Dimensionality reduction

Outline

 Dimensionality Reductions or data projections

Random projections

 Singular Value Decomposition and Principal Component Analysis (PCA)

The curse of dimensionality

 The efficiency of many algorithms depends on the number of dimensions d

 Distance/similarity computations are at least linear to the number of dimensions

Index structures fail as the dimensionality of the data increases

Goals

Reduce dimensionality of the data

Maintain the meaningfulness of the data

Dimensionality reduction

- Dataset X consisting of n points in a ddimensional space
- Data point x_i∈R^d (d-dimensional real vector):

$$x_i = [x_{i1}, x_{i2}, ..., x_{id}]$$

- Dimensionality reduction methods:
 - Feature selection: choose a subset of the features
 - Feature extraction: create new features by combining new ones

Dimensionality reduction

- Dimensionality reduction methods:
 - Feature selection: choose a subset of the features
 - Feature extraction: create new features by combining new ones
- Both methods map vector x_i∈R^d, to vector y_i
 ∈ R^k, (k<<d)
- $F: \mathbb{R}^d \rightarrow \mathbb{R}^k$

Linear dimensionality reduction

- Function F is a linear projection
- $y_i = x_i A$

 $\cdot Y = X A$

Goal: Y is as close to X as possible

Closeness: Pairwise distances

• Johnson-Lindenstrauss lemma: Given $\varepsilon > 0$, and an integer \mathbf{n} , let \mathbf{k} be a positive integer such that $\mathbf{k} \ge \mathbf{k}_0 = \mathbf{O}(\varepsilon^{-2} \log \mathbf{n})$. For every set \mathbf{X} of \mathbf{n} points in \mathbf{R}^d there exists $\mathbf{F} : \mathbf{R}^d \to \mathbf{R}^k$ such that for all \mathbf{x}_i , $\mathbf{x}_j \in \mathbf{X}$

$$(1-\epsilon)||x_i - x_j||^2 \le ||F(x_i) - F(x_j)||^2 \le (1+\epsilon)||x_i - x_j||^2$$

What is the intuitive interpretation of this statement?

JL Lemma: Intuition

- Vectors $x_i \in \mathbb{R}^d$, are projected onto a k-dimensional space (k<<d): $y_i = x_i A$
- If $||\mathbf{x}_i|| = 1$ for all i, then, $||\mathbf{x}_i - \mathbf{x}_j||^2$ is approximated by $(\mathbf{d}/\mathbf{k})||\mathbf{y}_i - \mathbf{y}_j||^2$

Intuition:

- The expected squared norm of a projection of a unit vector onto a random subspace through the origin is k/d
- The probability that it deviates from expectation is very small

Finding random projections

- Vectors x_i∈R^d, are projected onto a kdimensional space (k<<d)
- Random projections can be represented by linear transformation matrix A
- $y_i = x_i A$

What is the matrix A?

Finding random projections

- Vectors x_i∈R^d, are projected onto a kdimensional space (k<<d)
- Random projections can be represented by linear transformation matrix A
- $y_i = x_i A$

What is the matrix A?

Finding matrix A

- Elements A(i,j) can be Gaussian distributed
- Achlioptas* has shown that the Gaussian distribution can be replaced by

$$A(i, j) = \begin{cases} +1 \text{ with prob } \frac{1}{6} \\ 0 \text{ with prob } \frac{2}{3} \\ -1 \text{ with prob } \frac{1}{6} \end{cases}$$

- All zero mean, unit variance distributions for A(i,j)
 would give a mapping that satisfies the JL lemma
- Why is Achlioptas result useful?

Datasets in the form of matrices

Given n objects and d features describing the objects. (Each object has d numeric values describing it.)

Dataset

An n-by-d matrix A, A_{ij} shows the "importance" of feature j for object i. Every row of A represents an object.

