Recommendation Systems

Slides by: Anand Rajaraman, Jeffrey D. Ullman
Search

Recommendations

Items

Products, web sites, blogs, news items, …
From Scarcity to Abundance

- Shelf space is a scarce commodity for traditional retailers
 - Also: TV networks, movie theaters,…

- The web enables near-zero-cost dissemination of information about products
 - From scarcity to abundance

- More choice necessitates better filters
 - Recommendation engines
Recommendation Types

- Editorial
- Simple aggregates
 - Top 10, Most Popular, Recent Uploads
- Tailored to individual users
 - Amazon, Netflix, …
Formal Model

- \(C = \text{set of Customers} \)
- \(S = \text{set of Items} \)
- Utility function \(u: C \times S \rightarrow R \)
 - \(R = \text{set of ratings} \)
 - \(R \) is a totally ordered set
 - e.g., 0-5 stars, real number in \([0,1]\)
Utility Matrix

<table>
<thead>
<tr>
<th></th>
<th>King Kong</th>
<th>LOTR</th>
<th>Matrix</th>
<th>Nacho Libre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>1</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bob</td>
<td>0.5</td>
<td></td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Carol</td>
<td>0.2</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>David</td>
<td></td>
<td></td>
<td></td>
<td>0.4</td>
</tr>
</tbody>
</table>
Key Problems

• Gathering “known” ratings for matrix

• Extrapolate unknown ratings from known ratings

• Mainly interested in high unknown ratings

• Evaluating extrapolation methods
Gathering Ratings

• Explicit
 • Ask people to rate items
 • Doesn’t work well in practice – people can’t be bothered

• Implicit
 • Learn ratings from user actions
 • e.g., purchase implies high rating
 • What about low ratings?
Extrapolating Utilities

• Key problem: matrix U is sparse
 • most people have not rated most items

• Three approaches
 • Content-based
 • Collaborative
 • Hybrid
Content-based recommendations

• Main idea: recommend items to customer C similar to previous items rated highly by C

• Movie recommendations
 • recommend movies with same actor(s), director, genre, …

• Websites, blogs, news
 • recommend other sites with “similar” content
Plan of Action

recommend

likes

match

build

Item profiles

Red Circles Triangles

User profile
Item Profiles

• For each item, create an **item profile**

• Profile is a set of features

 • movies: author, title, actor, director, …

 • text: set of “important” words in document

• How to pick important words?

 • Usual heuristic is TFIDF (Term Frequency times Inverse Doc Frequency)
TF.IDF

$f_{ij} = \text{frequency of term } t_i \text{ in document } d_j$

$$TF_{ij} = \frac{f_{ij}}{\max_k f_{kj}}$$

$n_i = \text{number of docs that mention term } i$

$N = \text{total number of docs}$

$$IDF_i = \log \frac{N}{n_i}$$

TF.IDF score $w_{ij} = TF_{ij} \times IDF_i$

Doc profile = set of words with highest TF.IDF scores, together with their scores
User profiles and prediction

- User profile possibilities:
 - Weighted average of rated item profiles
 - Variation: weight by difference from average rating for item ...

- Prediction heuristic
 - Given user profile \mathbf{c} and item profile \mathbf{s}, estimate $u(\mathbf{c}, \mathbf{s}) = \cos(\mathbf{c}, \mathbf{s}) = \frac{\mathbf{c} \cdot \mathbf{s}}{||\mathbf{c}|| \cdot ||\mathbf{s}||}$
 - Need efficient method to find items with high utility: later
Model-based approaches

- For each user, learn a classifier that classifies items into rating classes
 - liked by user and not liked by user
- Apply classifier to each item to find recommendation candidates
- Problem: scalability -- will not investigate further
Limitations of content-based approach

- Finding the appropriate features
 - e.g., images, movies, music
- Overspecialization
 - Never recommends items outside user’s content profile
- People might have multiple interests
- Recommendations for new users
 - How to build a profile?
Collaborative filtering

