# Dimensionality reduction

#### Outline

 Dimensionality Reductions or data projections

Random projections

 Singular Value Decomposition and Principal Component Analysis (PCA)

# The curse of dimensionality

 The efficiency of many algorithms depends on the number of dimensions d

 Distance/similarity computations are at least linear to the number of dimensions

Index structures fail as the dimensionality of the data increases

#### Goals

Reduce dimensionality of the data

Maintain the meaningfulness of the data

#### Dimensionality reduction

- Dataset X consisting of n points in a ddimensional space
- Data point x<sub>i</sub>∈R<sup>d</sup> (d-dimensional real vector):

$$x_i = [x_{i1}, x_{i2}, ..., x_{id}]$$

- Dimensionality reduction methods:
  - Feature selection: choose a subset of the features
  - Feature extraction: create new features by combining new ones

#### Dimensionality reduction

- Dimensionality reduction methods:
  - Feature selection: choose a subset of the features
  - Feature extraction: create new features by combining new ones
- Both methods map vector x<sub>i</sub>∈R<sup>d</sup>, to vector y<sub>i</sub>
   ∈ R<sup>k</sup>, (k<<d)</li>
- $F: \mathbb{R}^d \rightarrow \mathbb{R}^k$

#### Linear dimensionality reduction

- Function F is a linear projection
- $y_i = x_i A$

 $\cdot Y = X A$ 

Goal: Y is as close to X as possible

#### Closeness: Pairwise distances

• Johnson-Lindenstrauss lemma: Given  $\varepsilon > 0$ , and an integer  $\mathbf{n}$ , let  $\mathbf{k}$  be a positive integer such that  $\mathbf{k} \ge \mathbf{k}_0 = \mathbf{O}(\varepsilon^{-2} \log \mathbf{n})$ . For every set  $\mathbf{X}$  of  $\mathbf{n}$  points in  $\mathbf{R}^d$  there exists  $\mathbf{F} : \mathbf{R}^d \to \mathbf{R}^k$  such that for all  $\mathbf{x}_i$ ,  $\mathbf{x}_j \in \mathbf{X}$ 

$$(1-\epsilon)||x_i - x_j||^2 \le ||F(x_i) - F(x_j)||^2 \le (1+\epsilon)||x_i - x_j||^2$$

What is the intuitive interpretation of this statement?

#### JL Lemma: Intuition

- Vectors  $x_i \in \mathbb{R}^d$ , are projected onto a k-dimensional space (k<<d):  $y_i = x_i A$
- If  $||\mathbf{x}_i|| = 1$  for all i, then,  $||\mathbf{x}_i - \mathbf{x}_j||^2$  is approximated by  $(\mathbf{d}/\mathbf{k})||\mathbf{y}_i - \mathbf{y}_j||^2$

#### Intuition:

- The expected squared norm of a projection of a unit vector onto a random subspace through the origin is k/d
- The probability that it deviates from expectation is very small

#### Finding random projections

- Vectors x<sub>i</sub>∈R<sup>d</sup>, are projected onto a kdimensional space (k<<d)</li>
- Random projections can be represented by linear transformation matrix A
- $y_i = x_i A$

What is the matrix A?

#### Finding random projections

- Vectors x<sub>i</sub>∈R<sup>d</sup>, are projected onto a kdimensional space (k<<d)</li>
- Random projections can be represented by linear transformation matrix A
- $y_i = x_i A$

What is the matrix A?

#### Finding matrix A

- Elements A(i,j) can be Gaussian distributed
- Achlioptas\* has shown that the Gaussian distribution can be replaced by

$$A(i, j) = \begin{cases} +1 \text{ with prob } \frac{1}{6} \\ 0 \text{ with prob } \frac{2}{3} \\ -1 \text{ with prob } \frac{1}{6} \end{cases}$$

- All zero mean, unit variance distributions for A(i,j)
  would give a mapping that satisfies the JL lemma
- Why is Achlioptas result useful?

#### Datasets in the form of matrices

Given n objects and d features describing the objects. (Each object has d numeric values describing it.)

