1

1 A

2 B

3 C

4 D

R2R2

1 B

2 A

3 D

4 C

R3R3

1 B

2 C

3 A

4 D

RR

1 B

2

3

4

The MedRank algorithm
• Access the rankings sequentially
– when an element has appeared in more

than half of the rankings, output it in the
aggregated ranking
R1R1

1 A

2 B

3 C

4 D

R2R2

1 B

2 A

3 D

4 C

R3R3

1 B

2 C

3 A

4 D

RR

1 B

2 A

3

4

The MedRank algorithm
• Access the rankings sequentially
– when an element has appeared in more

than half of the rankings, output it in the
aggregated ranking
R1R1

1 A

2 B

3 C

4 D

R2R2

1 B

2 A

3 D

4 C

R3R3

1 B

2 C

3 A

4 D

RR

1 B

2 A

3 C

4

The MedRank algorithm
• Access the rankings sequentially
– when an element has appeared in more

than half of the rankings, output it in the
aggregated ranking
R1R1

1 A

2 B

3 C

4 D

R2R2

1 B

2 A

3 D

4 C

R3R3

1 B

2 C

3 A

4 D

RR

1 B

2 A

3 C

4 D

The Spearman’s rank
correlation

• Spearman’s rank correlation

• Computing the optimal rank aggregation
with respect to Spearman’s rank
correlation is the same as computing
Borda Count
– Computable in polynomial time

S(R,R0) =
nX

i=1

(R(i)�R0(i))
2

Extensions and Applications
• Rank distance measures between

partial orderings and top-k lists
• Similarity search
• Ranked Join Indices
• Analysis of Link Analysis Ranking

algorithms
• Connections with machine learning

References
• A. Borodin, G. Roberts, J. Rosenthal, P. Tsaparas, Link Analysis Ranking:

Algorithms, Theory and Experiments, ACM Transactions on Internet
Technologies (TOIT), 5(1), 2005

• Ron Fagin, Ravi Kumar, Mohammad Mahdian, D. Sivakumar, Erik Vee,
Comparing and aggregating rankings with ties , PODS 2004

• M. Tennenholtz, and Alon Altman, "On the Axiomatic Foundations of Ranking
Systems", Proceedings of IJCAI, 2005

• Ron Fagin, Amnon Lotem, Moni Naor. Optimal aggregation algorithms for
middleware, J. Computer and System Sciences 66 (2003), pp. 614-656.
Extended abstract appeared in Proc. 2001 ACM Symposium on Principles of
Database Systems (PODS '01), pp. 102-113.

• Alex Tabbarok Lecture Notes
• Ron Fagin, Ravi Kumar, D. Sivakumar Efficient similarity search and

classification via rank aggregation, Proc. 2003 ACM SIGMOD Conference
(SIGMOD '03), pp. 301-312.

• Cynthia Dwork, Ravi Kumar, Moni Naor, D. Sivakumar. Rank Aggregation
Methods for the Web. 10th International World Wide Web Conference, May
2001.

• C. Dwork, R. Kumar, M. Naor, D. Sivakumar, "Rank Aggregation Revisited,"
WWW10; selected as Web Search Area highlight, 2001.

