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The recommender-system challenge

Want to predict all preferences, but 
we know only 1% of the entries!
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Matrix completion 

8

Input: 
Partially-observed matrix

Goal: 
Find a low-error completion of the remaining entries

Not any input can be recovered well, and there exist 
some conditions the true matrix must meet.

How can we reconstruct a matrix with only 1% of the 
entries?
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Statistical methods for matrix completion

9This problem is NP-hard. 

minimize rank( bT )

Assumptions:
1. Underlying true matrix T is low rank

Find an estimate     by solving the optimization problem:

subject to Tij =
bTij for (i, j) 2 ⌦

bT

Observed set 
of entries
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9This problem is NP-hard. 

minimize rank( bT )

Assumptions:
1. Underlying true matrix T is low rank

Find an estimate     by solving the optimization problem:

subject to Tij =
bTij for (i, j) 2 ⌦

bT

Observed set 
of entries
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Alternating least squares

11

Assumptions:
1. Underlying T is low rank
2. Known rank r
3. The matrix can be written as a product 
1.  X is of size nxr 
2.  Y is of size mxr 

Problem:

T = XY T

min
X,Y,bT

1

2
kXY � bTk2F

subject to Tij = bTij (i, j) 2 ⌦

Wen et.al. 2012, Jain et al. 
2013...
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Characteristics
Such optimization approaches output an estimate of 

the whole matrix    on any input – any size Ω.

Compute error on observed entries: 

What if we want very small error?
How may entries     do we need to have?

bT⌦ vs. T⌦

⌦
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Information-theoretic lower bound

When      is sampled at random the number of 
entries needs to be at least:

Coupon Collector argument: given n coupons, how 
many times do you need to draw (with replacement) 
to collect at least r of each?

Candes, Plan 2009

REMIND 
ABOUT 
OMEGA

⌦

rn log n
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In practice
Most matrices have less entries than the lower bound.

Netflix:  480189 x  17770, winning solution was rank=40
                           = 9.91e+07                 
                           = 2.51e+08

Not enough entries.

Since the lower bound relies on random sampling, we can 
sample unknown entries randomly.  (e.g. Netflix survey)

This would require about 151,000,000 samples!

|⌦|
rn log n
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Algebraic lower bound
In an               matrix of rank    , there are 

degrees of freedom. Once this many carefully-chosen 
entries are fixed, there should be a unique recovery.

r

n⇥m r
r(n+m� r)

r
m

n
nr +mr � r2 = r(n+m� r)
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Targeted than random?

A targeted addition of entries (versus random), would 
only require:

Randomly 
sampled

Carefully 
sampled

r(n+m� r) ⌧ rn log(n)
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Given a non-completable 
partially-observed matrix, 
what is the minimum set 

of unobserved entries that 
need to be queried so that the 

error is low?
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Can we do that by querying 
entries as close as possible to  

r(n+m� r) ⌧ rn log(n) ?

YES!
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Methodology overview

•  
• Matrix completion as a sequence of linear systems that 

compute rows of X and columns of Y 
•

T = XY T

Empty masks: For the special case of exact rank and
✏ = 0, if the input mask ⌦ is empty, i.e., ⌦ = ;, then
ActiveCompletion can be solved optimally as follows:
simply query the entries of r rows and r columns of T . This
will require �(T, r) queries, which will construct a mask ⌦0

that determines a unique reconstruction of T . Therefore,
when the initial mask ⌦ = ;, the ActiveCompletion prob-
lem can be solved in polynomial time.

4. ALGORITHMS
In this section we present our algorithm, Order&Extend,

for addressing the ActiveCompletion problem.
The starting point for the design of Order&Extend is the

low (e↵ective) rank assumption of T . As it will become
clear, this means that the unobserved entries are related to
the observed entries through a set of linear systems. Thus
one approach to matrix completion is to solve a sequence
of linear systems; each with r unknowns. Each system in
this sequence uses observed entries in T , or entries of T
reconstructed by previously solved linear systems to infer
more missing entries.

The reconstruction error of such an algorithm depends on
the quality of the solutions to these linear systems. As we
will show below, each query of T can yield a new equation
that can be added to a linear system. Hence, if a linear
system has fewer equations than unknowns, a query must
be made to add an additional equation to the system. Like-
wise, if solving a system is numerically unstable then a query
must be made to add an equation that will stabilize it. Cru-
cially, the need for such queries depends on the nature of
the solutions obtained to linear systems earlier in the order.
Thus the order in which systems are solved, and the nature
of the systems being solved, are inter-related. A good or-
dering will minimize the number of incomplete or unstable
systems being solved. However, such systems can appear
even in the best-possible order, meaning that good ordering
alone is insu�cient for accurate reconstruction.

On a high level, Order&Extend operates as follows: first,
it finds a promising ordering of the linear systems. Then,
it proceeds by solving the linear systems in this order. If a
linear system that requires additional information is encoun-
tered, the algorithm either strategically queries T or moves
the system to the end of the ordering. When all systems
have been solved, T̂ is computed and returned. The next
subsections describe these steps in detail.

4.1 Completion as a sequence
of linear systems

In this section we explain the particular linear systems
that the completion algorithm solves, the sequence in which
it solves them, and how the ordering in which systems are
solved a↵ects the quality of the completion.

For the purposes of this discussion, we assume that T is of
rank exactly r. In this case T can be expressed as the prod-
uct of two matrices X and Y of sizes n1⇥ r and r⇥n2; that
is, T = XY . Furthermore, we assume that any subset of r
rows of X, or r columns of Y , is linearly independent. (Later
we will describe how Order&Extend addresses the case when
these assumptions do not hold – i.e., when T is only e↵ec-
tively rank-r, or when an r-subset is linearly dependent). To
complete T, it su�ces to find such factors X and Y .1

1Note that X and Y are not uniquely determined; any in-
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Figure 2: An intermediate step of Sequential algorithm.

The Sequential completion algorithm: We start by de-
scribing an algorithm we call Sequential, which estimates
the rows of X and columns of Y . Sequential takes two
inputs: (1) an ordering ⇡ over the set of all rows of X and
columns of Y , which we call the reconstruction order, and
(2) the partially observed matrix T⌦.
To explain how Sequential works, consider the example

in Figure 2, where r = 2, T is on the left and G⌦ is on the
right. The factors X and Y are shown on the side of and
above T to convey how their product results in T . The nodes
V1 of G⌦ correspond to the rows of X, and nodes V2 to the
columns of Y . In this figure, we illustrate an intermediate
step of Sequential, in which the values of the i-th and i0-th
rows of X have already been computed. Each entry of T is
the inner product of a row of X and a column of Y . Hence
we can represent the depicted entries in T by the following
linear system:

T
ij

= x
i1y1j + x

i2y2j (2)

T
i

0
j

= x
i

01y1j + x
i

02y2j (3)

Observe that x
i

and x
i

0 are known, and that the edges
(x

i

, y
j

) and (x
i

0 , y
j

) corresponding to T
ij

and T
i

0
j

exist in
G⌦. The only unknowns in (1) and (2) are y1j and y2j ,
which leaves us with two equations in two unknowns. As
stated above, by assumption any r-subset of X or Y is lin-
early independent; hence one can solve uniquely for y1j and
y2j and fill in column j of Y .
To generalize the example above, the steps of Sequential

can be partitioned in x- and y-steps; at every y-step the
algorithm solves a system of the form

A
x

y = t. (4)

In this system, y is a vector of r unknowns corresponding to
the values of the column of Y we are going to compute; A

x

is an r ⇥ r fully-known submatrix of X and t is a vector of
r known entries of T which are located on the same column
as the column index of y. If A

x

and t are known, and A
x

is
full rank, then y can be computed exactly and the algorithm
can proceed to the next step.
In the x-steps Sequential evaluates a row of X using an

r ⇥ r already-computed subset of columns of Y , and a set
of r entries of T from the row of T corresponding to the
current row of X being solved for. Following the same no-
tational conventions as above, the corresponding system be-
comes A

y

x = t0. For simplicity we will focus our discussion
on y-steps; the discussion on x-steps is symmetric.

vertible r⇥ r matrix W yields new factors XW�1 and WY
which also multiply to yield T .

