
CAS CS 565, Data Mining



Course logistics

• Course webpage:

– www.cs.bu.edu/~evimaria/teaching.html

• Schedule: Mon – Wed, 4-5:30

• Instructor: Evimaria Terzi, evimaria@cs.bu.edu

• Office hours: Mon 2:30-4pm, Tues 10:30am-
12 (or by appointment)

• Mailing list : cascs565a1-l@bu.edu

mailto:evimaria@cs.bu.edu


Topics to be covered (tentative)

• Introduction to data mining and prototype problems

• Frequent pattern mining 
– Frequent itemsets and association rules

• Clustering

• Dimensionality reduction

• Classification

• Link analysis ranking

• Recommendation systems

• Time-series data

• Privacy-preserving data mining



Syllabus

Sept 2 Introduction to data mining

Sept 9 Basic algorithms and prototype problems

Sept 14, 16 Frequent itemsets and association rules

Sept 21, 23, 28, 30 Clustering algorithms

Oct 5, 7 Dimensionality reduction

Oct 12 Holiday

Oct 14 Midterm exam

Oct 19, 21, 26, 28 Classification

Nov 2, 4, 9, 11 Link-analysis ranking

Nov 16, 18, 23 Recommendation systems

Dec 1, 3 Time series analysis

Dec 8, 10 Privacy-preserving data mining

Week starting Dec 14 Final exam; exact date to be determined



Course workload

• Three programming assignments (30%)

• Three problem sets (20%)

• Midterm exam (20%)

• Final exam (30%)

• Late assignment policy: 10% per day up to 
three days; credit will be not given after that

• Incompletes will not be given



Textbooks

• D. Hand, H. Mannila and P. Smyth: Principles of Data 
Mining. MIT Press, 2001

• Jiawer Han and Micheline Kamber: Data Mining: 
Concepts and Techiques. Second Edition. Morgan 
Kaufmann Publishers, March 2006

• Toby Segaran: Programming Collective Intelligence: 
Building Smart Web 2.0 Applications. O’Reilly

• Research papers (pointers will be provided)



Prerequisites

• Basic algorithms: sorting, set manipulation, hashing

• Analysis of algorithms: O-notation and its variants, perhaps some 
recursion equations, NP-hardness

• Programming: some programming language, ability to do small 
experiments reasonably quickly

• Probability: concepts of probability and conditional probability, 
expectations, binomial and other simple distributions

• Some linear algebra: e.g., eigenvector and eigenvalue computations



Above all

• The goal of the course is to learn and enjoy

• The basic principle is to ask questions when you 
don’t understand

• Say when things are unclear; not everything can 
be clear from the beginning

• Participate in the class as much as possible



Introduction to data mining

• Why do we need data analysis?

• What is data mining?

• Examples where data mining has been useful

• Data mining and other areas of computer science 
and statistics

• Some (basic) data-mining tasks



Why do we need data analysis

• Really really lots of raw data data!!

– Moore’s law: more efficient processors, larger memories

– Communications have improved too

– Measurement technologies have improved dramatically

– It possible to store and collect lots of raw data

– The data-analysis methods are lagging behind

• Need to analyze the raw data to extract 
knowledge



The data is also very complex

• Multiple types of data: tables, time series, 
images, graphs, etc

• Spatial and temporal aspects

• Large number of different variables

• Lots of observations  large datasets



Example: transaction data

• Billions of real-life customers: e.g., walmart, 
safeway customers, etc

• Billions of online customers: e.g., amazon, 
expedia, etc.



Example: document data

• Web as a document repository: 50 billion of 
web pages

• Wikipedia: 4 million articles (and counting)

• Online collections of scientific articles



Example: network data

• Web: 50 billion pages linked via hyperlinks

• Facebook: 200 million users

• MySpace: 300 million users

• Instant messenger: ~1billion users

• Blogs: 250 million blogs worldwide, presidential 
candidates run blogs



Example: genomic sequences

• http://www.1000genomes.org/page.php

• Full sequence of 1000 individuals

• 310^9 nucleotides per person  310^12 
nucleotides

• Lots more data in fact: medical history of the 
persons, gene expression data

http://www.1000genomes.org/page.php


Example: environmental data

• Climate data (just an example)
http://www.ncdc.gov/oa/climate/ghcn-monthly/index.php

• “a database of temperature, precipitation and 
pressure records managed by the National 
Climatic Data Center, Arizona State University and 
the Carbon Dioxide Information Analysis Center”

• “6000 temperature stations, 7500 precipitation 
stations, 2000 pressure stations”

http://www.ncdc.gov/oa/climate/ghcn-monthly/index.php
http://www.ncdc.gov/oa/climate/ghcn-monthly/index.php
http://www.ncdc.gov/oa/climate/ghcn-monthly/index.php


We have large datasets…so what?

• Goal: obtain useful knowledge from large masses of data

• “Data mining is the analysis of (often large) observational 
data sets to find unsuspected relationships and to 
summarize the data in novel ways that are both 
understandable and useful to the data analyst”

• Tell me something interesting about the data; describe the 
data

• Exploratory analysis on large datasets



What can data-mining methods do?

• Extract frequent patterns
– There are lots of documents that contain the phrases 

“association rules”, “data mining” and “efficient 
algorithm”

• Extract association rules
– 80% of the walmart customers that buy beer and 

sausage also buy mustard

• Extract rules
– If occupation=PhD student then income < 20K



What can data-mining methods do?

• Rank web-query results
– What are the most relevant web-pages to the query: “Student 

housing BU”?