Goal

- 1. Understand the structure of the data, e.g., the underlying process generating the data.
- 2. Reduce the number of features representing the data

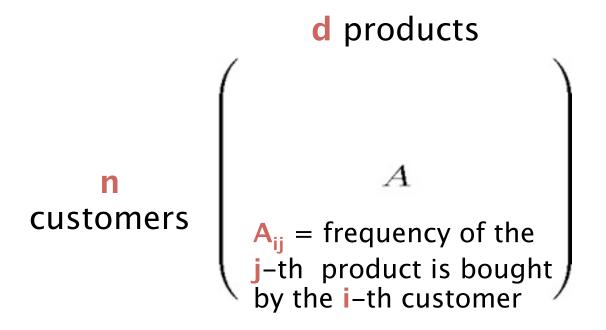
Market basket matrices

d products (e.g., milk, bread, wine, etc.) customers A_{ij} = quantity of j-th product purchased by the i-th

Find a subset of the products that characterize customer behavior

Social-network matrices

d groups (e.g., BU group, opera, etc.) n users A_{ij} = partiticipation of the i-th user in the j-th


Find a subset of the groups that accurately clusters social-network users

Document matrices

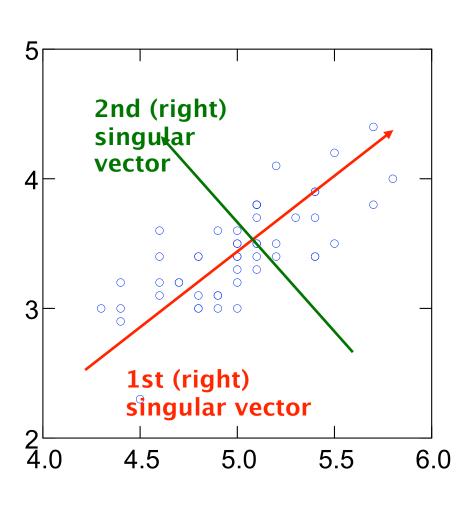
d terms (e.g., theorem, proof, etc.) documents A_{ij} = frequency of the **j**-th term in the **i**-th document

Find a subset of the terms that accurately clusters the documents

Recommendation systems

Find a subset of the products that accurately describe the behavior or the customers

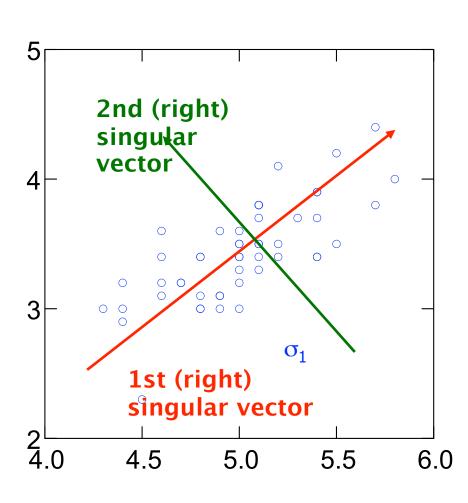
The Singular Value Decomposition (SVD)


Data matrices have **n** rows (one for each object) and **d** columns (one for each feature).

Rows: vectors in a Euclidean space,

Two objects are "close" if the angle between their corresponding vectors is small.

SVD: Example


Input: 2-d dimensional points

Output:

1st (right) singular vector: direction of maximal variance,

2nd (right) singular vector: direction of maximal variance, after removing the projection of the data along the first singular vector.

Singular values

σ₁: measures how much of the data variance is explained by the first singular vector.

σ₂: measures how much of the data variance is explained by the second singular vector.

SVD decomposition

$$\begin{pmatrix} A & \\ & \\ & \end{pmatrix} = \begin{pmatrix} U & \\ & \\ & \end{pmatrix} \cdot \begin{pmatrix} & \\ & \\ & \end{pmatrix}^T$$

$$\text{n x d} \qquad \text{n x } \boldsymbol{\ell} \qquad \boldsymbol{\ell} \text{ x } \boldsymbol{\ell} \qquad \boldsymbol{\ell} \text{ x d}$$

U (V): orthogonal matrix containing the left (right) singular vectors of **A**.