#### **Dataset**

An n-by-d matrix A, A<sub>ij</sub> shows the "importance" of feature j for object i. Every row of A represents an object.

#### **Goal**

- 1. Understand the structure of the data, e.g., the underlying process generating the data.
- 2. Reduce the number of features representing the data

#### Market basket matrices

**d** products (e.g., milk, bread, wine, etc.) customers A<sub>ij</sub> = quantity of j-th product purchased by the i-th

Find a subset of the products that characterize customer behavior

#### Social-network matrices

**d** groups (e.g., BU group, opera, etc.) n users A<sub>ij</sub> = partiticipation of the i-th user in the j-th

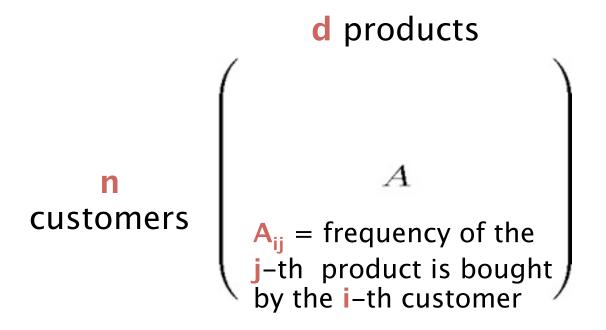
Find a subset of the groups that accurately clusters social-network users

#### Document matrices

d terms (e.g., theorem, proof, etc.) documents A<sub>ij</sub> = frequency of the **j**-th term in the **i**-th document

Find a subset of the terms that accurately clusters the documents

# Recommendation systems



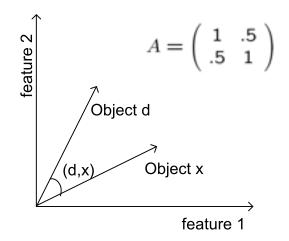
Find a subset of the products that accurately describe the behavior or the customers

# The Singular Value Decomposition (SVD)

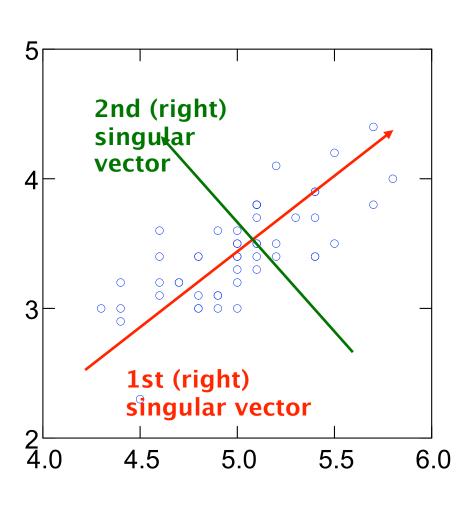
Data matrices have **n** rows (one for each object) and **d** columns (one for each feature).

Rows: vectors in a Euclidean space,

Two objects are "close" if the angle between their corresponding vectors is small.



#### SVD: Example



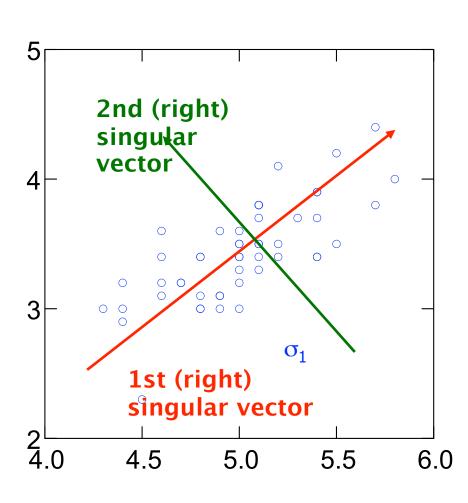
**Input: 2-d** dimensional points

#### **Output:**

1st (right) singular vector: direction of maximal variance,

2nd (right) singular vector: direction of maximal variance, after removing the projection of the data along the first singular vector.

#### Singular values



σ<sub>1</sub>: measures how much of the data variance is explained by the first singular vector.

σ<sub>2</sub>: measures how much of the data variance is explained by the second singular vector.