Empty masks: For the special case of exact rank and
✏ = 0, if the input mask ⌦ is empty, i.e., ⌦ = ;, then
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that the completion algorithm solves, the sequence in which
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For the purposes of this discussion, we assume that T is of
rank exactly r. In this case T can be expressed as the prod-
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we will describe how Order&Extend addresses the case when
these assumptions do not hold – i.e., when T is only e↵ec-
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The Sequential completion algorithm: We start by de-
scribing an algorithm we call Sequential, which estimates
the rows of X and columns of Y . Sequential takes two
inputs: (1) an ordering ⇡ over the set of all rows of X and
columns of Y , which we call the reconstruction order, and
(2) the partially observed matrix T⌦.
To explain how Sequential works, consider the example

in Figure 2, where r = 2, T is on the left and G⌦ is on the
right. The factors X and Y are shown on the side of and
above T to convey how their product results in T . The nodes
V1 of G⌦ correspond to the rows of X, and nodes V2 to the
columns of Y . In this figure, we illustrate an intermediate
step of Sequential, in which the values of the i-th and i0-th
rows of X have already been computed. Each entry of T is
the inner product of a row of X and a column of Y . Hence
we can represent the depicted entries in T by the following
linear system:

T
ij

= x
i1y1j + x

i2y2j (2)

T
i

0
j

= x
i

01y1j + x
i

02y2j (3)

Observe that x
i

and x
i

0 are known, and that the edges
(x

i

, y
j

) and (x
i

0 , y
j

) corresponding to T
ij

and T
i

0
j

exist in
G⌦. The only unknowns in (1) and (2) are y1j and y2j ,
which leaves us with two equations in two unknowns. As
stated above, by assumption any r-subset of X or Y is lin-
early independent; hence one can solve uniquely for y1j and
y2j and fill in column j of Y .
To generalize the example above, the steps of Sequential

can be partitioned in x- and y-steps; at every y-step the
algorithm solves a system of the form

A
x

y = t. (4)

In this system, y is a vector of r unknowns corresponding to
the values of the column of Y we are going to compute; A

x

is an r ⇥ r fully-known submatrix of X and t is a vector of
r known entries of T which are located on the same column
as the column index of y. If A

x

and t are known, and A
x

is
full rank, then y can be computed exactly and the algorithm
can proceed to the next step.
In the x-steps Sequential evaluates a row of X using an

r ⇥ r already-computed subset of columns of Y , and a set
of r entries of T from the row of T corresponding to the
current row of X being solved for. Following the same no-
tational conventions as above, the corresponding system be-
comes A

y

x = t0. For simplicity we will focus our discussion
on y-steps; the discussion on x-steps is symmetric.

vertible r⇥ r matrix W yields new factors XW�1 and WY
which also multiply to yield T .

r=2 Meka et.al. 2009



15

Methodology overview

Empty masks: For the special case of exact rank and
✏ = 0, if the input mask ⌦ is empty, i.e., ⌦ = ;, then
ActiveCompletion can be solved optimally as follows:
simply query the entries of r rows and r columns of T . This
will require �(T, r) queries, which will construct a mask ⌦0

that determines a unique reconstruction of T . Therefore,
when the initial mask ⌦ = ;, the ActiveCompletion prob-
lem can be solved in polynomial time.

4. ALGORITHMS
In this section we present our algorithm, Order&Extend,

for addressing the ActiveCompletion problem.
The starting point for the design of Order&Extend is the

low (e↵ective) rank assumption of T . As it will become
clear, this means that the unobserved entries are related to
the observed entries through a set of linear systems. Thus
one approach to matrix completion is to solve a sequence
of linear systems; each with r unknowns. Each system in
this sequence uses observed entries in T , or entries of T
reconstructed by previously solved linear systems to infer
more missing entries.

The reconstruction error of such an algorithm depends on
the quality of the solutions to these linear systems. As we
will show below, each query of T can yield a new equation
that can be added to a linear system. Hence, if a linear
system has fewer equations than unknowns, a query must
be made to add an additional equation to the system. Like-
wise, if solving a system is numerically unstable then a query
must be made to add an equation that will stabilize it. Cru-
cially, the need for such queries depends on the nature of
the solutions obtained to linear systems earlier in the order.
Thus the order in which systems are solved, and the nature
of the systems being solved, are inter-related. A good or-
dering will minimize the number of incomplete or unstable
systems being solved. However, such systems can appear
even in the best-possible order, meaning that good ordering
alone is insu�cient for accurate reconstruction.

On a high level, Order&Extend operates as follows: first,
it finds a promising ordering of the linear systems. Then,
it proceeds by solving the linear systems in this order. If a
linear system that requires additional information is encoun-
tered, the algorithm either strategically queries T or moves
the system to the end of the ordering. When all systems
have been solved, T̂ is computed and returned. The next
subsections describe these steps in detail.

4.1 Completion as a sequence
of linear systems

In this section we explain the particular linear systems
that the completion algorithm solves, the sequence in which
it solves them, and how the ordering in which systems are
solved a↵ects the quality of the completion.

For the purposes of this discussion, we assume that T is of
rank exactly r. In this case T can be expressed as the prod-
uct of two matrices X and Y of sizes n1⇥ r and r⇥n2; that
is, T = XY . Furthermore, we assume that any subset of r
rows of X, or r columns of Y , is linearly independent. (Later
we will describe how Order&Extend addresses the case when
these assumptions do not hold – i.e., when T is only e↵ec-
tively rank-r, or when an r-subset is linearly dependent). To
complete T, it su�ces to find such factors X and Y .1

1Note that X and Y are not uniquely determined; any in-

V1 V2

xi

yj

Tij
Ti’j

x�

x�0

xi0

xi yk x�0x�yjxi0

yk

xi01xi02

xi2xi1

Ti0j

Tij

y2j

y1j

Figure 2: An intermediate step of Sequential algorithm.