 Σ : diagonal matrix containing the **singular values** of **A**: $(\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_\ell)$

Exact computation of SVD takes O(min{mn², m²n}). The top k left/right singular vectors/values can be computed faster using Lanczos/Arnoldi methods.

SVD and Rank-k approximations

Rank-k approximations (A_k)

$$\begin{pmatrix} A_k \\ \mathbf{n} \times \mathbf{d} \end{pmatrix} = \begin{pmatrix} U_k \\ \mathbf{n} \times \mathbf{k} \end{pmatrix} \cdot \begin{pmatrix} \Sigma_k \\ \mathbf{k} \times \mathbf{d} \end{pmatrix}$$

 U_k (V_k): orth (right) singular Σ_k : diagonal values of A

A_k is the best approximation of A

 A_k is an approximation of A

SVD as an optimization problem

Find C to minimize:

$$\min_{C} \left\| A - C X \right\|_{n \times d}^{2}$$

Frobenius norm:
$$||A||_F^2 = \sum_{i,j} A_{ij}^2$$

Given C it is easy to find X from standard least squares. However, the fact that we can find the optimal C is fascinating!

SVD is "the Rolls-Royce and the Swiss Army Knife of Numerical Linear Algebra."*

*Dianne O'Leary, MMDS '06

Reference

Simple and Deterministic Matrix Sketching Author: Edo Liberty, Yahoo! Labs KDD 2013, Best paper award

Thanks Edo Liberty for the slides

Sketches of streaming matrices

- A nxd matrix
- Rows of A arrive in a stream
- Task: compute

$$AA^T = \sum_{i=1}^n A_i A_i^t$$

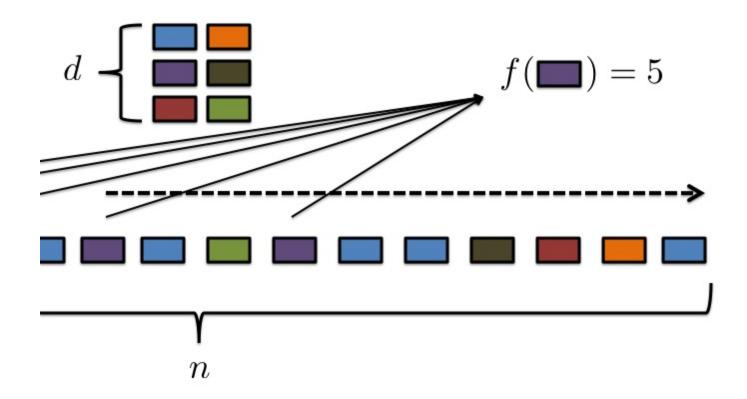
Sketches of streaming matrices

- A dxn matrix
- Rows of A arrive in a stream
- Task: compute

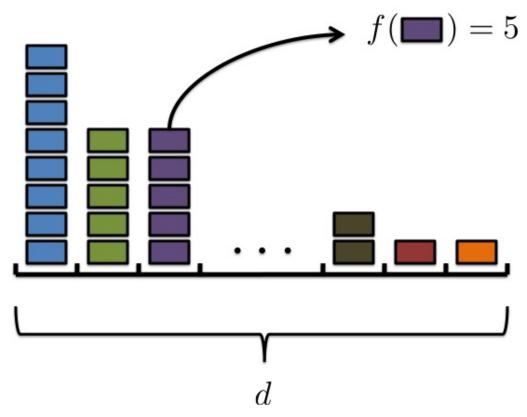
$$AA^T = \sum_{i=1}^n A_i A_i^t$$

- Naive solution: Compute AA^T in time $O(nd^2)$ and space $O(d^2)$
- Think of $d=10^6$, $n=10^6$