#### SVD decomposition

$$\begin{pmatrix} A & \\ & \\ & \end{pmatrix} = \begin{pmatrix} U & \\ & \\ & \end{pmatrix} \cdot \begin{pmatrix} & \\ & \\ & \end{pmatrix}^T$$

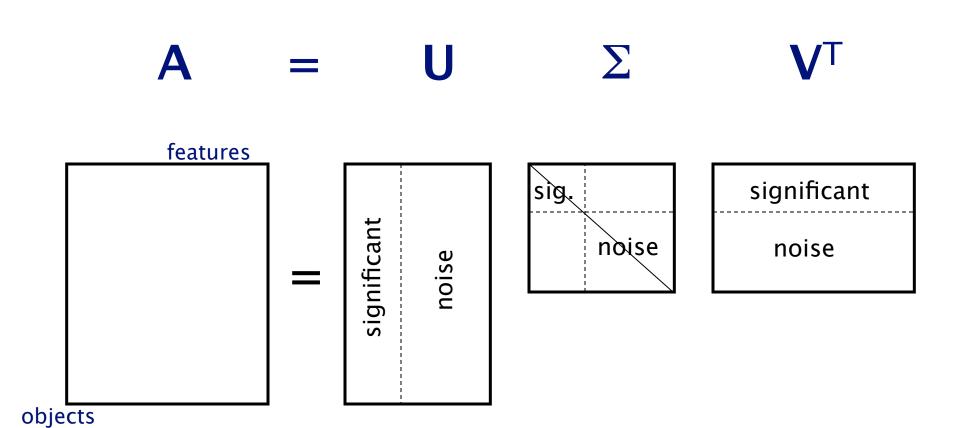
$$\text{n x d} \qquad \text{n x } \boldsymbol{\ell} \qquad \boldsymbol{\ell} \text{ x } \boldsymbol{\ell} \qquad \boldsymbol{\ell} \text{ x d}$$

**U (V)**: orthogonal matrix containing the left (right) singular vectors of **A**.

 $\Sigma$ : diagonal matrix containing the **singular values** of **A**:  $(\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_\ell)$ 

Exact computation of SVD takes O(min{mn², m²n}). The top k left/right singular vectors/values can be computed faster using Lanczos/Arnoldi methods.

#### SVD and Rank-k approximations



#### Rank-k approximations $(A_k)$

$$\begin{pmatrix} A_k \\ \mathbf{n} \times \mathbf{d} \end{pmatrix} = \begin{pmatrix} U_k \\ \mathbf{n} \times \mathbf{k} \end{pmatrix} \cdot \begin{pmatrix} \Sigma_k \\ \mathbf{k} \times \mathbf{d} \end{pmatrix}$$

 $U_k$  ( $V_k$ ): orth (right) singular  $\Sigma_k$ : diagonal values of A

A<sub>k</sub> is the best approximation of A

 $A_k$  is an approximation of A

#### **SVD** as an optimization problem

Find C to minimize:

$$\min_{C} \left\| A - C X \right\|_{n \times d}^{2}$$

Frobenius norm: 
$$||A||_F^2 = \sum_{i,j} A_{ij}^2$$

Given C it is easy to find X from standard least squares. However, the fact that we can find the optimal C is fascinating!

# SVD is "the Rolls-Royce and the Swiss Army Knife of Numerical Linear Algebra."\*

\*Dianne O'Leary, MMDS '06

#### Reference

Simple and Deterministic Matrix Sketching Author: Edo Liberty, Yahoo! Labs KDD 2013, Best paper award

Thanks Edo Liberty for the slides

#### Sketches of streaming matrices

- A nxd matrix
- Rows of A arrive in a stream
- Task: compute

$$AA^T = \sum_{i=1}^n A_i A_i^t$$

#### Sketches of streaming matrices

- A dxn matrix
- Rows of A arrive in a stream
- Task: compute

$$AA^T = \sum_{i=1}^n A_i A_i^t$$

- Naive solution: Compute  $AA^T$  in time  $O(nd^2)$  and space  $O(d^2)$
- Think of  $d=10^6$ ,  $n=10^6$