The Sequential completion algorithm: We start by de-
scribing an algorithm we call Sequential, which estimates
the rows of X and columns of Y . Sequential takes two
inputs: (1) an ordering ⇡ over the set of all rows of X and
columns of Y , which we call the reconstruction order, and
(2) the partially observed matrix T⌦.
To explain how Sequential works, consider the example

in Figure 2, where r = 2, T is on the left and G⌦ is on the
right. The factors X and Y are shown on the side of and
above T to convey how their product results in T . The nodes
V1 of G⌦ correspond to the rows of X, and nodes V2 to the
columns of Y . In this figure, we illustrate an intermediate
step of Sequential, in which the values of the i-th and i0-th
rows of X have already been computed. Each entry of T is
the inner product of a row of X and a column of Y . Hence
we can represent the depicted entries in T by the following
linear system:

T
ij

= x
i1y1j + x

i2y2j (2)

T
i

0
j

= x
i

01y1j + x
i

02y2j (3)

Observe that x
i

and x
i

0 are known, and that the edges
(x

i

, y
j

) and (x
i

0 , y
j

) corresponding to T
ij

and T
i

0
j

exist in
G⌦. The only unknowns in (1) and (2) are y1j and y2j ,
which leaves us with two equations in two unknowns. As
stated above, by assumption any r-subset of X or Y is lin-
early independent; hence one can solve uniquely for y1j and
y2j and fill in column j of Y .
To generalize the example above, the steps of Sequential

can be partitioned in x- and y-steps; at every y-step the
algorithm solves a system of the form

A
x

y = t. (4)

In this system, y is a vector of r unknowns corresponding to
the values of the column of Y we are going to compute; A

x

is an r ⇥ r fully-known submatrix of X and t is a vector of
r known entries of T which are located on the same column
as the column index of y. If A

x

and t are known, and A
x

is
full rank, then y can be computed exactly and the algorithm
can proceed to the next step.
In the x-steps Sequential evaluates a row of X using an

r ⇥ r already-computed subset of columns of Y , and a set
of r entries of T from the row of T corresponding to the
current row of X being solved for. Following the same no-
tational conventions as above, the corresponding system be-
comes A

y

x = t0. For simplicity we will focus our discussion
on y-steps; the discussion on x-steps is symmetric.

vertible r⇥ r matrix W yields new factors XW�1 and WY
which also multiply to yield T .

Empty masks: For the special case of exact rank and
✏ = 0, if the input mask ⌦ is empty, i.e., ⌦ = ;, then
ActiveCompletion can be solved optimally as follows:
simply query the entries of r rows and r columns of T . This
will require �(T, r) queries, which will construct a mask ⌦0

that determines a unique reconstruction of T . Therefore,
when the initial mask ⌦ = ;, the ActiveCompletion prob-
lem can be solved in polynomial time.

4. ALGORITHMS
In this section we present our algorithm, Order&Extend,
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clear, this means that the unobserved entries are related to
the observed entries through a set of linear systems. Thus
one approach to matrix completion is to solve a sequence
of linear systems; each with r unknowns. Each system in
this sequence uses observed entries in T , or entries of T
reconstructed by previously solved linear systems to infer
more missing entries.

The reconstruction error of such an algorithm depends on
the quality of the solutions to these linear systems. As we
will show below, each query of T can yield a new equation
that can be added to a linear system. Hence, if a linear
system has fewer equations than unknowns, a query must
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wise, if solving a system is numerically unstable then a query
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The Sequential completion algorithm: We start by de-
scribing an algorithm we call Sequential, which estimates
the rows of X and columns of Y . Sequential takes two
inputs: (1) an ordering ⇡ over the set of all rows of X and
columns of Y , which we call the reconstruction order, and
(2) the partially observed matrix T⌦.
To explain how Sequential works, consider the example

in Figure 2, where r = 2, T is on the left and G⌦ is on the
right. The factors X and Y are shown on the side of and
above T to convey how their product results in T . The nodes
V1 of G⌦ correspond to the rows of X, and nodes V2 to the
columns of Y . In this figure, we illustrate an intermediate
step of Sequential, in which the values of the i-th and i0-th
rows of X have already been computed. Each entry of T is
the inner product of a row of X and a column of Y . Hence
we can represent the depicted entries in T by the following
linear system:
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G⌦. The only unknowns in (1) and (2) are y1j and y2j ,
which leaves us with two equations in two unknowns. As
stated above, by assumption any r-subset of X or Y is lin-
early independent; hence one can solve uniquely for y1j and
y2j and fill in column j of Y .
To generalize the example above, the steps of Sequential

can be partitioned in x- and y-steps; at every y-step the
algorithm solves a system of the form

A
x

y = t. (4)

In this system, y is a vector of r unknowns corresponding to
the values of the column of Y we are going to compute; A
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is an r ⇥ r fully-known submatrix of X and t is a vector of
r known entries of T which are located on the same column
as the column index of y. If A
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and t are known, and A
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is
full rank, then y can be computed exactly and the algorithm
can proceed to the next step.
In the x-steps Sequential evaluates a row of X using an

r ⇥ r already-computed subset of columns of Y , and a set
of r entries of T from the row of T corresponding to the
current row of X being solved for. Following the same no-
tational conventions as above, the corresponding system be-
comes A
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x = t0. For simplicity we will focus our discussion
on y-steps; the discussion on x-steps is symmetric.

vertible r⇥ r matrix W yields new factors XW�1 and WY
which also multiply to yield T .

Empty masks: For the special case of exact rank and
✏ = 0, if the input mask ⌦ is empty, i.e., ⌦ = ;, then
ActiveCompletion can be solved optimally as follows:
simply query the entries of r rows and r columns of T . This
will require �(T, r) queries, which will construct a mask ⌦0

that determines a unique reconstruction of T . Therefore,
when the initial mask ⌦ = ;, the ActiveCompletion prob-
lem can be solved in polynomial time.

4. ALGORITHMS
In this section we present our algorithm, Order&Extend,

for addressing the ActiveCompletion problem.
The starting point for the design of Order&Extend is the

low (e↵ective) rank assumption of T . As it will become
clear, this means that the unobserved entries are related to
the observed entries through a set of linear systems. Thus
one approach to matrix completion is to solve a sequence
of linear systems; each with r unknowns. Each system in
this sequence uses observed entries in T , or entries of T
reconstructed by previously solved linear systems to infer
more missing entries.

The reconstruction error of such an algorithm depends on
the quality of the solutions to these linear systems. As we
will show below, each query of T can yield a new equation
that can be added to a linear system. Hence, if a linear
system has fewer equations than unknowns, a query must
be made to add an additional equation to the system. Like-
wise, if solving a system is numerically unstable then a query
must be made to add an equation that will stabilize it. Cru-
cially, the need for such queries depends on the nature of
the solutions obtained to linear systems earlier in the order.
Thus the order in which systems are solved, and the nature
of the systems being solved, are inter-related. A good or-
dering will minimize the number of incomplete or unstable
systems being solved. However, such systems can appear
even in the best-possible order, meaning that good ordering
alone is insu�cient for accurate reconstruction.

On a high level, Order&Extend operates as follows: first,
it finds a promising ordering of the linear systems. Then,
it proceeds by solving the linear systems in this order. If a
linear system that requires additional information is encoun-
tered, the algorithm either strategically queries T or moves
the system to the end of the ordering. When all systems
have been solved, T̂ is computed and returned. The next
subsections describe these steps in detail.

4.1 Completion as a sequence
of linear systems

In this section we explain the particular linear systems
that the completion algorithm solves, the sequence in which
it solves them, and how the ordering in which systems are
solved a↵ects the quality of the completion.