Goal

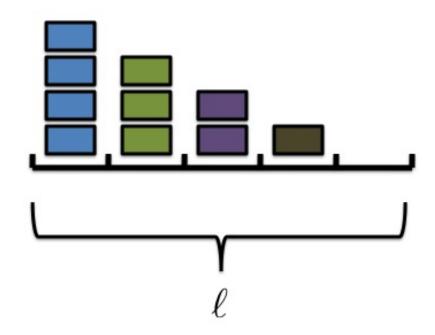

• Efficiently compute a concisely representable matrix B such that

$$B \approx A \text{ or } BB^T \approx AA^T$$

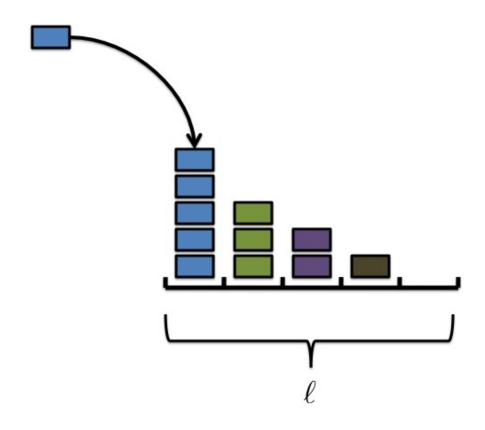

woking with B is good enough for many tasks

• Efficiently maintain matrix B with only $\ell=2/\epsilon$ such that

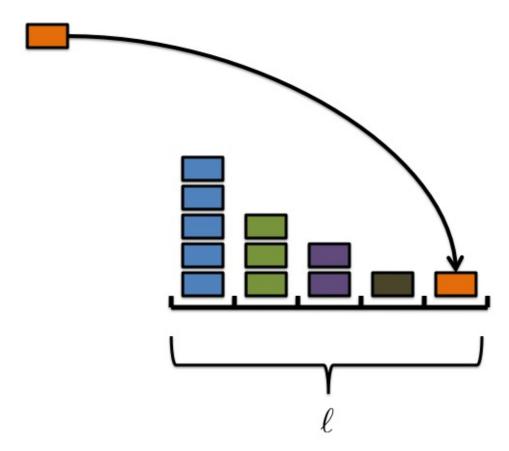
$$||AA^T - BB^T||_2 \le \epsilon ||A||_f^2$$



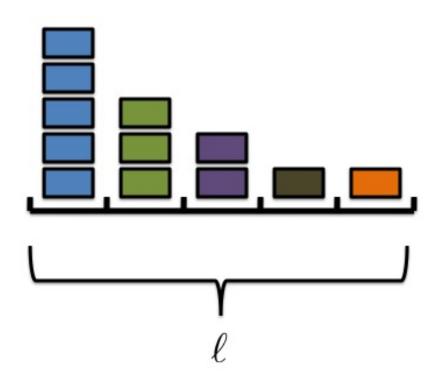
obtain the frequency f(i) of each item in a stream of items

