
Measuring distance and 
similarity of data objects



Many different data
• documents (webpages, books)
• records of users
• graphs
• images
• videos
• Strings (DNA sequences)
• Timeseries
• How do we compare them?



Data Representation
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distance functions

dataset X as a collection of objects

write x, y, z, ... for objects in X

at this point no assumption about the representation of 
objects in X

x can be
real-valued vectors
binary vectors
sets
time series
images



Distance function
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what properties should     have?d

distance functions

want to define function

d : X ⇥X ! R



Distance functions
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distance functions

d(x, y) � 0 non negativity

d(x, y) = d(y, x) symmetry

d(x, y)  d(x, z) + d(z, y) triangle inequality

isolationd(x, y) = 0 i↵ x = y



Metric distance functions 
and metric spaces
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metric distance functions and 
metric spaces

a distance function that satisfies all properties
non-negativity, 
isolation, 
symmetry, and 
triangle inequality
is called a metric

a data space equipped with a metric function is called 
metric space



Distance and similarity functions
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similarity functions

distance function
large for dissimilar objects

similarity function
large for similar objects

often similarity s is between 0 and 1

d : X ⇥X ! R

s : X ⇥X ! R

s(x, y) = 1� d(x, y)

s(x, y) / e

�d(x,y)



Distance functions for real-valued 
vectors

• Lp norms or Minkowski distance:

• p = 1, L1, Manhattan (or city block) or Hamming 
distance:

Lp(x, y) =

 
dX

i=1

|xi � yi|p
! 1

p

L1(x, y) =

 
dX

i=1

|xi � yi|
!



Distance functions for real-valued 
vectors

• Lp norms or Minkowski distance:

• p = 2, L2, Euclidean  distance:

Lp(x, y) =

 
dX

i=1

|xi � yi|p
! 1

p

L2(x, y) =

 
dX

i=1

(xi � yi)
2

!1/2



Data structures
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data structures

0

B@
x11 . . . x1m
...

...
xn1 . . . xnm

1

CAdata matrix

0

BBB@

0 . . .
d(2, 1) 0 . . .

...
d(n, 1) d(n, 2) . . . d(n, n� 1) 0

1

CCCAdistance matrix



Similarity functions for real-valued 
vectors

• Dot product or cosine similarity

• Can we construct a distance function out of this?

• When use the one and when the other?

cos(x, y) =

x · y
||x||||y||



Distance functions for 0/1 data

x 0 1 0 0 1 0 0 1 0

y 1 0 0 0 0 1 0 1 1

L1(x, y) =

 
dX

i=1

|xi � yi|
!



How good is Hamming distance for 
0-1 vectors?

• Drawback

• Documents represented as sets (of words)
• Two cases

– Two very large documents -- almost identical -- 
but for 5 terms

– Two very small documents, with 5 terms each, 
disjoint 
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Distance functions for binary 
vectors or sets

• Jaccard similarity between binary vectors x and y 
(Range?)

• Jaccard distance (Range?):

JSim(x, y) =
|x \ y|
|x [ y|

JDist(x, y) = 1� |x \ y|
|x [ y|

x

y



The previous example
• Case 1 (very large almost identical documents)

• Case 2 (small disjoint documents)
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x
y
J(x, y) almost 1

x
y

J(x, y) = 0



Distance functions between strings
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distance functions 
between strings

strings x and y of equal length

modification of the Hamming distance

add 1 for all positions that are different

drawbacks?

x c g t a a c g
y g a t t a c a

string Hamming distance = 4



Distance functions between strings
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1. strings must have equal length

2. what about

x a g a t t a c
y g a t t a c a

string Hamming distance = 6

distance functions 
between strings



String edit distance
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string edit distance

consider two strings x and y

try to change one to another

only single-character edits are allowed

insert character

delete character

substitute character

edit distance is the minimum number of such operations

not necessary to have equal length!



String edit distance
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string edit distance

example

x a g a t t a c

y g a t t a c a

g a t t a c

string edit distance = 2

remove a

add a



String edit distance
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string edit distance

consider two strings x and y of lengths n and m, respectively

how can I compute the string edit distance between x and y?

how expensive is this computation?



Computing the edit distance
• Dynamic programming
• Form nxm distance matrix D (x of length n, y of length m)

• D(i,j) is the optimal distance between strings x[1..i] 
and y[1..j]
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Computing the edit distance

• How to compute D(i,j)?
• Either
–match the last two characters 

(substitution)
–match by deleting the last char in one 

string
–match by deleting the last character in the 

other string
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Computing edit distance

D(i, j) = min{D(i� 1, j) + del(X[i]),

D(i, j � 1) + ins(Y [j]),

D(i� 1, j � 1) + sub(X[i], Y [j])}

• Running time? Metric?



Distance function between time 
series

• time series can be seen as vectors
• apply existing distance metrics
• L-norms

• what can go wrong?
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Distance functions between 
time series

• Euclidean distance between time series

25
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Dynamic time warping

• Alleviate the problems with Euclidean 
distance
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Dynamic time warping

• Quite useful in 
practice
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Dynamic time warping
• how to compute it?     
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Dynamic time warping
• constraints for more efficient computation
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