
Finding similar objects



How would you do it? 
• Finding very similar items might be 

computationally demanding task

• We can relax our requirement to 
finding somewhat similar items 



Running example: comparing 
documents

• Documents have common text, but no 
common topic

• Easy special cases:
– Identical documents
– Fully contained documents (letter by 

letter)
• General case:
–Many small pieces of one document 

appear out of order in another. What do 
we do then?



Finding similar documents
• Given a collection of documents, find 

pairs of documents that have lots of 
text in common
– Identify mirror sites or web pages
– Plagiarism
– Similar news articles



Key steps
• Convert documents (news articles, 

emails, etc) to sets

• Convert large sets to small 
signatures, while preserving the 
similarity

• Compare the signatures instead of the 
actual documents



Data model: sets
• Data points are represented as sets 

(i.e., sets of shingles)

• Similar data points have large 
intersections in their sets

– Think of documents and shingles
– Customers and products
– Users and movies



Similarity measures for sets
• Now we have a set representation of the data

• Jaccard coefficient

• A, B sets (subsets of some, large, universe U)



Find similar objects using the 
Jaccard similarity

• Naïve method?
– Linear scan

• Problems with the naïve method?
– There are too many objects
– Each object consists of too many sets



Speeding up the naïve method
• Represent every object by a signature (summary 

of the object)

• Examine pairs of signatures rather than pairs of 
objects

• Find all similar pairs of signatures

• Check point: check that objects with similar 
signatures are actually similar



Still problems
• Comparing large number of signatures with 

each other may take too much time (although it 
takes less space)

• The method can produce pairs of objects that 
might not be similar (false positives). The check 
point needs to be enforced



Creating signatures
• For object x, signature of x (sign(x)) is much 

smaller (in space) than x

• For objects x, y it should hold that sim(x,y) is 
almost the same as sim(sing(x),sign(y)) 



Intuition behind Jaccard similarity

• Consider two objects: x,y

• a: # of rows of form same as a
• sim(x,y)= a /(a+b+c) 

x y
a 1 1
b 1 0
c 0 1
d 0 0



A type of signatures -minhashes

• Randomly permute the rows

• h(x): first row (in permuted data) 
 in which column x has an 1

• Use several (e.g., 100) independent
 hash functions to design a signature

x y
a 1 1
b 1 0
c 0 1
d 0 0

x y
a 0 1
b 0 0
c 1 1
d 1 0



“Surprising” property

• The probability (over all permutations of rows) 
that h(x)=h(y) is the same as sim(x,y)

• Both of them are a/(a+b+c)

• So?
– The similarity of signatures is the fraction 

of the hash functions on which they agree 



Minhash algorithm

• Pick k (e.g., 100) permutations of the rows

• Think of sign(x) as a new vector

• Let sign(x)[i]: in the i-th permutation, the index 
of the first row that has 1 for object x



Example of minhash signatures

• Input matrix
x1 x2 x3 X4

1 1 0 1 0
2 1 0 0 1
3 0 1 0 1
4 0 1 0 1
5 0 1 0 1
6 1 0 1 0
7 1 0 1 0

1
3
7
6
2
5
4

x1 x2 x3 X4
1 1 0 1 0
3 0 1 0 1
7 1 0 1 0
6 1 0 1 0
2 1 0 0 1
5 0 1 0 1
4 0 1 0 1

1 2 1 2



Example of minhash signatures

• Input matrix
x1 x2 x3 X4

1 1 0 1 0
2 1 0 0 1
3 0 1 0 1
4 0 1 0 1
5 0 1 0 1
6 1 0 1 0
7 1 0 1 0

4
2
1
3
6
7
5

x1 x2 x3 X4
4 0 1 0 1
2 1 0 0 1
1 1 0 1 0
3 0 1 0 1
6 1 0 1 0
7 1 0 1 0
5 0 1 0 1

2 1 3 1



Example of minhash signatures

• Input matrix
x1 x2 x3 X4

1 1 0 1 0
2 1 0 0 1
3 0 1 0 1
4 0 1 0 1
5 0 1 0 1
6 1 0 1 0
7 1 0 1 0

3
4
7
6
1
2
5

x1 x2 x3 X4
3 0 1 0 1
4 0 1 0 1
7 1 0 1 0
6 1 0 1 0
1 1 0 1 0
2 1 0 0 1
5 0 1 0 1

3 1 3 1



Example of minhash signatures

• Input matrix
x1 x2 x3 X4

1 1 0 1 0
2 1 0 0 1
3 0 1 0 1
4 0 1 0 1
5 0 1 0 1
6 1 0 1 0
7 1 0 1 0

x1 x2 x3 X4
1 2 1 2
2 1 3 1
3 1 3 1

≈

actual signs
(x1,x2) 0 0
(x1,x3) 0.75 2/3
(x1,x4) 1/7 0
(x2,x3) 0 0
(x2,x4) 0.75 1
(x3,x4) 0 0



Is it now feasible?
• Assume a billion rows

• Hard to pick a random permutation of 1…billion

• Even representing a random permutation 
requires 1 billion entries!!!

• How about accessing rows in permuted order?

• 



Being more practical

• Approximating row permutations: pick 
k=100 (?) hash functions (h1,…,hk)

for each row r 
    for each column c 
  if c has 1 in row r 
     for each hash function hi  do

   if hi (r ) is a smaller value than M(i,c) then
   M (i,c) = hi (r);

M(i,c) will become the 
smallest value of 
hi(r) for which 
column c has 1 in 
row r; i.e., hi (r) 
gives order of 
rows for i-th 
permutation.



Example of minhash signatures

• Input matrix

x1 x2
1 1 0
2 0 1
3 1 1
4 1 0
5 0 1

x1 x2
1 0 1
2 2 0

h(r) = r + 1 mod 5
g(r) = 2r + 1 mod 5


