Measuring distance and similarity of data objects

Many different data

- documents (webpages, books)
- records of users
- graphs
- images
- videos
- Strings (DNA sequences)
- Timeseries
- How do we compare them?

Data Representation

dataset X as a collection of objects

write x, y, z, ... for objects in X

at this point no assumption about the representation of objects in $\boldsymbol{\mathsf{X}}$

x can be

real-valued vectors

binary vectors

sets

time series

images

Distance function

want to define function

$d: X \times X \to \mathbb{R}$

what properties should d have?

Distance functions

$$d(x,y) \ge 0$$
 non negativity
 $d(x,y) = 0$ iff $x = y$ isolation
 $d(x,y) = d(y,x)$ symmetry
 $d(x,y) \le d(x,z) + d(z,y)$ triangle inequality

Metric distance functions and metric spaces

a distance function that satisfies all properties non-negativity, isolation, symmetry, and triangle inequality is called a metric

a data space equipped with a metric function is called metric space

Distance and similarity functions

distance function $d: X \times X \to \mathbb{R}$ large for dissimilar objects similarity function $s: X \times X \to \mathbb{R}$ large for similar objects

often similarity s is between 0 and 1

$$s(x,y) = 1 - d(x,y)$$

 $s(x,y) \propto e^{-d(x,y)}$

Distance functions for real-valued vectors

• L_p norms or Minkowski distance:

$$L_{p}(x,y) = \left(\sum_{i=1}^{d} |x_{i} - y_{i}|^{p}\right)^{\frac{1}{p}}$$

p = 1, L₁, Manhattan (or city block) or Hamming distance:

$$L_1(x,y) = \left(\sum_{i=1}^d |x_i - y_i|\right)$$

Distance functions for real-valued vectors

• L_p norms or Minkowski distance:

$$L_p(x,y) = \left(\sum_{i=1}^{d} |x_i - y_i|^p\right)^{\frac{1}{p}}$$

1

• p = 2, L₂, Euclidean distance:

$$L_2(x,y) = \left(\sum_{i=1}^d (x_i - y_i)^2\right)^{1/2}$$

Data structures

Similarity functions for real-valued vectors

• Dot product or cosine similarity

$$\cos(x, y) = \frac{x \cdot y}{||x||||y||}$$

- Can we construct a distance function out of this?
- When use the one and when the other?

Distance functions for 0/1 data

x010010010y1000010111

$$L_1(x,y) = \left(\sum_{i=1}^d |x_i - y_i|\right)$$

How good is Hamming distance for 0-1 vectors?

- Drawback
- Documents represented as sets (of words)
- Two cases
 - Two very large documents -- almost identical -but for 5 terms
 - Two very small documents, with 5 terms each, disjoint

Distance functions for binary vectors or **sets**

 Jaccard similarity between binary vectors x and y (Range?)

$$JSim(x,y) = \frac{|x \cap y|}{|x \cup y|}$$

• **Jaccard** distance (Range?):

$$JDist(x, y) = 1 - \frac{|x \cap y|}{|x \cup y|}$$

The previous example

• Case 1 (very large almost identical documents)

Case 2 (small disjoint documents)

$$J(x,y) = 0$$

J(x, y) almost 1

Distance functions between strings

strings x and y of equal length modification of the Hamming distance add I for all positions that are different

string Hamming distance = 4

drawbacks?

Distance functions between strings

- I. strings must have equal length
- 2. what about

string Hamming distance = 6

String edit distance

consider two strings x and y

try to change one to another

only single-character edits are allowed

insert character

delete character

substitute character

edit distance is the minimum number of such operations not necessary to have equal length!

String edit distance

string edit distance = 2

String edit distance

consider two strings x and y of lengths n and m, respectively

how can I compute the string edit distance between x and y?

how expensive is this computation?

Computing the edit distance

- Dynamic programming
- Form nxm distance matrix D (x of length n, y of length m)

 D(i,j) is the optimal distance between strings x[1..i] and y[1..j]

Computing the edit distance

- How to compute D(i,j)?
- Either
 - match the last two characters (substitution)
 - match by deleting the last char in one string
 - match by deleting the last character in the other string

Computing edit distance

$$D(i, j) = \min\{D(i - 1, j) + \det(X[i]), \\D(i, j - 1) + \operatorname{ins}(Y[j]), \\D(i - 1, j - 1) + \operatorname{sub}(X[i], Y[j])\}$$

• Running time? Metric?

Distance function between time series

- time series can be seen as vectors
- apply existing distance metrics
- L-norms

• what can go wrong?

Distance functions between time series

• Euclidean distance between time series

figures from Eamonn Keogh www.cs.ucr.edu/~eamonn/DTW_myths.ppt

• Alleviate the problems with Euclidean distance

figures from Eamonn Keogh www.cs.ucr.edu/~eamonn/DTW_myths.ppt

• Quite useful in practice

figures from Eamonn Keogh www.cs.ucr.edu/~eamonn/DTW_myths.ppt

how to compute it?

Dynamic programming

figures from Eamonn Keogh www.cs.ucr.edu/~eamonn/DTW_myths.ppt

• constraints for more efficient computation

figures from Eamonn Keogh www.cs.ucr.edu/~eamonn/DTW_myths.ppt