For the purposes of this discussion, we assume that T is of
rank exactly r. In this case T can be expressed as the prod-
uct of two matrices X and Y of sizes n1⇥ r and r⇥n2; that
is, T = XY . Furthermore, we assume that any subset of r
rows of X, or r columns of Y , is linearly independent. (Later
we will describe how Order&Extend addresses the case when
these assumptions do not hold – i.e., when T is only e↵ec-
tively rank-r, or when an r-subset is linearly dependent). To
complete T, it su�ces to find such factors X and Y .1

1Note that X and Y are not uniquely determined; any in-
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The Sequential completion algorithm: We start by de-
scribing an algorithm we call Sequential, which estimates
the rows of X and columns of Y . Sequential takes two
inputs: (1) an ordering ⇡ over the set of all rows of X and
columns of Y , which we call the reconstruction order, and
(2) the partially observed matrix T⌦.
To explain how Sequential works, consider the example

in Figure 2, where r = 2, T is on the left and G⌦ is on the
right. The factors X and Y are shown on the side of and
above T to convey how their product results in T . The nodes
V1 of G⌦ correspond to the rows of X, and nodes V2 to the
columns of Y . In this figure, we illustrate an intermediate
step of Sequential, in which the values of the i-th and i0-th
rows of X have already been computed. Each entry of T is
the inner product of a row of X and a column of Y . Hence
we can represent the depicted entries in T by the following
linear system:

T
ij

= x
i1y1j + x

i2y2j (2)

T
i

0
j

= x
i

01y1j + x
i

02y2j (3)

Observe that x
i

and x
i

0 are known, and that the edges
(x

i

, y
j

) and (x
i

0 , y
j

) corresponding to T
ij

and T
i

0
j

exist in
G⌦. The only unknowns in (1) and (2) are y1j and y2j ,
which leaves us with two equations in two unknowns. As
stated above, by assumption any r-subset of X or Y is lin-
early independent; hence one can solve uniquely for y1j and
y2j and fill in column j of Y .
To generalize the example above, the steps of Sequential

can be partitioned in x- and y-steps; at every y-step the
algorithm solves a system of the form

A
x

y = t. (4)

In this system, y is a vector of r unknowns corresponding to
the values of the column of Y we are going to compute; A

x

is an r ⇥ r fully-known submatrix of X and t is a vector of
r known entries of T which are located on the same column
as the column index of y. If A

x

and t are known, and A
x

is
full rank, then y can be computed exactly and the algorithm
can proceed to the next step.
In the x-steps Sequential evaluates a row of X using an

r ⇥ r already-computed subset of columns of Y , and a set
of r entries of T from the row of T corresponding to the
current row of X being solved for. Following the same no-
tational conventions as above, the corresponding system be-
comes A

y

x = t0. For simplicity we will focus our discussion
on y-steps; the discussion on x-steps is symmetric.

vertible r⇥ r matrix W yields new factors XW�1 and WY
which also multiply to yield T .

r=2 Information-propagation view
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Methodology overview

Empty masks: For the special case of exact rank and
✏ = 0, if the input mask ⌦ is empty, i.e., ⌦ = ;, then
ActiveCompletion can be solved optimally as follows:
simply query the entries of r rows and r columns of T . This
will require �(T, r) queries, which will construct a mask ⌦0

that determines a unique reconstruction of T . Therefore,
when the initial mask ⌦ = ;, the ActiveCompletion prob-
lem can be solved in polynomial time.

4. ALGORITHMS
In this section we present our algorithm, Order&Extend,

for addressing the ActiveCompletion problem.
The starting point for the design of Order&Extend is the

low (e↵ective) rank assumption of T . As it will become
clear, this means that the unobserved entries are related to
the observed entries through a set of linear systems. Thus
one approach to matrix completion is to solve a sequence
of linear systems; each with r unknowns. Each system in
this sequence uses observed entries in T , or entries of T
reconstructed by previously solved linear systems to infer
more missing entries.

The reconstruction error of such an algorithm depends on
the quality of the solutions to these linear systems. As we
will show below, each query of T can yield a new equation
that can be added to a linear system. Hence, if a linear
system has fewer equations than unknowns, a query must
be made to add an additional equation to the system. Like-
wise, if solving a system is numerically unstable then a query
must be made to add an equation that will stabilize it. Cru-
cially, the need for such queries depends on the nature of
the solutions obtained to linear systems earlier in the order.
Thus the order in which systems are solved, and the nature
of the systems being solved, are inter-related. A good or-
dering will minimize the number of incomplete or unstable
systems being solved. However, such systems can appear
even in the best-possible order, meaning that good ordering
alone is insu�cient for accurate reconstruction.

On a high level, Order&Extend operates as follows: first,
it finds a promising ordering of the linear systems. Then,
it proceeds by solving the linear systems in this order. If a
linear system that requires additional information is encoun-
tered, the algorithm either strategically queries T or moves
the system to the end of the ordering. When all systems
have been solved, T̂ is computed and returned. The next
subsections describe these steps in detail.

4.1 Completion as a sequence
of linear systems

In this section we explain the particular linear systems
that the completion algorithm solves, the sequence in which
it solves them, and how the ordering in which systems are
solved a↵ects the quality of the completion.

For the purposes of this discussion, we assume that T is of
rank exactly r. In this case T can be expressed as the prod-
uct of two matrices X and Y of sizes n1⇥ r and r⇥n2; that
is, T = XY . Furthermore, we assume that any subset of r
rows of X, or r columns of Y , is linearly independent. (Later
we will describe how Order&Extend addresses the case when
these assumptions do not hold – i.e., when T is only e↵ec-
tively rank-r, or when an r-subset is linearly dependent). To
complete T, it su�ces to find such factors X and Y .1

1Note that X and Y are not uniquely determined; any in-
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The Sequential completion algorithm: We start by de-
scribing an algorithm we call Sequential, which estimates
the rows of X and columns of Y . Sequential takes two
inputs: (1) an ordering ⇡ over the set of all rows of X and
columns of Y , which we call the reconstruction order, and
(2) the partially observed matrix T⌦.
To explain how Sequential works, consider the example

in Figure 2, where r = 2, T is on the left and G⌦ is on the
right. The factors X and Y are shown on the side of and
above T to convey how their product results in T . The nodes
V1 of G⌦ correspond to the rows of X, and nodes V2 to the
columns of Y . In this figure, we illustrate an intermediate
step of Sequential, in which the values of the i-th and i0-th
rows of X have already been computed. Each entry of T is
the inner product of a row of X and a column of Y . Hence
we can represent the depicted entries in T by the following
linear system:

T
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i1y1j + x

i2y2j (2)

T
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Observe that x
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and x
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0 are known, and that the edges
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, y
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) and (x
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) corresponding to T
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and T
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exist in
G⌦. The only unknowns in (1) and (2) are y1j and y2j ,
which leaves us with two equations in two unknowns. As
stated above, by assumption any r-subset of X or Y is lin-
early independent; hence one can solve uniquely for y1j and
y2j and fill in column j of Y .
To generalize the example above, the steps of Sequential

can be partitioned in x- and y-steps; at every y-step the
algorithm solves a system of the form

A
x

y = t. (4)

In this system, y is a vector of r unknowns corresponding to
the values of the column of Y we are going to compute; A

x

is an r ⇥ r fully-known submatrix of X and t is a vector of
r known entries of T which are located on the same column
as the column index of y. If A

x

and t are known, and A
x

is
full rank, then y can be computed exactly and the algorithm
can proceed to the next step.
In the x-steps Sequential evaluates a row of X using an

r ⇥ r already-computed subset of columns of Y , and a set
of r entries of T from the row of T corresponding to the
current row of X being solved for. Following the same no-
tational conventions as above, the corresponding system be-
comes A

y

x = t0. For simplicity we will focus our discussion
on y-steps; the discussion on x-steps is symmetric.

vertible r⇥ r matrix W yields new factors XW�1 and WY
which also multiply to yield T .