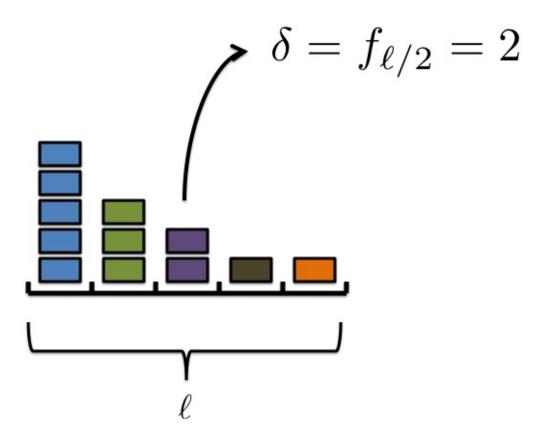


With d counters it's easy but not good enough

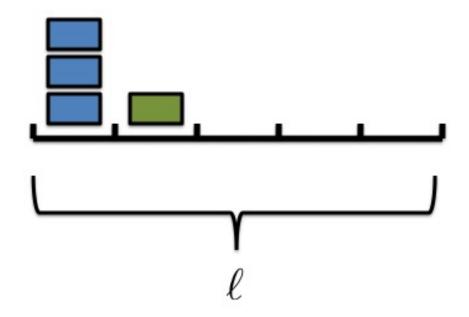


Lets keep less than a fixed number of counters

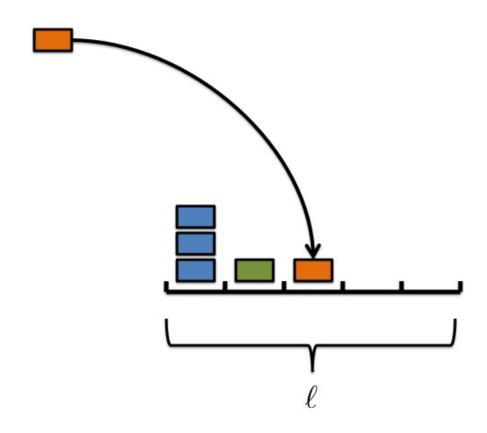

If an item has a counter we add 1 to that counter



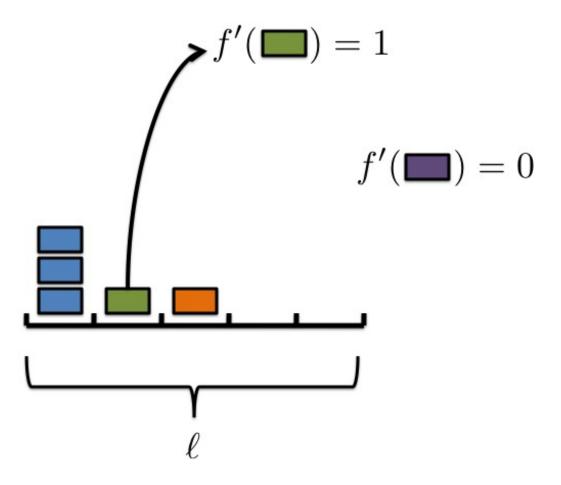
Otherwise, we create a new counter for it and set it to 1



• But now we do not have less than ℓ counters



• Let δ be the median counter value at time t



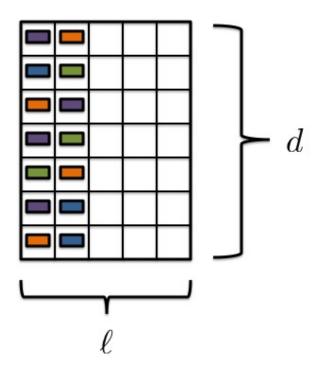
Power Decrease all counters by δ (or set to zero if less than δ)

And continue....

The approximated counts are f'

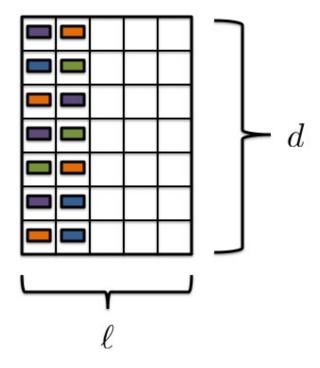
We increase the count by only 1 for each item appearance

