
Covering problems

Prototype problems: Covering
problems

• Setting:
– Universe of N elements U = {U1,…,UN}
– A set of n sets S = {s1,…,sn}
– Find a collection C of sets in S (C subset of S)

such that UcєCc contains many elements from U
• Example:
– U: set of documents in a collection
– si: set of documents that contain term ti
– Find a collection of terms that cover most of the

documents

Prototype covering problems
• Set cover problem: Find a small collection C of

sets from S such that all elements in the universe
U are covered by some set in C

• Best collection problem: find a collection C of k
sets from S such that the collection covers as
many elements from the universe U as possible

• Both problems are NP-hard

• Simple approximation algorithms with provable
properties are available and very useful in practice

Set-cover problem
• Universe of N elements U = {U1,…,UN}
• A set of n sets S = {s1,…,sn} such that Uisi =U

• Question: Find the smallest number of sets
from S to form collection C (C subset of S)
such that UcєCc=U

• The set-cover problem is NP-hard (what
does this mean?)

Trivial algorithm
• Try all subcollections of S

• Select the smallest one that covers all the
elements in U

• The running time of the trivial algorithm is
O(2|S||U|)

• This is way too slow

Greedy algorithm for set cover

• Select first the largest-cardinality set s from S

• Remove the elements from s from U

• Recompute the sizes of the remaining sets in S

• Go back to the first step

As an algorithm
• X = U
• C = {}
• while X is not empty do
– For all sєS let as=|s intersection X|
– Let s be such that as is maximal
– C = C U {s}
– X = X\ s

How can this go wrong?
• No global consideration of how good

or bad a selected set is going to be

How good is the greedy
algorithm?

• Consider a minimization problem
– In our case we want to minimize the cardinality of set C

• Consider an instance I, and cost a*(I) of the optimal solution
– a*(I): is the minimum number of sets in C that cover all elements in U

• Let a(I) be the cost of the approximate solution
– a(I): is the number of sets in C that are picked by the greedy algorithm

• An algorithm for a minimization problem has approximation
factor F if for all instances I we have that

 a(I)≤F x a*(I)

• Can we prove any approximation bounds for the greedy
algorithm for set cover ?

How good is the greedy
algorithm for set cover?

• (Trivial?) Observation: The greedy
algorithm for set cover has approximation
factor F = smax, where smax is the set in S
with the largest cardinality

• Proof:
– a*(I)≥N/|smax| or N ≤ |smax|a*(I)
– a(I) ≤ N ≤ |smax|a*(I)

How good is the greedy
algorithm for set cover? A tighter

bound
• The greedy algorithm for set cover has

approximation factor F = O(log |smax|)

• Proof: (From CLR “Introduction to
Algorithms”)

Best-collection problem
• Universe of N elements U = {U1,…,UN}
• A set of n sets S = {s1,…,sn} such that Uisi =U

• Question: Find the a collection C consisting
of k sets from S such that f (C) = |UcєCc| is
maximized

• The best-colection problem is NP-hard

• Simple approximation algorithm has
approximation factor F = (e-1)/e

Greedy approximation algorithm
for the best-collection problem
• C = {}
• for every set s in S and not in C

compute the gain of s:
 g(s) = f(C U {s}) – f(C)
• Select the set s with the maximum

gain
• C = C U {s}
• Repeat until C has k elements

Basic theorem
• The greedy algorithm for the best-

collection problem has approximation
factor F = (e-1)/e

• C* : optimal collection of cardinality k
• C : collection output by the greedy

algorithm
• f(C) ≥ (e-1)/e x f(C*)