#### Goal

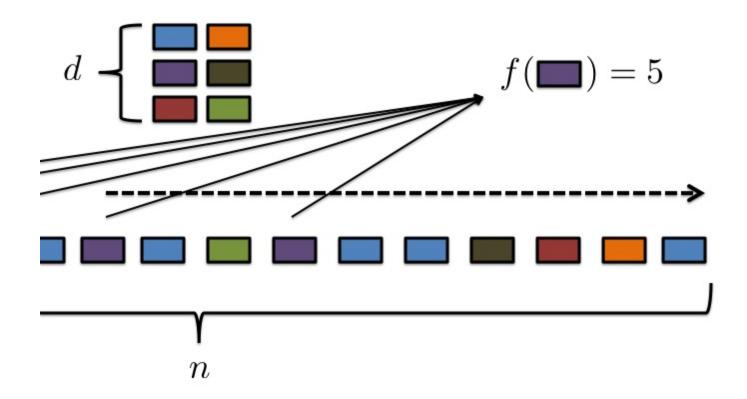
• Efficiently compute a concisely representable matrix B such that

$$B \approx A \text{ or } BB^T \approx AA^T$$

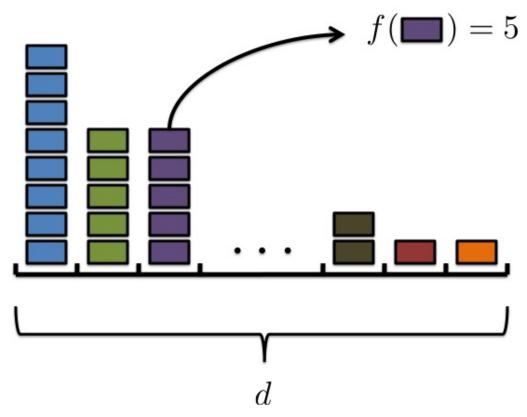
woking with B is good enough for many tasks