Empty masks: For the special case of exact rank and
✏ = 0, if the input mask ⌦ is empty, i.e., ⌦ = ;, then
ActiveCompletion can be solved optimally as follows:
simply query the entries of r rows and r columns of T . This
will require �(T, r) queries, which will construct a mask ⌦0

that determines a unique reconstruction of T . Therefore,
when the initial mask ⌦ = ;, the ActiveCompletion prob-
lem can be solved in polynomial time.

4. ALGORITHMS
In this section we present our algorithm, Order&Extend,

for addressing the ActiveCompletion problem.
The starting point for the design of Order&Extend is the

low (e↵ective) rank assumption of T . As it will become
clear, this means that the unobserved entries are related to
the observed entries through a set of linear systems. Thus
one approach to matrix completion is to solve a sequence
of linear systems; each with r unknowns. Each system in
this sequence uses observed entries in T , or entries of T
reconstructed by previously solved linear systems to infer
more missing entries.

The reconstruction error of such an algorithm depends on
the quality of the solutions to these linear systems. As we
will show below, each query of T can yield a new equation
that can be added to a linear system. Hence, if a linear
system has fewer equations than unknowns, a query must
be made to add an additional equation to the system. Like-
wise, if solving a system is numerically unstable then a query
must be made to add an equation that will stabilize it. Cru-
cially, the need for such queries depends on the nature of
the solutions obtained to linear systems earlier in the order.
Thus the order in which systems are solved, and the nature
of the systems being solved, are inter-related. A good or-
dering will minimize the number of incomplete or unstable
systems being solved. However, such systems can appear
even in the best-possible order, meaning that good ordering
alone is insu�cient for accurate reconstruction.

On a high level, Order&Extend operates as follows: first,
it finds a promising ordering of the linear systems. Then,
it proceeds by solving the linear systems in this order. If a
linear system that requires additional information is encoun-
tered, the algorithm either strategically queries T or moves
the system to the end of the ordering. When all systems
have been solved, T̂ is computed and returned. The next
subsections describe these steps in detail.

4.1 Completion as a sequence
of linear systems

In this section we explain the particular linear systems
that the completion algorithm solves, the sequence in which
it solves them, and how the ordering in which systems are
solved a↵ects the quality of the completion.

For the purposes of this discussion, we assume that T is of
rank exactly r. In this case T can be expressed as the prod-
uct of two matrices X and Y of sizes n1⇥ r and r⇥n2; that
is, T = XY . Furthermore, we assume that any subset of r
rows of X, or r columns of Y , is linearly independent. (Later
we will describe how Order&Extend addresses the case when
these assumptions do not hold – i.e., when T is only e↵ec-
tively rank-r, or when an r-subset is linearly dependent). To
complete T, it su�ces to find such factors X and Y .1

1Note that X and Y are not uniquely determined; any in-
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The Sequential completion algorithm: We start by de-
scribing an algorithm we call Sequential, which estimates
the rows of X and columns of Y . Sequential takes two
inputs: (1) an ordering ⇡ over the set of all rows of X and
columns of Y , which we call the reconstruction order, and
(2) the partially observed matrix T⌦.
To explain how Sequential works, consider the example

in Figure 2, where r = 2, T is on the left and G⌦ is on the
right. The factors X and Y are shown on the side of and
above T to convey how their product results in T . The nodes
V1 of G⌦ correspond to the rows of X, and nodes V2 to the
columns of Y . In this figure, we illustrate an intermediate
step of Sequential, in which the values of the i-th and i0-th
rows of X have already been computed. Each entry of T is
the inner product of a row of X and a column of Y . Hence
we can represent the depicted entries in T by the following
linear system:

T
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= x
i1y1j + x

i2y2j (2)

T
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01y1j + x
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Observe that x
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and x
i

0 are known, and that the edges
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) and (x
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0 , y
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) corresponding to T
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and T
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0
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exist in
G⌦. The only unknowns in (1) and (2) are y1j and y2j ,
which leaves us with two equations in two unknowns. As
stated above, by assumption any r-subset of X or Y is lin-
early independent; hence one can solve uniquely for y1j and
y2j and fill in column j of Y .
To generalize the example above, the steps of Sequential

can be partitioned in x- and y-steps; at every y-step the
algorithm solves a system of the form

A
x

y = t. (4)

In this system, y is a vector of r unknowns corresponding to
the values of the column of Y we are going to compute; A

x

is an r ⇥ r fully-known submatrix of X and t is a vector of
r known entries of T which are located on the same column
as the column index of y. If A

x

and t are known, and A
x

is
full rank, then y can be computed exactly and the algorithm
can proceed to the next step.
In the x-steps Sequential evaluates a row of X using an

r ⇥ r already-computed subset of columns of Y , and a set
of r entries of T from the row of T corresponding to the
current row of X being solved for. Following the same no-
tational conventions as above, the corresponding system be-
comes A

y

x = t0. For simplicity we will focus our discussion
on y-steps; the discussion on x-steps is symmetric.

vertible r⇥ r matrix W yields new factors XW�1 and WY
which also multiply to yield T .

Empty masks: For the special case of exact rank and
✏ = 0, if the input mask ⌦ is empty, i.e., ⌦ = ;, then
ActiveCompletion can be solved optimally as follows:
simply query the entries of r rows and r columns of T . This
will require �(T, r) queries, which will construct a mask ⌦0

that determines a unique reconstruction of T . Therefore,
when the initial mask ⌦ = ;, the ActiveCompletion prob-
lem can be solved in polynomial time.

4. ALGORITHMS
In this section we present our algorithm, Order&Extend,

for addressing the ActiveCompletion problem.
The starting point for the design of Order&Extend is the

low (e↵ective) rank assumption of T . As it will become
clear, this means that the unobserved entries are related to
the observed entries through a set of linear systems. Thus
one approach to matrix completion is to solve a sequence
of linear systems; each with r unknowns. Each system in
this sequence uses observed entries in T , or entries of T
reconstructed by previously solved linear systems to infer
more missing entries.

The reconstruction error of such an algorithm depends on
the quality of the solutions to these linear systems. As we
will show below, each query of T can yield a new equation
that can be added to a linear system. Hence, if a linear
system has fewer equations than unknowns, a query must
be made to add an additional equation to the system. Like-
wise, if solving a system is numerically unstable then a query
must be made to add an equation that will stabilize it. Cru-
cially, the need for such queries depends on the nature of
the solutions obtained to linear systems earlier in the order.
Thus the order in which systems are solved, and the nature
of the systems being solved, are inter-related. A good or-
dering will minimize the number of incomplete or unstable
systems being solved. However, such systems can appear
even in the best-possible order, meaning that good ordering
alone is insu�cient for accurate reconstruction.

On a high level, Order&Extend operates as follows: first,
it finds a promising ordering of the linear systems. Then,
it proceeds by solving the linear systems in this order. If a
linear system that requires additional information is encoun-
tered, the algorithm either strategically queries T or moves
the system to the end of the ordering. When all systems
have been solved, T̂ is computed and returned. The next
subsections describe these steps in detail.

4.1 Completion as a sequence
of linear systems

In this section we explain the particular linear systems
that the completion algorithm solves, the sequence in which
it solves them, and how the ordering in which systems are
solved a↵ects the quality of the completion.

