Covering problems
Prototype problems: Covering problems

• Setting:
 – Universe of \(N \) elements \(U = \{U_1, \ldots, U_N\} \)
 – A set of \(n \) sets \(S = \{s_1, \ldots, s_n\} \)
 – Find a collection \(C \) of sets in \(S \) (\(C \subset S \)) such that \(\bigcup_{c \in C} c \) contains many elements from \(U \)

• Example:
 – \(U \): set of documents in a collection
 – \(s_i \): set of documents that contain term \(t_i \)
 – Find a collection of terms that cover most of the documents
Prototype covering problems

• **Set cover problem**: Find a small collection C of sets from S such that all elements in the universe U are covered by some set in C

• **Best collection problem**: find a collection C of k sets from S such that the collection covers as many elements from the universe U as possible

• Both problems are NP-hard

• Simple approximation algorithms with provable properties are available and very useful in practice
Set-cover problem

• Universe of N elements $U = \{U_1, \ldots, U_N\}$
• A set of n sets $S = \{s_1, \ldots, s_n\}$ such that $U_i s_i = U$

• **Question:** Find the smallest number of sets from S to form collection C (C subset of S) such that $U_{c \in C} c = U$

• The set-cover problem is **NP-hard** (what does this mean?)
Trivial algorithm

• Try all subcollections of S

• Select the smallest one that covers all the elements in U

• The running time of the trivial algorithm is $O(2^{|S|}|U|)$

• This is way too slow
Greedy algorithm for set cover

• Select first the largest-cardinality set \(s \) from \(S \)

• Remove the elements from \(s \) from \(U \)

• Recompute the sizes of the remaining sets in \(S \)

• Go back to the first step
As an algorithm

- \(X = U \)
- \(C = {} \)
- **while** \(X \) is not empty **do**
 - For all \(s \in S \) let \(a_s = \vert s \text{ intersection } X \vert \)
 - Let \(s \) be such that \(a_s \) is **maximal**
 - \(C = C \cup \{s\} \)
 - \(X = X \setminus s \)
How can this go wrong?

- No global consideration of how good or bad a selected set is going to be
How good is the greedy algorithm?

• Consider a minimization problem
 – In our case we want to minimize the **cardinality** of set C

• Consider an instance I, and cost $a^*(I)$ of the optimal solution
 – $a^*(I)$: is the minimum number of sets in C that cover all elements in U

• Let $a(I)$ be the cost of the approximate solution
 – $a(I)$: is the number of sets in C that are picked by the greedy algorithm

• An algorithm for a minimization problem has approximation factor F if for all instances I we have that
 \[a(I) \leq F \times a^*(I) \]

• Can we prove any approximation bounds for the greedy algorithm for set cover?
How good is the greedy algorithm for set cover?

- **(Trivial?) Observation:** The greedy algorithm for set cover has approximation factor $F = s_{\text{max}}$, where s_{max} is the set in S with the largest cardinality.

- **Proof:**
 - $a^*(I) \geq N / |s_{\text{max}}|$ or $N \leq |s_{\text{max}}| a^*(I)$
 - $a(I) \leq N \leq |s_{\text{max}}| a^*(I)$
How good is the greedy algorithm for set cover? A tighter bound

• The greedy algorithm for set cover has approximation factor $F = O(\log |s_{\text{max}}|)$

• Proof: (From CLR “Introduction to Algorithms”)
Best-collection problem

- Universe of N elements $U = \{U_1, \ldots, U_N\}$
- A set of n sets $S = \{s_1, \ldots, s_n\}$ such that $U_i s_i = U$

Question: Find the a collection C consisting of k sets from S such that $f(C) = |U_{c \in C} c|$ is maximized

- The best-collection problem is NP-hard
- Simple approximation algorithm has approximation factor $F = (e-1)/e$
Greedy approximation algorithm for the best-collection problem

- \(\text{C} = \{\} \)
- **for every** set \(s \) in \(S \) and **not** in \(\text{C} \) compute the gain of \(s \):
 \[g(s) = f(\text{C} \cup \{s\}) - f(\text{C}) \]
- Select the set \(s \) with the **maximum** gain
- \(\text{C} = \text{C} \cup \{s\} \)
- **Repeat until** \(\text{C} \) has \(k \) elements
Basic theorem

• The **greedy** algorithm for the best-collection problem has approximation factor \(F = (e-1)/e \)

• \(C^* \) : optimal collection of cardinality \(k \)
• \(C \) : collection output by the greedy algorithm
• \(f(C) \geq (e-1)/e \times f(C^*) \)