Clustering Aggregation

- References
 - A. Gionis, H. Mannila, P. Tsaparas: Clustering aggregation, ICDE 2004
 - N. Ailon, M. Charikar, A. Newman: Aggregating inconsistent information: Ranking and clustering, JACM 2008

Clustering aggregation

- Many different clusterings for the same dataset!
 - Different objective functions
 - Different algorithms
 - Different number of clusters
- How do we compare the different clusterings?

Terminology

- Clustering
 - A set of clusters output by a clustering algorithm
- Cluster
 - A group of points

Disagreement distance

- For object x and clustering C, C(x) is the index of set in the partition that contains x
- For two partitions C and P, and objects x,y in X define

$$I_{C,P}(x, y) = \begin{cases} 1 & \text{if } C(x) = C(y) \text{ and } P(x) \neq P(y) \\ & OR \\ & \text{if } C(x) \neq C(y) \text{ AND } P(x) = P(y) \\ 0 & \text{otherwise} \end{cases}$$

if I_{P,C}(x,y) = 1 we say that x,y create a disagreement between partitions P and C

•
$$D(P,C) = \sum_{(x,y)} I_{P,C}(x,y)$$

U	С	Ρ
x ₁	1	1
x ₂	1	2
Х ₃	2	1
x ₄	3	3
x ₅	3	4

Metric property for disagreement distance

- For clustering C: D(C,C) = 0
- D(C,C')≥0 for every pair of clusterings C, C'
- D(C,C') = D(C',C)
- Triangle inequality?
- It is sufficient to show that for each pair of points $x, y \in X$: $I_{x,y}(C_1, C_3) \le I_{x,y}(C_1, C_2) + I_{x,y}(C_2, C_3)$
- I_{x,y} takes values 0/1; triangle inequality can only be violated when
 - $I_{x,y}(C_1,C_3)=1$ and $I_{x,y}(C_1,C_2)=0$ and $I_{x,y}(C_2,C_3)=0$
 - Is this possible?

Which clustering is the best?

• Aggregation: we do not need to decide, but rather find a reconciliation between different groups.

The clustering-aggregation problem

Input

- n objects $X = \{x_1, x_2, ..., x_n\}$
- m clusterings of the objects C₁,...,C_m
 - partition: a collection of disjoint sets that cover X
- Output
 - a single partition C, that is as close as possible to all input partitions

Clustering aggregation

Given partitions C₁,...,C_m find C such that

$$D(C) = \sum_{i=1}^{m} D(C, C_i)$$

the aggregation cost

is minimized

U	C ₁	C ₂	C ₃	С
X ₁	1	1	1	1
x ₂	1	2	2	2
x ₁ x ₂ x ₃ x ₄ x ₅ x ₆	2	1	1	1
x ₄	2	2	2	2
Х ₅	3	3	3	3
x ₆	3	4	3	3

Clustering categorical data

U	City	Profession	Nationality
x ₁	New York	Doctor	U.S.
x ₂	New York	Teacher	Canada
Х ₃	Boston	Doctor	U.S.
x ₄	Boston	Teacher	Canada
x ₅	Los Angeles	Lawer	Mexican
x ₆	Los Angeles	Actor	Mexican

• The two problems are equivalent

- Identify the correct number of clusters
 - the optimization function does not require an explicit number of clusters
- Detect outliers

outliers are defined as points for which there is no consensus

- Improve the robustness of clustering algorithms
 - different algorithms have different weaknesses.
 - combining them can produce a better result.

- Privacy preserving clustering
 - different companies have data for the same users. They can compute an aggregate clustering without sharing the actual data.

Complexity of Clustering Aggregation

- The clustering aggregation problem is NP-hard
 - the median partition problem [Barthelemy and LeClerc 1995].
- Look for heuristics and approximate solutions.

A simple 2-approximation algorithm

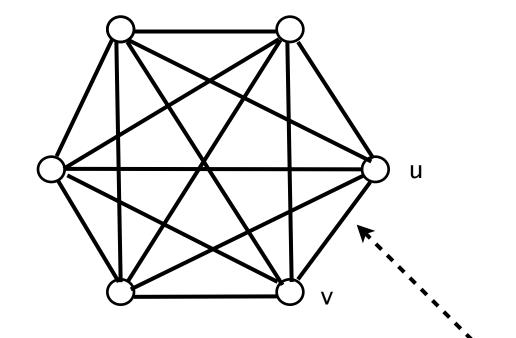
- The disagreement distance D(C,P) is a metric
- The algorithm BEST: Select among the input clusterings the clustering C* that minimizes D(C*).

- a 2-approximate solution. Why?

AGREEMENT graph

- The AGREEMENT graph G=(V,E) is formed as follows
 - Every node corresponds to an input point **x**
 - The weight of edge e={u,v} is the fraction of clusterings that put u and v in the same cluster

AGREEMENT graph



w(u,v): fraction of input clusterings that place u and v in the same cluster

The KwikSort algorithm

- Form the AGREEMENT graph G = (V,E)
- Start from a random node v from V
- Form cluster C(v) around v with all nodes u such that: AGREE(v,u)>=1/2
- Repeat for $V = V \setminus C(v)$

A 3-approximation algorithm

- The **BALLS** algorithm:
 - Select a point x and look at the set of points B within distance ½ of x
 - If the average distance of x to B is less than ¼ then create the cluster BU{p}
 - Otherwise, create a singleton cluster {p}
 - Repeat until all points are exhausted
- Theorem: The **BALLS** algorithm has worst-case approximation factor **3**

Other algorithms

- AGGLO:
 - Start with all points in singleton clusters
 - Merge the two clusters with the smallest average intercluster edge weight
 - Repeat until the average weight is more than $\frac{1}{2}$
- LOCAL:
 - Start with a random partition of the points
 - Remove a point from a cluster and try to merge it to another cluster, or create a singleton to improve the cost of aggregation.
 - Repeat until no further improvements are possible

Clustering Robustness