For the purposes of this discussion, we assume that T is of
rank exactly r. In this case T can be expressed as the prod-
uct of two matrices X and Y of sizes n1⇥ r and r⇥n2; that
is, T = XY . Furthermore, we assume that any subset of r
rows of X, or r columns of Y , is linearly independent. (Later
we will describe how Order&Extend addresses the case when
these assumptions do not hold – i.e., when T is only e↵ec-
tively rank-r, or when an r-subset is linearly dependent). To
complete T, it su�ces to find such factors X and Y .1
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The Sequential completion algorithm: We start by de-
scribing an algorithm we call Sequential, which estimates
the rows of X and columns of Y . Sequential takes two
inputs: (1) an ordering ⇡ over the set of all rows of X and
columns of Y , which we call the reconstruction order, and
(2) the partially observed matrix T⌦.
To explain how Sequential works, consider the example

in Figure 2, where r = 2, T is on the left and G⌦ is on the
right. The factors X and Y are shown on the side of and
above T to convey how their product results in T . The nodes
V1 of G⌦ correspond to the rows of X, and nodes V2 to the
columns of Y . In this figure, we illustrate an intermediate
step of Sequential, in which the values of the i-th and i0-th
rows of X have already been computed. Each entry of T is
the inner product of a row of X and a column of Y . Hence
we can represent the depicted entries in T by the following
linear system:
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Observe that x
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0 are known, and that the edges
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) corresponding to T
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and T
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exist in
G⌦. The only unknowns in (1) and (2) are y1j and y2j ,
which leaves us with two equations in two unknowns. As
stated above, by assumption any r-subset of X or Y is lin-
early independent; hence one can solve uniquely for y1j and
y2j and fill in column j of Y .
To generalize the example above, the steps of Sequential

can be partitioned in x- and y-steps; at every y-step the
algorithm solves a system of the form

A
x

y = t. (4)

In this system, y is a vector of r unknowns corresponding to
the values of the column of Y we are going to compute; A

x

is an r ⇥ r fully-known submatrix of X and t is a vector of
r known entries of T which are located on the same column
as the column index of y. If A

x

and t are known, and A
x

is
full rank, then y can be computed exactly and the algorithm
can proceed to the next step.
In the x-steps Sequential evaluates a row of X using an

r ⇥ r already-computed subset of columns of Y , and a set
of r entries of T from the row of T corresponding to the
current row of X being solved for. Following the same no-
tational conventions as above, the corresponding system be-
comes A

y

x = t0. For simplicity we will focus our discussion
on y-steps; the discussion on x-steps is symmetric.

vertible r⇥ r matrix W yields new factors XW�1 and WY
which also multiply to yield T .
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• Incomplete 
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The Order&Extend algorithm
• Order: Find an ordering      that minimizes the 

number of incomplete systems 
• Extend: Solve the linear systems imposed by 

upon encountering
• an incomplete system: ask directly the required 

entries from T
• an unstable system: judiciously pick the entries 

from T 

• Running time: 

⇡

⇡

O(n+m)

[Ruchansky, Crovella, T. 2015]
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Partial completion by Order (without extend)

(a) MovieLens (b) Netflix (c) Tra�cSparse

Figure 5: RelError of completion achieved by Order&Extend, LmaFit and OptSpace on datasets with exact rank; x-axis:
query budget b; y-axis: RelError of the completion.

From the figure, we observe that Order&Extend exhibits
the lowest reconstruction error across all datasets. More-
over, it does so with a very small number of queries,
compared to LmaFit and OptSpace; the latter algorithms
achieve errors of approximately the same magnitude in all
datasets. On some datasets LmaFit and OptSpace come close
to the relative error of Order&Extend though with signifi-
cantly more queries. For example for the Boat dataset, Or-
der&Extend achieves error of 0.14 with b = 40K queries;
LmaFit needs b = 50K to exhibit an error of 0.25, which
is still more than that of Order&Extend. In most datasets,
the di↵erences are even more pronounced; e.g., for Tra�c2,
Order&Extend achieves a relative error of 0.46 with about
b = 13K queries; OptSpace and LmaFit achieve error of
more than 0.8 even after b = 26K queries. Such large dif-
ferences between Order&Extend and the baselines appear in
all datasets, but Latency2. For that dataset, Order&Extend
is still better, but not as significantly as in other cases –
likely an indication that the dataset is more noisy. We also
point out that the value of b for which the relative error of
Order&Extend exhibits a significant drop is much closer to
the indicated lower bound by the black vertical line. Again
this phenomenon is not so evident for Latency2 probably
because this datasets is further away from being low rank.

Extremely sparse real-world data: Recall that for the
purpose of experimentation we need to have access to the
entries of the ground truth matrix T – in order to be able to
reveal the values of the queried entries. Unfortunately, the
Movielens, Netflix, and Tra�cSparse datasets consist mostly
of missing entries, and therefore we cannot query the major-
ity of them. In order to experiment with these datasets, we
overcome this issue by approximating each dataset with its
closest rank r matrix T

r

. The approximation is obtained by
taking the singular value decomposition of the observed T
–where all missing entries are set to 0 – and setting all but
the largest r singular values to zero. This trick grants us
the ability to study the special case discussed in Section 3
where the matrix is of exact rank r.

Using r = 40, the results for these datasets are depicted in
Figure 4 with the same axes and vertical line as in Figure 5.
Again, we observe a clear dominance of Order&Extend . In
this case the di↵erences in the relative error it achieves are
much more striking. Moreover, Order&Extend achieves al-
most 0 relative error for extremely small number of queries
b; in fact the error of Order&Extend consistently drops to a
very small value for b being very close to the lower bound

of the optimal algorithm (as marked by the black vertical
line shown in the plot). LmaFit and OptSpace are far from
exhibiting such a behavior. This signals that Order&Extend
devises a querying strategy that is almost optimal. Interest-
ingly the performance of OptSpace changes dramatically in
these cases; in fact on Tra�cSparse and Netflix the error is
so high it does not appear on the plot.
Note that the striking superiority of Order&Extend in the

case of exact-rank matrices is consistent across all datasets
we considered, including others not shown here.

Running times: Though the algorithmic composition is
quite di↵erent, we give some indicative running times for our
algorithm as well as LmaFit and OptSpace. For example, in
the Netflix dataset the running times were in the order of
11 000 seconds for LmaFit, 80 000 seconds for Order&Extend,
and 200 000 seconds for OptSpace. These numbers indicate
that Order&Extend is e�cient despite the fact that in addi-
tion to matrix completion it also identifies the right queries;
the running times of LmaFit and OptSpace simply corre-
spond to running a single completion on the extended mask
that is randomly formed. Note that these running times are
computed using an unoptimized and serial implementation
of our algorithm; improvements can be achieved easily e.g.,
by parallelizing the local condition number computations.
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Figure 6: Recovery process using LmaFit, and Or-

der&Extend. Each column is a particular b, increasing from
left to right.

Partial completion of Order&Extend: As a final experi-
ment, we provide anecdotal evidence that demonstrates the
di↵erence in the philosophy behind Order&Extend and other
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Figure 5: RelError of completion achieved by Order&Extend, LmaFit and OptSpace on datasets with exact rank; x-axis:
query budget b; y-axis: RelError of the completion.

