
Recommendation
Systems

Slides by: Anand Rajaraman, Jeffrey D. Ullman

Items

Search Recommendations

Products, web sites, blogs, news items, …

• Shelf space is a scarce commodity for traditional
retailers

• Also: TV networks, movie theaters,…

• The web enables near-zero-cost dissemination of
information about products

• From scarcity to abundance

• More choice necessitates better filters

• Recommendation engines

From Scarcity to Abundance

Source: Chris Anderson (2004)

• Editorial

• Simple aggregates

• Top 10, Most Popular, Recent Uploads

• Tailored to individual users

• Amazon, Netflix, …

Recommendation Types

• C = set of Customers

• S = set of Items

• Utility function u: C x S -> R

• R = set of ratings

• R is a totally ordered set

• e.g., 0-5 stars, real number in [0,1]

Formal Model

King Kong LOTR Matrix Nacho Libre

Alice

Bob

Carol

David

Utility Matrix

• Gathering “known” ratings for matrix

• Extrapolate unknown ratings from known
ratings

• Mainly interested in high unknown ratings

• Evaluating extrapolation methods

Key Problems

• Explicit

• Ask people to rate items

• Doesn’t work well in practice – people can’t be
bothered

• Implicit

• Learn ratings from user actions

• e.g., purchase implies high rating

• What about low ratings?

Gathering Ratings

• Key problem: matrix U is sparse

• most people have not rated most items

• Three approaches

• Content-based

• Collaborative

• Hybrid

Extrapolating Utilities

• Main idea: recommend items to customer C
similar to previous items rated highly by C

• Movie recommendations

• recommend movies with same actor(s), director,
genre, …

• Websites, blogs, news

• recommend other sites with “similar” content

Content-based recommendations

likes
Item profiles

Red
Circles

Triangles

User profile

match

recommend
build

Plan of Action

• For each item, create an item profile

• Profile is a set of features

• movies: author, title, actor, director,…

• text: set of “important” words in document

• How to pick important words?

• Usual heuristic is TF.IDF (Term Frequency times
Inverse Doc Frequency)

Item Profiles

fij = frequency of term ti in document dj

ni = number of docs that mention term i

N = total number of docs

TF.IDF score wij = TFij x IDFi

Doc profile = set of words with highest TF.IDF
scores, together with their scores

TF.IDF

• User profile possibilities:

• Weighted average of rated item profiles

• Variation: weight by difference from average rating for item ...

• Prediction heuristic

• Given user profile c and item profile s, estimate u(c,s) =
cos(c,s) = c.s/(|c||s|)

• Need efficient method to find items with high utility: later

User profiles and prediction

• For each user, learn a classifier that classifies
items into rating classes

• liked by user and not liked by user

• Apply classifier to each item to find
recommendation candidates

• Problem: scalability -- will not investigate
further

Model-based approaches

• Finding the appropriate features

• e.g., images, movies, music

• Overspecialization

• Never recommends items outside user’s content profile

• People might have multiple interests

• Recommendations for new users

• How to build a profile?

Limitations of content-based approach

• Consider user c

• Find set D of other users whose ratings are
“similar” to c’s ratings

• Estimate user’s ratings based on ratings of
users in D

Collaborative filtering

• Let rx be the vector of user x’s ratings

• Cosine similarity measure

• sim(x,y) = cos(rx , ry)

• Pearson correlation coefficient

• Sxy = items rated by both users x and y

Similar Users

• Expensive step is finding k most similar customers

• O(|U|)

• Too expensive to do at runtime

• Need to pre-compute

• Naïve precomputation takes time O(N|U|)

• Simple trick gives some speedup

• Can use clustering, partitioning as alternatives, but quality
degrades

Complexity

• So far: User-user collaborative filtering

• Another view

• For item s, find other similar items

• Estimate rating for item based on ratings for similar items

• Can use same similarity metrics and prediction functions as
in user-user model

• In practice, it has been observed that item-item often works
better than user-user

Item-item collaborative filtering

• Works for any kind of item

• No feature selection needed

• New user problem

• New item problem

• Sparsity of rating matrix

• Cluster-based smoothing?

Pros and Cons of Collaborative Filtering

• Implement two separate recommenders and
combine predictions

• Add content-based methods to collaborative
filtering

• item profiles for new item problem

• demographics to deal with new user problem

Hybrid Methods

• Compare predictions with known ratings

• Root-mean-square error (RMSE)

• Another approach: 0/1 model

• Coverage

• Number of items/users for which system can make predictions

• Precision

• Accuracy of predictions

• Receiver operating characteristic (ROC)

• Tradeoff curve between false positives and false negatives

Evaluating Predictions

• Narrow focus on accuracy sometimes misses
the point

• Prediction Diversity

• Prediction Context

• Order of predictions

• In practice, we care only to predict high ratings

• RMSE might penalize a method that does
well for high ratings and badly for others

Problems with Measures

• Leverage all the data

• Don’t try to reduce data size in an effort to
make fancy algorithms work

• Simple methods on large data do best

• Add more data

• e.g., add IMDB data on genres

• More Data Beats Better Algorithms

http://anand.typepad.com/datawocky/2008/03/more-data-usual.html

Add Data

http://anand.typepad.com/datawocky/2008/03/more-data-usual.html
http://anand.typepad.com/datawocky/2008/03/more-data-usual.html

• Common problem that comes up in many settings

• Given a large number N of vectors in some high-
dimensional space (M dimensions), find pairs of
vectors that have high cosine-similarity

• e.g., user profiles, item profiles

Finding similar vectors

Latent Factors

Items

U
se

rs

R ~

U
se

rs

Factors

Fa
ct

or
s

Items
xP

Q

How can we compute matrices P and Q such that R = PxQ

Computing Latent Factors

min
P,Q

X

(i,j)2R

(R(i, j)� P (i, :)Q(:, j))2

• SVD could be used but we have missing entries

• Specialized methods!

Computing Latent Factors

Items

U
se

rs

R ~

U
se

rs

Factors

Fa
ct

or
s

Items
xP

Q

min
P,Q

X

(i,j)2R

(R(i, j)� P (i, :)Q(:, j))2

Computing Latent Factors

min
P,Q

X

(i,j)2R

(R(i, j)� P (i, :)Q(:, j))2

• SVD:

min
V,⌃,U

X

(i,j)2R

�
R(i, j)� (U⌃V T)(i, j)

�2

P = U Q = ⌃V T

Dealing with missing entries
• Want to: minimize Sum Square Error (SSE) on

unseen test data

• Idea: Minimize SSE on training data

min
P,Q

X

(i,j) Training

(R(i, j)� P (i, :)Q(:, j))2 + �

0

@
X

i,j

P (i, j)2 +
X

i,j

Q(i, j)2

1

A

