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The recommender-system challenge
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Want to predict all preferences, but
we know only 1% of the entries!



Matrix completion

Input:
Partially-observed matrix
Goal:
Find a low-error completion of the remaining entries

Not any input can be recovered well, and there exist
some conditions the true matrix must meet.

How can we reconstruct a matrix with only 1% of the
entries?



Statistical methods for matrix completion

Assumptions:
1. Underlying true matrix T is low rank

Find an estimate 7T by solving the optimization problem:

------------
- S

MINIMize mnk(T) Observed seti
of entries

subject to T;; = ﬁj for (i,7) € Q P .

This problem is



Statistical methods for matrix completion

* Click to edit Master
Assumptions: text styles
1. Underlying true matrix T is low rank

Find an estimate 7T by solving the optimization problem:
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MINIMize mnk(T) Observed seti
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subject to T;; = ﬁj for (i,7) € Q P .

This problem is



Alternating least squares

Assumptions: Wen et.al. 2012, Jain et al.

1. Underlying T is low rank 2013...

2. Known rank r

3. The matrix can be written as a product 1" = Xyt
1. Xis of size nxr
2. Yis of size mxr

Problem: 1 .
min —|| XY —T||%
X.Y.T 2

subject to T;; = ﬁj (2,7) €



Characteristics

Such optimization approaches output an estimate of
the whole matrix on any input - any size Q.

Compute error on observed entries:

fg VS. TQ

What if we want very small error?
How may entries () do we need to have?



Information-theoretic lower bound

When (2 is sampled at random the number of
entries needs to be at least:

rn logn

Coupon Collector argument: given n coupons, how

many times do you need to draw (with replacement)
to collect at least r of each?

Candes, Plan 2009



In practice

Most matrices have less entries than the lower bound.
Netflix: 480189 x 17770, winning solution was rank=40

Q]  =9.91e+07
rnlogn = 2.51e+08

Not enough entries.

Since the lower bound relies on random sampling, we can
sample unknown entries randomly. (e.g. Netflix survey)

This would require about 151,000,000 samples!



Algebraic lower bound

In an 7, X m matrix of rank 7, there are

r(n+m —r)

degrees of freedom. Once this many carefully-chosen
entries are fixed, there should be a unique recovery.

T
o
-

r

nr+mr—r-=r(n+m-—r)




Targeted than random?

A targeted addition of entries (versus random), would
only require:
(n)

r(n+m—r) < rnlo
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Given a non-completable
partially-observed matrix,
what is the minimum set
of unobserved entries that
need to be queried so that the
error is low?



Can we do that by querying
entries as close as possible to

r(n+m —7r) < rnlog(n)?

YES!



Methodology overview

» T=XY"'
o Matrix completion as a sequence of linear systems that
compute rows of X and columns of Y

Y1j

1i; = Tyl + Ti2y2;

Tiry = Ty + Tiraly2y

Tir1|Tir2 Ty

r=2 Meka et.al. 2009



Methodology overview

1i; = Ty + Ti2y2;
Ty = Ty + Tiray2j
Y1 Vl V2
Y2, ‘
L : ® Uk
Ti1|Ti2 Ti; | Li' § Yj
Tir1|Tir2 Tyl Ty O
LerQ Q

r=2 Information-propagation view



Methodology overview

1i; = Ty + Ti2y2; A y
Tiry = xyy1; + Xiyoy2; xy R
Yij
o e Solvable
e |Incomplete
o Unstable “
Li1|Li2 ng
Tir1|Tir2 Ty
e |ncomplete and unstable
systems are resolved

— through queries



The Order&Extend algorithm

e Order: Find an ordering 71 that minimizes the
number of incomplete systems

o Extend: Solve the linear systems imposed by 7
upon encountering

e an incomplete system: ask directly the required
entries from T

e an unstable system: judiciously pick the entries
from T

» Running time: O(n —+ m)

[Ruchansky, Crovella, T. 2015]



Partial completion by Order (without extend)
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Experiments with matrices of rank r
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Experiments with matrices of rank r

Netflix
User — Movie ratings

~480K x 18K with 1% known
entries

Dense submatrix: ~48K x 9K

Relative Error

1 T

0.8

0.6

0.4

0.2

0.04
0.02

0

T

1.8M2M2.2M

[k LMaFit
"O= Order&Extend

L]

10M 20M

30M 40M

Query Budget (b)



Experiments with noisy matrices
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Experiments with noisy matrices
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Relative Error

=t OptSpace
(L MaFit
O Order&Extend

1000 2000 3000 4000
Query Budget (b)