• Consider user c

• Find set D of other users whose ratings are “similar” to c’s ratings

• Estimate user’s ratings based on ratings of users in D
Similar Users

- Let \(r_x \) be the vector of user x’s ratings
- Cosine similarity measure
 \[
 \text{sim}(x,y) = \cos(r_x, r_y)
 \]
- Pearson correlation coefficient
 \[
 \text{sim}(x,y) = \frac{\sum_{s \in S_{xy}} (r_{xs} - \bar{r}_x)(r_{ys} - \bar{r}_y)}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \bar{r}_x)^2 (r_{ys} - \bar{r}_y)^2}}
 \]
- \(S_{xy} \) = items rated by both users x and y
Complexity

- Expensive step is finding k most similar customers
 - $O(|U|)$

- Too expensive to do at runtime

- Need to pre-compute

- Naïve precomputation takes time $O(N|U|)$

- Simple trick gives some speedup

- Can use clustering, partitioning as alternatives, but quality degrades
Item-item collaborative filtering

- So far: User-user collaborative filtering
- Another view
 - For item s, find other similar items
 - Estimate rating for item based on ratings for similar items
 - Can use same similarity metrics and prediction functions as in user-user model
- In practice, it has been observed that item-item often works better than user-user
Pros and Cons of Collaborative Filtering

- Works for any kind of item
- No feature selection needed
- New user problem
- New item problem
- Sparsity of rating matrix
- Cluster-based smoothing?
Hybrid Methods

- Implement two separate recommenders and combine predictions
- Add content-based methods to collaborative filtering
 - item profiles for new item problem
 - demographics to deal with new user problem
Evaluating Predictions

• Compare predictions with known ratings
 • Root-mean-square error (RMSE)
• Another approach: 0/1 model
 • Coverage
 • Number of items/users for which system can make predictions
• Precision
 • Accuracy of predictions
• Receiver operating characteristic (ROC)
 • Tradeoff curve between false positives and false negatives
Problems with Measures

- Narrow focus on accuracy sometimes misses the point
- Prediction Diversity
- Prediction Context
- Order of predictions
- In practice, we care only to predict high ratings
- RMSE might penalize a method that does well for high ratings and badly for others
Add Data

- Leverage all the data
- Don’t try to reduce data size in an effort to make fancy algorithms work
- Simple methods on large data do best
- Add more data
 - e.g., add IMDB data on genres
- More Data Beats Better Algorithms

http://anand.typepad.com/datawocky/2008/03/more-data-usual.html
Finding similar vectors

- Common problem that comes up in many settings
- Given a large number N of vectors in some high-dimensional space (M dimensions), find pairs of vectors that have high cosine-similarity
- e.g., user profiles, item profiles
How can we compute matrices \(P \) and \(Q \) such that \(R = PxQ \)
Computing Latent Factors

$$\min_{P,Q} \sum_{(i,j) \in R} (R(i,j) - P(i,:)Q(:,j))^2$$

- SVD could be used but we have **missing entries**
- Specialized methods!
Computing Latent Factors

\[\min_{P,Q} \sum_{(i,j) \in R} (R(i,j) - P(i,:)Q(:,j))^2 \]
Computing Latent Factors

\[\min_{P,Q} \sum_{(i,j) \in R} (R(i,j) - P(i,:)Q(:,j))^2 \]

- SVD:
 \[\min_{V,\Sigma,U} \sum_{(i,j) \in R} (R(i,j) - (U\Sigma V^T)(i,j))^2 \]

\[P = U \quad Q = \Sigma V^T \]
Dealing with missing entries

• **Want to:** minimize Sum Square Error (SSE) on unseen test data

• **Idea:** Minimize SSE on training data

\[
\min_{P,Q} \sum_{(i,j) \in \text{Training}} (R(i,j) - P(i,:)Q(:,j))^2 + \lambda \left(\sum_{i,j} P(i,j)^2 + \sum_{i,j} Q(i,j)^2 \right)
\]