$$f'(i) \le f(i)$$

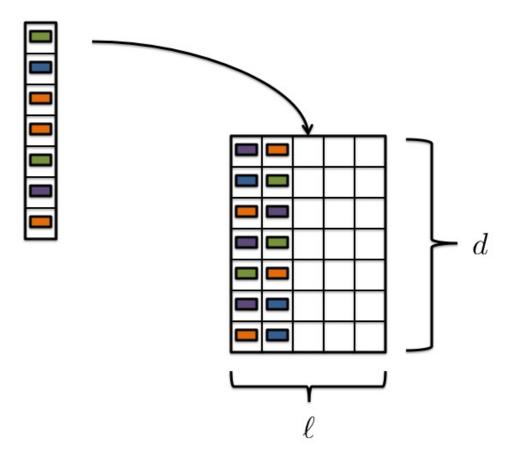

• Because we decrease each counter by at most δ_t at time t

$$f'(i) \ge f(i) - \sum_{t} \delta_t$$

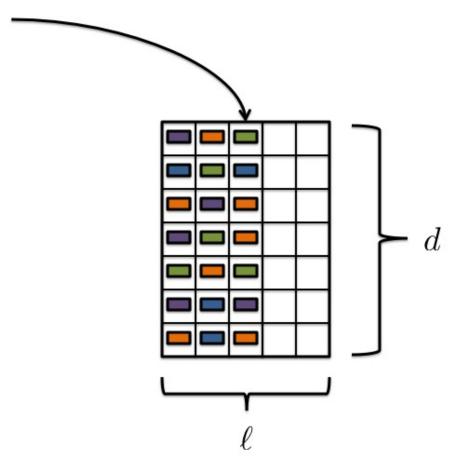
Calculating the total approximated frequencies:


$$0 \le \sum_{i} f'(i) \le \sum_{t} (1 - (\ell/2)\delta_{t}) = n - (\ell/2) \sum_{t} \delta_{t}$$
$$\sum_{t} \delta_{t} \le 2n/\ell$$

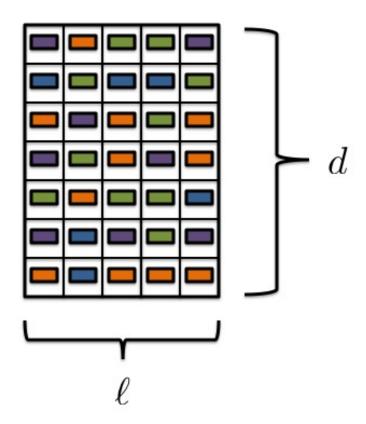
 $\sum_t \delta_t \le 2n/\ell$ • Setting $\ell=2/\epsilon$ $|f(i)-f'(i)| \le \epsilon n$



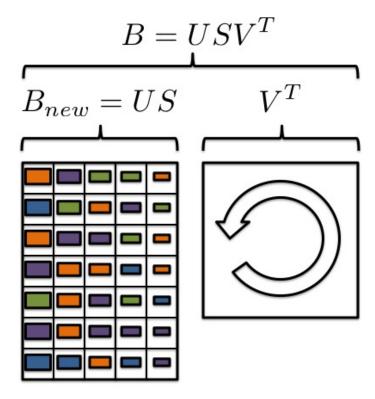
• We keep a sketch of at most ℓ columns

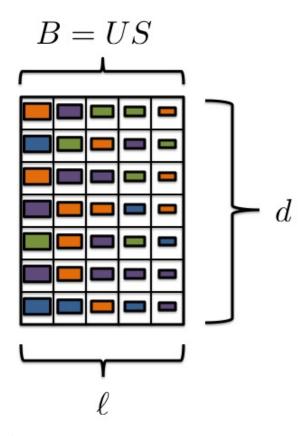


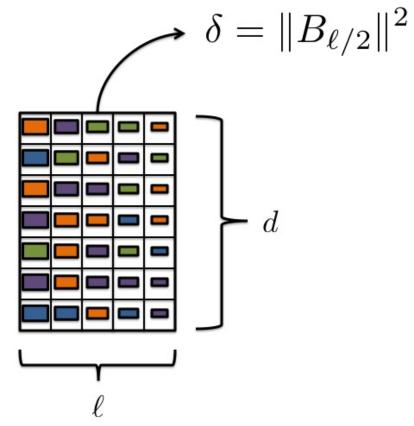
Maintain the invariant that some of the columns are empty.
 (zero-valued)