From the figure, we observe that Order&Extend exhibits
the lowest reconstruction error across all datasets. More-
over, it does so with a very small number of queries,
compared to LmaFit and OptSpace; the latter algorithms
achieve errors of approximately the same magnitude in all
datasets. On some datasets LmaFit and OptSpace come close
to the relative error of Order&Extend though with signifi-
cantly more queries. For example for the Boat dataset, Or-
der&Extend achieves error of 0.14 with b = 40K queries;
LmaFit needs b = 50K to exhibit an error of 0.25, which
is still more than that of Order&Extend. In most datasets,
the di↵erences are even more pronounced; e.g., for Tra�c2,
Order&Extend achieves a relative error of 0.46 with about
b = 13K queries; OptSpace and LmaFit achieve error of
more than 0.8 even after b = 26K queries. Such large dif-
ferences between Order&Extend and the baselines appear in
all datasets, but Latency2. For that dataset, Order&Extend
is still better, but not as significantly as in other cases –
likely an indication that the dataset is more noisy. We also
point out that the value of b for which the relative error of
Order&Extend exhibits a significant drop is much closer to
the indicated lower bound by the black vertical line. Again
this phenomenon is not so evident for Latency2 probably
because this datasets is further away from being low rank.

Extremely sparse real-world data: Recall that for the
purpose of experimentation we need to have access to the
entries of the ground truth matrix T – in order to be able to
reveal the values of the queried entries. Unfortunately, the
Movielens, Netflix, and Tra�cSparse datasets consist mostly
of missing entries, and therefore we cannot query the major-
ity of them. In order to experiment with these datasets, we
overcome this issue by approximating each dataset with its
closest rank r matrix T

r

. The approximation is obtained by
taking the singular value decomposition of the observed T
–where all missing entries are set to 0 – and setting all but
the largest r singular values to zero. This trick grants us
the ability to study the special case discussed in Section 3
where the matrix is of exact rank r.

Using r = 40, the results for these datasets are depicted in
Figure 4 with the same axes and vertical line as in Figure 5.
Again, we observe a clear dominance of Order&Extend . In
this case the di↵erences in the relative error it achieves are
much more striking. Moreover, Order&Extend achieves al-
most 0 relative error for extremely small number of queries
b; in fact the error of Order&Extend consistently drops to a
very small value for b being very close to the lower bound

of the optimal algorithm (as marked by the black vertical
line shown in the plot). LmaFit and OptSpace are far from
exhibiting such a behavior. This signals that Order&Extend
devises a querying strategy that is almost optimal. Interest-
ingly the performance of OptSpace changes dramatically in
these cases; in fact on Tra�cSparse and Netflix the error is
so high it does not appear on the plot.
Note that the striking superiority of Order&Extend in the

case of exact-rank matrices is consistent across all datasets
we considered, including others not shown here.

Running times: Though the algorithmic composition is
quite di↵erent, we give some indicative running times for our
algorithm as well as LmaFit and OptSpace. For example, in
the Netflix dataset the running times were in the order of
11 000 seconds for LmaFit, 80 000 seconds for Order&Extend,
and 200 000 seconds for OptSpace. These numbers indicate
that Order&Extend is e�cient despite the fact that in addi-
tion to matrix completion it also identifies the right queries;
the running times of LmaFit and OptSpace simply corre-
spond to running a single completion on the extended mask
that is randomly formed. Note that these running times are
computed using an unoptimized and serial implementation
of our algorithm; improvements can be achieved easily e.g.,
by parallelizing the local condition number computations.
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Figure 6: Recovery process using LmaFit, and Or-

der&Extend. Each column is a particular b, increasing from
left to right.

Partial completion of Order&Extend: As a final experi-
ment, we provide anecdotal evidence that demonstrates the
di↵erence in the philosophy behind Order&Extend and other
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Figure 5: RelError of completion achieved by Order&Extend, LmaFit and OptSpace on datasets with exact rank; x-axis:
query budget b; y-axis: RelError of the completion.

From the figure, we observe that Order&Extend exhibits
the lowest reconstruction error across all datasets. More-
over, it does so with a very small number of queries,
compared to LmaFit and OptSpace; the latter algorithms
achieve errors of approximately the same magnitude in all
datasets. On some datasets LmaFit and OptSpace come close
to the relative error of Order&Extend though with signifi-
cantly more queries. For example for the Boat dataset, Or-
der&Extend achieves error of 0.14 with b = 40K queries;
LmaFit needs b = 50K to exhibit an error of 0.25, which
is still more than that of Order&Extend. In most datasets,
the di↵erences are even more pronounced; e.g., for Tra�c2,
Order&Extend achieves a relative error of 0.46 with about
b = 13K queries; OptSpace and LmaFit achieve error of
more than 0.8 even after b = 26K queries. Such large dif-
ferences between Order&Extend and the baselines appear in
all datasets, but Latency2. For that dataset, Order&Extend
is still better, but not as significantly as in other cases –
likely an indication that the dataset is more noisy. We also
point out that the value of b for which the relative error of
Order&Extend exhibits a significant drop is much closer to
the indicated lower bound by the black vertical line. Again
this phenomenon is not so evident for Latency2 probably
because this datasets is further away from being low rank.

Extremely sparse real-world data: Recall that for the
purpose of experimentation we need to have access to the
entries of the ground truth matrix T – in order to be able to
reveal the values of the queried entries. Unfortunately, the
Movielens, Netflix, and Tra�cSparse datasets consist mostly
of missing entries, and therefore we cannot query the major-
ity of them. In order to experiment with these datasets, we
overcome this issue by approximating each dataset with its
closest rank r matrix T
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. The approximation is obtained by
taking the singular value decomposition of the observed T
–where all missing entries are set to 0 – and setting all but
the largest r singular values to zero. This trick grants us
the ability to study the special case discussed in Section 3
where the matrix is of exact rank r.

Using r = 40, the results for these datasets are depicted in
Figure 4 with the same axes and vertical line as in Figure 5.
Again, we observe a clear dominance of Order&Extend . In
this case the di↵erences in the relative error it achieves are
much more striking. Moreover, Order&Extend achieves al-
most 0 relative error for extremely small number of queries
b; in fact the error of Order&Extend consistently drops to a
very small value for b being very close to the lower bound

of the optimal algorithm (as marked by the black vertical
line shown in the plot). LmaFit and OptSpace are far from
exhibiting such a behavior. This signals that Order&Extend
devises a querying strategy that is almost optimal. Interest-
ingly the performance of OptSpace changes dramatically in
these cases; in fact on Tra�cSparse and Netflix the error is
so high it does not appear on the plot.
Note that the striking superiority of Order&Extend in the

case of exact-rank matrices is consistent across all datasets
we considered, including others not shown here.

Running times: Though the algorithmic composition is
quite di↵erent, we give some indicative running times for our
algorithm as well as LmaFit and OptSpace. For example, in
the Netflix dataset the running times were in the order of
11 000 seconds for LmaFit, 80 000 seconds for Order&Extend,
and 200 000 seconds for OptSpace. These numbers indicate
that Order&Extend is e�cient despite the fact that in addi-
tion to matrix completion it also identifies the right queries;
the running times of LmaFit and OptSpace simply corre-
spond to running a single completion on the extended mask
that is randomly formed. Note that these running times are
computed using an unoptimized and serial implementation
of our algorithm; improvements can be achieved easily e.g.,
by parallelizing the local condition number computations.
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Figure 6: Recovery process using LmaFit, and Or-

der&Extend. Each column is a particular b, increasing from
left to right.