• Find good recommendations for users
– Recommend amazon customers new books
– Recommend facebook users new friends/groups

• Find groups of entities that are similar (clustering)
– Find groups of facebook users that have similar friends/interests
– Find groups amazon users that buy similar products
– Find groups of walmart customers that buy similar products



Goal of this course

• Describe some problems that can be solved using data-
mining methods

• Discuss the intuition behind data-mining methods that 
solve these problems

• Illustrate the theoretical underpinnings of these 
methods

• Show how these methods can be useful in practice



Data mining and related areas

• How does data mining relate to machine 
learning?

• How does data mining relate to statistics?

• Other related areas?



Data mining vs machine learning

• Machine learning methods are used for data mining
– Classification, clustering

• Amount of data makes the difference
– Data mining deals with much larger datasets and scalability 

becomes an issue

• Data mining has more modest goals
– Automating tedious discovery tasks, not aiming at human 

performance in real discovery

– Helping users, not replacing them



Data mining vs. statistics

• “tell me something interesting about this data” – what else 
is this than statistics?

– The goal is similar

– Different types of methods

– In data mining one investigates lot of possible hypotheses

– Data mining is more exploratory  data analysis

– In data mining there are  much larger datasets
algorithmics/scalability is an issue



Data mining and databases

• Ordinary database usage: deductive

• Knowledge discovery: inductive
– Inductive reasoning is exploratory

• New requirements for database management 
systems

• Novel data structures, algorithms and 
architectures are needed



Data mining and algorithms

• Lots of nice connections

• A wealth of interesting research questions

• We will focus on some of these questions later 
in the course



Some simple data-analysis tasks

• Given a stream or set of numbers (identifiers, etc)

• How many numbers are there?

• How many distinct numbers are there?

• What are the most frequent numbers?

• How many numbers appear at least K times?

• How many numbers appear only once?

• etc



Finding the majority element

• A neat problem 

• A stream of identifiers; one of them occurs more 
than 50% of the time

• How can you find it using no more than a few 
memory locations?

• Suggestions?



Finding the majority element 
(solution)

• A = first item you see; count = 1

• for each subsequent item B
if (A==B) count = count + 1 

else {

count = count - 1  

if (count == 0) {A=B; count = 1}

}

endfor

• Why does this work correctly?



Finding the majority element (solution 
and correctness proof)

• A = first item you see; count = 1

• for each subsequent item B

if (A==B) count = count + 1 

else {

count = count - 1  

if (count == 0) 
{A=B; count = 1}

}

endfor

• Basic observation: 
Whenever we discard 
element u we also 
discard a unique 
element v different 
from u



Finding a number in the top half

• Given a set of N numbers (N is very large)

• Find a number x such that x is *likely* to be larger 
than the median of the numbers

• Simple solution
– Sort the numbers and store them in sorted array A
– Any value larger than A[N/2] is a solution

• Other solutions?



Finding a number in the top half 
efficiently

• A solution that uses small number of operations
– Randomly sample K numbers from the file

– Output their maximum

• Failure probability (1/2)^K

median

N/2 items N/2 items



Sampling a sequence of items

• Problem: Given a sequence of items P of size N
form a random sample S of P that has size n
(n<N)  sampling without replacement

• What does random sample mean?

– Every element in P appears in S with probability n/N

– Equivalent as if you generate a random permutation 
of the N elements and take the first n elements of the 
permutation



Sampling algorithm v.0.

• R = {} // empty set
• for i=1 to n

rnd = Random(*1…N+)
while (rnd in R)

rnd = Random(*1…N+)
endwhile
R = R U {rnd}
S[i] = P[rnd]

endfor
return S

• Running time?

• The algorithm assumes that S and its size are known in advance!



Sampling algorithm v.1.

• Step 1: Create a random permutation π of the 
elements in P

• Step 2: Return the first n elements of the 
permutation, S[i] = π[i], for (1 ≤ i ≤ n )

You can do Step 2 in 
linear time

Can you do Step 1 in linear 
time?



Creating a random permutation in 
linear time

• for i=1…N do

j = Random(*1…i-1])

swap P[i] with P[j]

endfor

• Is this really a random permutation? (see CLR 
for the proof)

• It runs in linear time



Sampling algorithm v.1.

• Step 1: Create a random permutation π of the 
elements in P

• Step 2: Return the first n elements of the 
permutation, S[i] = π[i], for (1 ≤ i ≤ n )

• The algorithm works in linear time O(N)
• The algorithm assumes that P is known in 

advance
• The algorithm makes 2 passes over the data



Sampling algorithm v.2.

• for i = 1 to n

S[i] = P[i]

endfor

• t = n+1

• while P has more elements 

rnd =  Random(*1…t+)

if (rnd <= n) 

{S[rnd] = P[t]}

t = t + 1

endwhile

Correctness proof

• At iteration t+1 a new item is included in 
the sample with probability n/(t+1)

• At iteration (t+1) an old item is kept in 
the sample with probability n/(t+1)

• Inductive argument: at iteration t the 
old item was in the sample with 
probability n/t

• Pr(old item in sample at t+1) = 

Pr(old item was in sample at t) x 

(Pr(rnd >n) + Pr(rnd<=n) x Pr(old 

item was not chosen for eviction))

= n/t((t+1-n)/(t+1) + n/(t+1)x(1-1/n))
= n/(t+1)



Sampling algorithm v.2.

• for i = 1 to n

S[i] = P[i]

endfor

• t = n+1

• while P has more elements {

rnd =  Random(*1…t+)

if (rnd <= n) 

{S[rnd] = P[t]}

t = t + 1

endwhile

Advantages

• Linear time

• Single pass  over the data

• Any time;  the length of the 
sequence need not be known in 
advance