• Efficiently maintain matrix B with only  $\ell=2/\epsilon$  such that

$$||AA^T - BB^T||_2 \le \epsilon ||A||_f^2$$

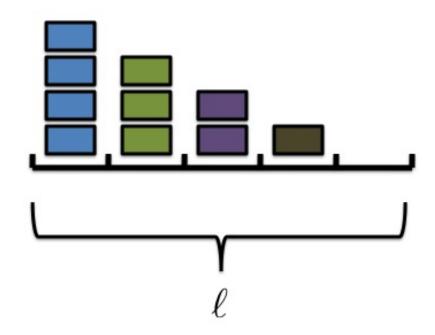


obtain the frequency f(i) of each item in a stream of items

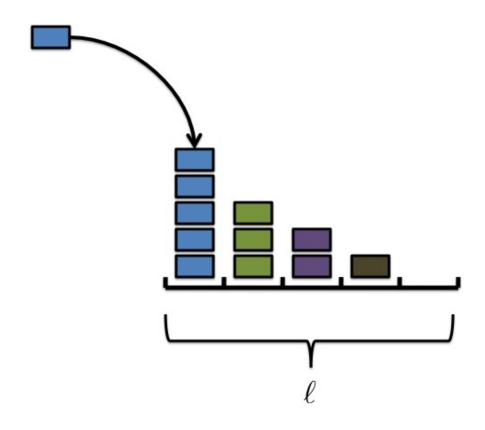


With d counters it's easy but not good enough



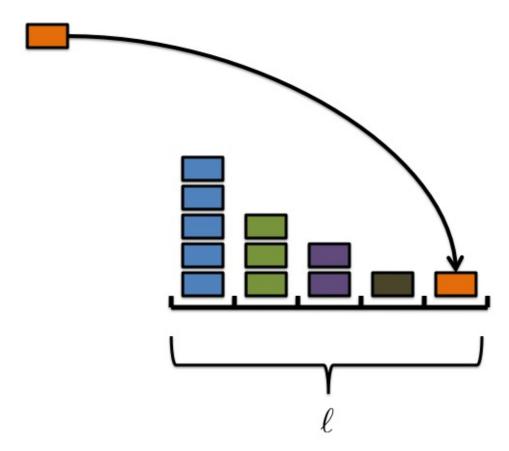


Lets keep less than a fixed number of counters



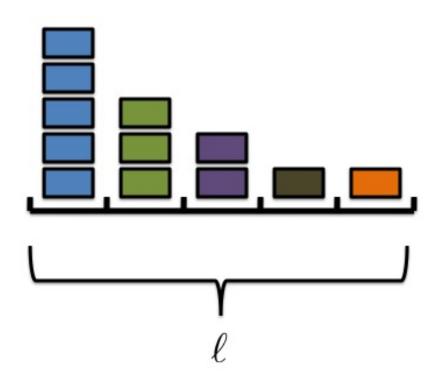
If an item has a counter we add 1 to that counter



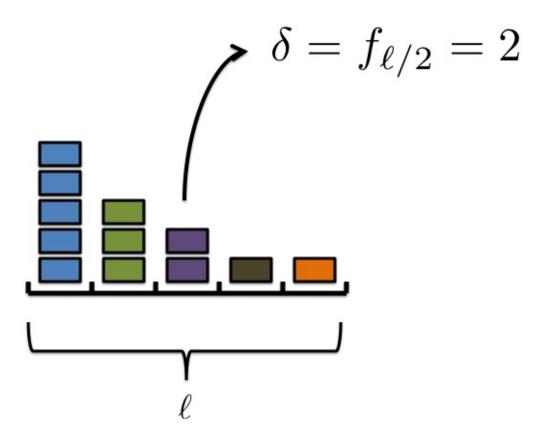


Otherwise, we create a new counter for it and set it to 1



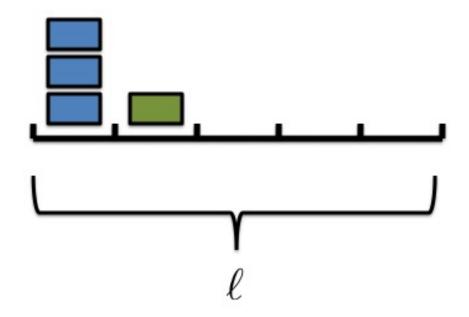


• But now we do not have less than  $\ell$  counters

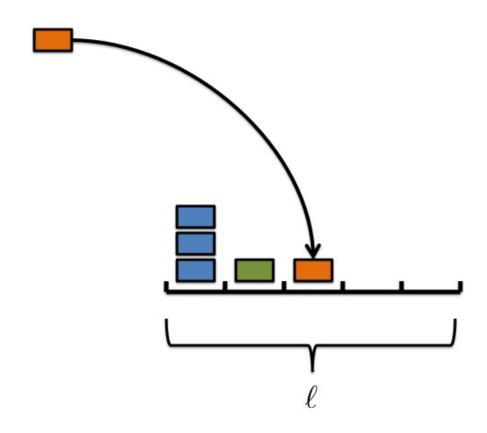


• Let  $\delta$  be the median counter value at time t



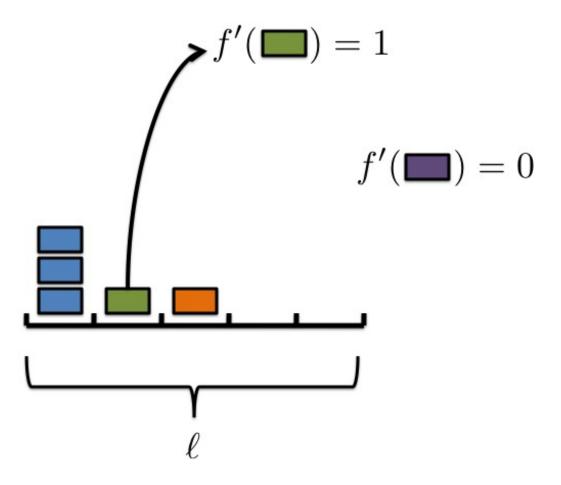


Power Decrease all counters by  $\delta$  (or set to zero if less than  $\delta$ )



And continue....