Partial completion of Order&Extend: As a final experi-
ment, we provide anecdotal evidence that demonstrates the
di↵erence in the philosophy behind Order&Extend and other
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Volume of traffic for source-
destination pairs
~2Kx150, fully observed
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Figure 4: RelError of completion achieved by Order&Extend, LmaFit and OptSpace on datasets with approximate rank;
x-axis: query budget b; y-axis: RelError of the completion.

completion, we set up our experiment as follows: first, we
run Order&Extend on T⌦0 , which asks a budget of b queries.
Before feeding T⌦0 to LmaFit and OptSpace we extend it
with b randomly chosen queries. In this way both algorithms
query the same number of additional entries. A random dis-
tribution of observed entries has been proved to be (asymp-
totically) optimal for statistical methods like OptSpace and
LmaFit [2, 8, 17]. Therefore, picking random additional b
entries is the best querying strategy for these algorithms –
we have verified that experimentally.

5.1 Methodology
For all our experiments, the ground-truth matrix T is

known but not fully revealed to the algorithms. The in-
put to the algorithms consists of an initial mask ⌦0, T⌦0 ,
and a budget b on the number of queries they can ask. Each
algorithm A outputs an estimate of T , bTA,⌦0 .

Selecting the input mask ⌦0: The initial mask ⌦0, with
cardinality m0 is selected by picking m0 entries uniformly at
random from the ground-truth matrix T .7 The cardinality
m0 is selected so that m0 > 0 and m0 < �(T, r); usually we
chose m0 to be ⇡ 30�50% of �(T, r). The former constraint
guarantees that the input is not trivial, while the latter guar-
antees that additional queries are definitely needed.

Range for the query budget b: We vary the number, b,
of queries an algorithm can issue among a wide range of val-
ues. Starting with b < �(T, r) � m0, we gradually increase
it until we see that the performance of our algorithms stabi-
lize (i.e., further queries do not decrease the reconstruction
error). Clearly, the smaller the value of b the larger the
reconstruction error of the algorithms.

Reconstruction error: Given a ground-truth matrix T
and input T⌦0 , we evaluate the performance of a reconstruc-
7We also test other sampling distributions, but the results
are the same as the ones we report here and thus omitted.

tion algorithm A, by computing the relative error of bTA,⌦0

with respect to T , using the RelError function defined in
Equation (4). This measure takes into consideration all en-
tries of T , both the observed and the unobserved. The closer
bTA,⌦ is to T the smaller the value of RelError( bTA,⌦). In

general, RelError( bTA,⌦) 2 [0,1) and at perfect recon-

struction RelError( bTA,⌦) = 0.
Although our baseline algorithms always produce a full es-

timate (i.e., they estimate all missing entries), Order&Extend
may produce only partial completions (see Section ?? for a
discussion in this). In these cases, we assign value 0 to the
entries it does not estimate.

5.2 Evaluating Order&Extend

Experiments with real noisy data: For our first experi-
ment, we use datasets for which we know all o↵ the entries.
This is true for six out of our nine datasets: Tra�c1 ,Traf-
fic2, Latency1, Latency2, Jester, Boat. Note that Jester is
missing 30% of the entries, but we treat them as true zero-
values ratings; the remaining datasets are fully known and
able to be queried as needed. These are real datasets they
are not exactly low rank, but plotting their singular values
reveals that they have low e↵ective rank. By inspecting their
singular values, we chose: r = 7 for the Tra�c and Latency
datasets, r = 10 for Jester and r = 40 for Boat.
Figure 5 shows the results for each dataset. The x-

axis is the query budget b; note that while LmaFit and
OptSpace always exhaust this budget, it is only an upper
bound on the queries used by Order&Extend,. The y-axis is
the RelError(T, bTA,⌦). The black vertical line marks the
number of queries needed to reach the critical mask size;
i.e., it corresponds to budget of (�(T, r)�m0). One should
interpret this line as a very conservative lower bound on the
number of queries that an optimal algorithm would need to
achieve errorless reconstruction in the absence of noise.
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Figure 4: RelError of completion achieved by Order&Extend, LmaFit and OptSpace on datasets with approximate rank;
x-axis: query budget b; y-axis: RelError of the completion.
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run Order&Extend on T⌦0 , which asks a budget of b queries.
Before feeding T⌦0 to LmaFit and OptSpace we extend it
with b randomly chosen queries. In this way both algorithms
query the same number of additional entries. A random dis-
tribution of observed entries has been proved to be (asymp-
totically) optimal for statistical methods like OptSpace and
LmaFit [2, 8, 17]. Therefore, picking random additional b
entries is the best querying strategy for these algorithms –
we have verified that experimentally.

5.1 Methodology
For all our experiments, the ground-truth matrix T is

known but not fully revealed to the algorithms. The in-
put to the algorithms consists of an initial mask ⌦0, T⌦0 ,
and a budget b on the number of queries they can ask. Each
algorithm A outputs an estimate of T , bTA,⌦0 .

Selecting the input mask ⌦0: The initial mask ⌦0, with
cardinality m0 is selected by picking m0 entries uniformly at
random from the ground-truth matrix T .7 The cardinality
m0 is selected so that m0 > 0 and m0 < �(T, r); usually we
chose m0 to be ⇡ 30�50% of �(T, r). The former constraint
guarantees that the input is not trivial, while the latter guar-
antees that additional queries are definitely needed.

Range for the query budget b: We vary the number, b,
of queries an algorithm can issue among a wide range of val-
ues. Starting with b < �(T, r) � m0, we gradually increase
it until we see that the performance of our algorithms stabi-
lize (i.e., further queries do not decrease the reconstruction
error). Clearly, the smaller the value of b the larger the
reconstruction error of the algorithms.

Reconstruction error: Given a ground-truth matrix T
and input T⌦0 , we evaluate the performance of a reconstruc-
7We also test other sampling distributions, but the results
are the same as the ones we report here and thus omitted.

tion algorithm A, by computing the relative error of bTA,⌦0

with respect to T , using the RelError function defined in
Equation (4). This measure takes into consideration all en-
tries of T , both the observed and the unobserved. The closer
bTA,⌦ is to T the smaller the value of RelError( bTA,⌦). In

general, RelError( bTA,⌦) 2 [0,1) and at perfect recon-

struction RelError( bTA,⌦) = 0.
Although our baseline algorithms always produce a full es-

timate (i.e., they estimate all missing entries), Order&Extend
may produce only partial completions (see Section ?? for a
discussion in this). In these cases, we assign value 0 to the
entries it does not estimate.

5.2 Evaluating Order&Extend

Experiments with real noisy data: For our first experi-
ment, we use datasets for which we know all o↵ the entries.
This is true for six out of our nine datasets: Tra�c1 ,Traf-
fic2, Latency1, Latency2, Jester, Boat. Note that Jester is
missing 30% of the entries, but we treat them as true zero-
values ratings; the remaining datasets are fully known and
able to be queried as needed. These are real datasets they
are not exactly low rank, but plotting their singular values
reveals that they have low e↵ective rank. By inspecting their
singular values, we chose: r = 7 for the Tra�c and Latency
datasets, r = 10 for Jester and r = 40 for Boat.
Figure 5 shows the results for each dataset. The x-

axis is the query budget b; note that while LmaFit and
OptSpace always exhaust this budget, it is only an upper
bound on the queries used by Order&Extend,. The y-axis is
the RelError(T, bTA,⌦). The black vertical line marks the
number of queries needed to reach the critical mask size;
i.e., it corresponds to budget of (�(T, r)�m0). One should
interpret this line as a very conservative lower bound on the
number of queries that an optimal algorithm would need to
achieve errorless reconstruction in the absence of noise.