Input vectors are simply stored in empty columns

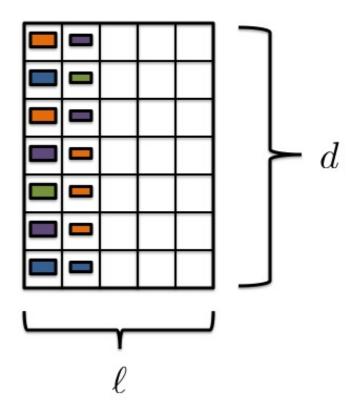

Input vectors are simply stored in empty columns


When the sketch is ``full" we need to zero out some columns

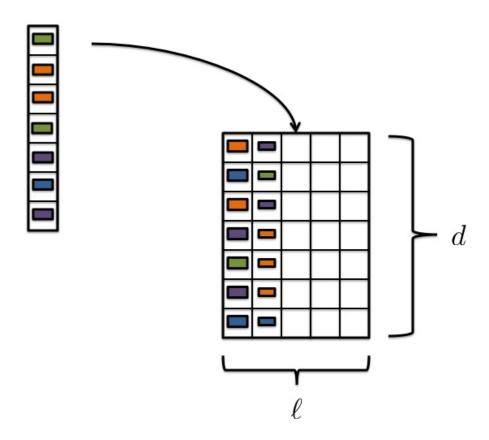

• Using SVD we compute $B = USV^T$ and set $B_{new} = US$



• Note that $BB^T=B_{new}B_{new}^T$ so we don't ``lose" anything



The columns of B are now orthogonal and in decreasing magnitude order


• Let
$$\delta = ||B_{\ell/2}||^2$$

• Reduce column $\,\ell_2^2 - \mathrm{norms}\,$ by $\,\delta$ (or nullify if less)

Start aggregating columns again

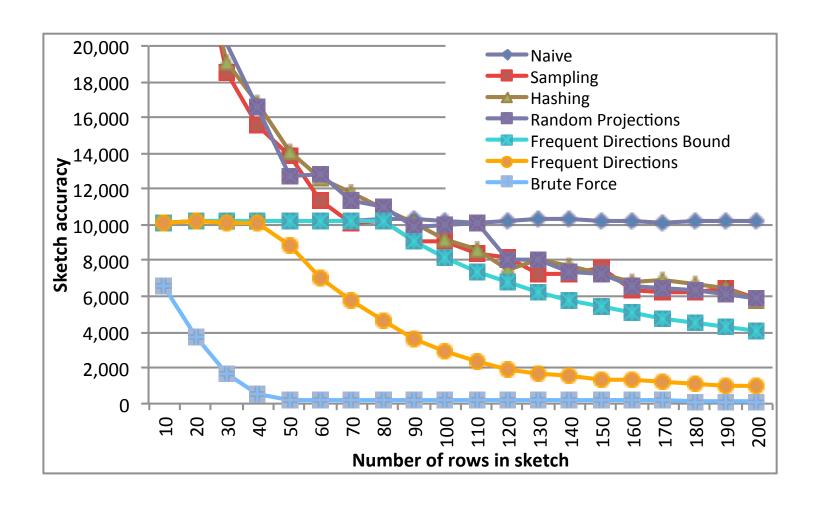

```
Input: \ell, A \in \mathbb{R}^{d \times n} B \leftarrow all zeros matrix \in \mathbb{R}^{d \times \ell} for i \in [n] do

Insert A_i into a zero valued column of B

if B has no zero valued colums then

[U, \Sigma, V] \leftarrow SVD(B)
\delta \leftarrow \sigma_{\ell/2}^2
\check{\Sigma} \leftarrow \sqrt{\max(\Sigma^2 - I_\ell \delta, 0)}
B \leftarrow U\check{\Sigma} \qquad \# \text{ At least half the columns of } B \text{ are zero.}
Return: B
```


Frequent directions: proof


• Step 1:

$$||AA^T - BB^T|| \le \sum_{t=1}^n \delta_t$$

- Step 2: $\sum_{t=1}^{n} \delta_t \leq 2||A||_f^2/\ell$
- Setting $\ell = 2/\epsilon$ yields

$$||AA^T - BB^T|| \le \epsilon ||A||_f^2$$

Error as a function of ℓ