The approximated counts are f'

We increase the count by only 1 for each item appearance

$$f'(i) \le f(i)$$

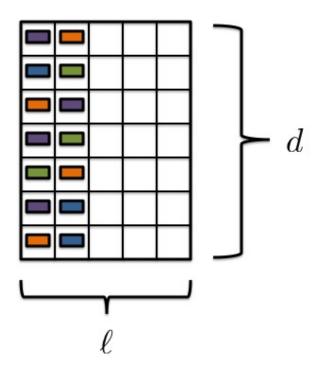
• Because we decrease each counter by at most  $\delta_t$  at time t

$$f'(i) \ge f(i) - \sum_{t} \delta_t$$

Calculating the total approximated frequencies:

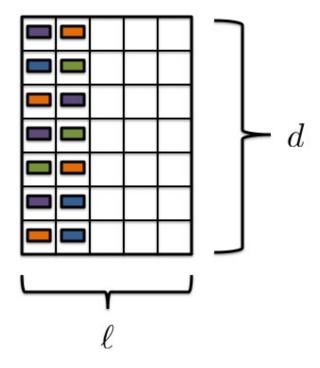
$$0 \le \sum_{i} f'(i) \le \sum_{t} (1 - (\ell/2)\delta_{t}) = n - (\ell/2) \sum_{t} \delta_{t}$$
$$\sum_{t} \delta_{t} \le 2n/\ell$$

 $\sum_t \delta_t \le 2n/\ell$  • Setting  $\ell=2/\epsilon$   $|f(i)-f'(i)| \le \epsilon n$ 

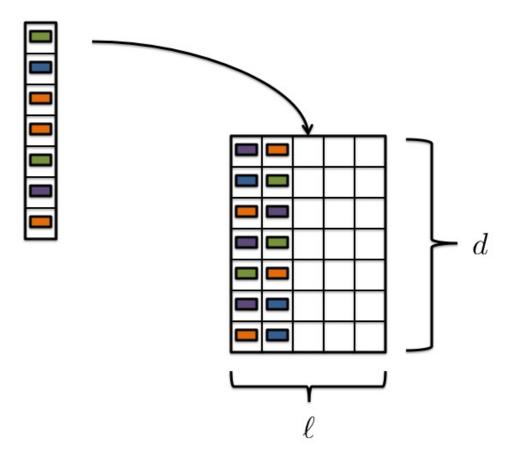


• We keep a sketch of at most  $\ell$  columns



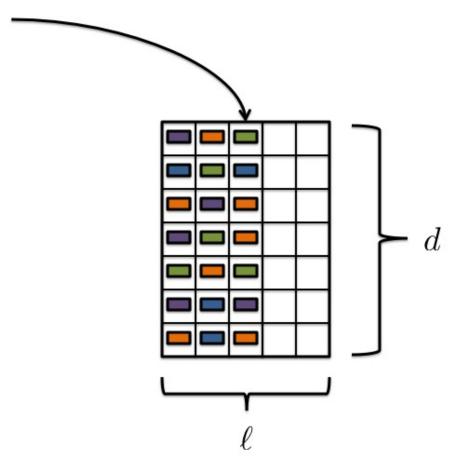


Maintain the invariant that some of the columns are empty.
 (zero-valued)



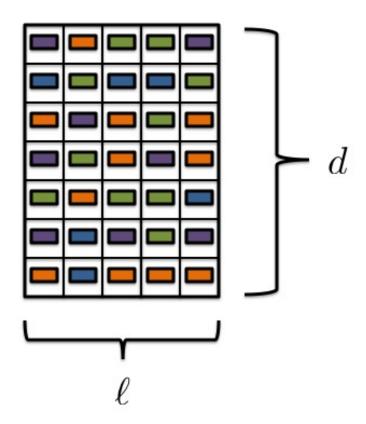
Input vectors are simply stored in empty columns





Input vectors are simply stored in empty columns





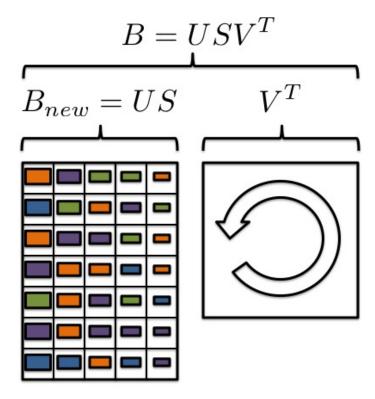
When the sketch is ``full" we need to zero out some columns





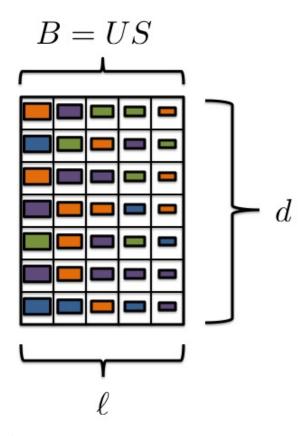
• Using SVD we compute  $B = USV^T$  and set  $B_{new} = US$ 



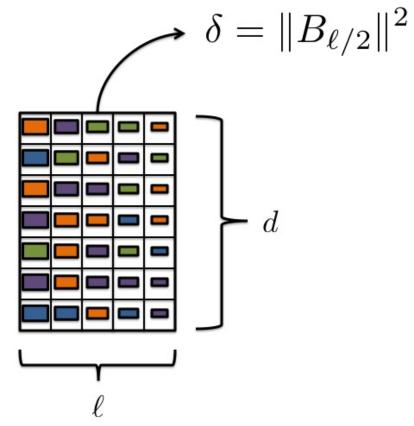


• Note that  $BB^T=B_{new}B_{new}^T$  so we don't ``lose" anything



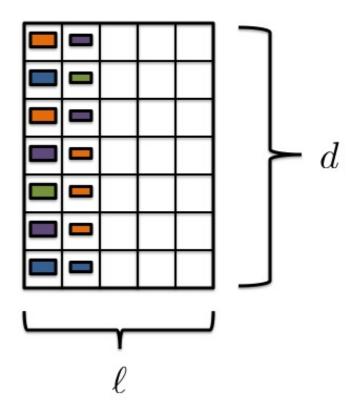


The columns of B are now orthogonal and in decreasing magnitude order



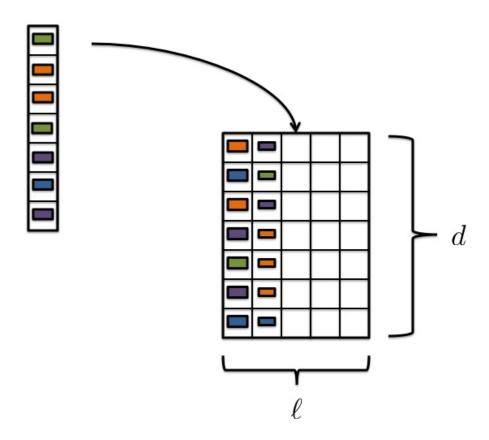
• Let 
$$\delta = ||B_{\ell/2}||^2$$





• Reduce column  $\,\ell_2^2 - \mathrm{norms}\,$  by  $\,\delta$  (or nullify if less)





Start aggregating columns again



```
Input: \ell, A \in \mathbb{R}^{d \times n} B \leftarrow all zeros matrix \in \mathbb{R}^{d \times \ell} for i \in [n] do

Insert A_i into a zero valued column of B

if B has no zero valued colums then

[U, \Sigma, V] \leftarrow SVD(B)
\delta \leftarrow \sigma_{\ell/2}^2
\check{\Sigma} \leftarrow \sqrt{\max(\Sigma^2 - I_\ell \delta, 0)}
B \leftarrow U\check{\Sigma} \qquad \# \text{ At least half the columns of } B \text{ are zero.}
Return: B
```



# Frequent directions: proof

• Step 1:

$$||AA^T - BB^T|| \le \sum_{t=1}^n \delta_t$$

- Step 2:  $\sum_{t=1}^{n} \delta_t \leq 2||A||_f^2/\ell$
- Setting  $\ell = 2/\epsilon$  yields

$$||AA^T - BB^T|| \le \epsilon ||A||_f^2$$

### Error as a function of $\ell$

