Lecture outline

- Dimensionality reduction
- SVD/PCA
- CUR decompositions
- Nearest-neighbor search in low dimensions
- kd-trees

Datasets in the form of matrices

We are given n objects and d features describing the objects.
(Each object has d numeric values describing it.)

Dataset

An n-by-d matrix $A, A_{i j}$ shows the "importance" of feature j for object i.
Every row of A represents an object.

Goal

1. Understand the structure of the data, e.g., the underlying process generating the data.
2. Reduce the number of features representing the data

Market basket matrices

n customers $\left(\begin{array}{c}\text { d products } \\ \text { e.g., milk, bread, wine, etc.) } \\ A \\ \begin{array}{l}A_{i j}=\text { quantity of } j \text {-th product } \\ \text { purchased by the } i \text {-th customer }\end{array}\end{array}\right)$

Find a subset of the products that characterize customer behavior

Social-network matrices

Find a subset of the groups that accurately clusters social-network users

Document matrices

Find a subset of the terms that accurately clusters the documents

Recommendation systems

d products

Find a subset of the products that accurately describe the behavior or the customers

The Singular Value Decomposition (SVD)

Data matrices have n rows (one for each object) and d columns (one for each feature).

Rows: vectors in a Euclidean space,

Two objects are "close" if the angle between their corresponding vectors is small.

SVD: Example

Input: 2-d dimensional points
Output:

1st (right) singular vector: direction of maximal variance,

2nd (right) singular vector: direction of maximal variance, after removing the projection of the data along the first singular vector.

Singular values

σ_{1} : measures how much of the data variance is explained by the first singular vector.
σ_{2} : measures how much of the data variance is explained by the second singular vector.

SVD decomposition

$\mathrm{U}(\mathrm{V})$: orthogonal matrix containing the left (right) singular vectors of A.
Σ : diagonal matrix containing the singular values of A : ($\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{\ell}$)

Exact computation of the SVD takes $O\left(\min \left\{m n^{2}, m^{2} n\right\}\right)$ time. The top k left/right singular vectors/values can be computed faster using Lanczos/Arnoldi methods.

SVD and Rank-k approximations

A
=
U
Σ
\mathbf{V}^{\top}

Rank-k approximations $\left(A_{k}\right)$

SVD as an optimization problem

Find C to minimize:

$$
\begin{aligned}
& \min _{C}\|\underset{n \times d}{\boldsymbol{A}}-\underset{n \times k}{\boldsymbol{C}} \underset{k \times d}{\boldsymbol{X}}\|_{F}^{2} \\
& \|A\|_{F}^{2}=\sum_{i, j} A_{i j}^{2}
\end{aligned}
$$

Given C it is easy to find X from standard least squares. However, the fact that we can find the optimal C is fascinating!

PCA and SVD

- PCA is SVD done on centered data
- PCA looks for such a direction that the data projected to it has the maximal variance
- PCA/SVD continues by seeking the next direction that is orthogonal to all previously found directions
- All directions are orthogonal

How to compute the PCA

- Data matrix A , rows = data points, columns = variables (attributes, features, parameters)

1. Center the data by subtracting the mean of each column
2. Compute the SVD of the centered matrix A^{\prime} (i.e., find the first k singular values/vectors)
$\mathbf{A}^{\prime}=\mathbf{U \Sigma} \mathbf{V}^{\top}$
3. The principal components are the columns of V , the coordinates of the data in the basis defined by the principal components are UE

Singular values tell us something about the variance

- The variance in the direction of the k-th principal component is given by the corresponding singular value $\sigma_{k}{ }^{2}$
- Singular values can be used to estimate how many components to keep
- Rule of thumb: keep enough to explain 85% of the variation:

$$
\frac{\sum_{j=1}^{k} \sigma_{j}^{2}}{\sum_{j=1}^{n} \sigma_{j}^{2}} \approx 0.85
$$

SVD is the Rolls-Royce and the Swiss Army Knife of Numerical Linear Algebra."* *Dianne O'Leary, MMDS '06

SVD as an optimization problem

Find C to minimize:

$$
\begin{aligned}
& \min _{C}\|\underset{n \times d}{\boldsymbol{A}}-\underset{n \times k}{\boldsymbol{C}} \underset{k \times d}{\boldsymbol{X}}\|_{F}^{2} \\
& \|A\|_{F}^{2}=\sum_{i, j} A_{i j}^{2}
\end{aligned}
$$

Given C it is easy to find X from standard least squares. However, the fact that we can find the optimal C is fascinating!

The CX-decomposition

Find C that contains subset of the columns of A to minimize:

$$
\min _{C}\|\underset{n \times d}{A}-\underset{n \times k}{C} \underset{k \times d}{X}\|_{F}^{2}
$$

$$
\|A\|_{F}^{2}=\sum_{i, j} A_{i j}^{2}
$$

Given Cit is easy to find X from standard least squares. However, finding \mathbf{C} is now hard!!!

Why CX-decomposition

- If A is an object-feature matrix, then selecting "representative" columns is equivalent to selecting "representative" features
- This leads to easier interpretability; compare to eigenfeatures, which are linear combinations of all features.

Algorithms for the CX decomposition

- The SVD-based algorithm
- The greedy algorithm
- The k-means-based algorithm

Algorithms for the CX decomposition

- The SVD-based algorithm
- Do SVD first
- Map k columns of A to the left singular vectors
- The greedy algorithm
- Greedily pick k columns of A that minimize the error
- The k-means-based algorithm
- Find k centers (by clustering the columns)
- Map the k centers to columns of A

Discussion on the CX decomposition

- The vectors in C are not orthogonal - they do not define a space
- It maintains the sparcity of the data

Nearest Neighbour in low dimensions

Definition

- Given: a set X of n points in R^{d}
- Nearest neighbor: for any query point $q \in R^{d}$ return the point $x \in X$ minimizing $L_{p}(x, q)$

Motivation

- Learning: Nearest neighbor rule
- Databases: Retrieval
- Donald Knuth in vol. 3 of The Art of Computer Programming called it the post-office problem, referring to the application of assigning a resident to the nearest-post office

Nearest neighbor rule

MNIST dataset "2"

Methods for computing NN

- Linear scan: O(nd) time
- This is pretty much all what is known for exact algorithms with theoretical guarantees
- In practice:
- $\boldsymbol{k d}$-trees work "well" in "low-medium" dimensions

2-dimensional kd-trees

- A data structure to support range queries in R^{2}
- Not the most efficient solution in theory
- Everyone uses it in practice
- Preprocessing time: O(nlogn)
- Space complexity: O(n)
- Query time: O($\left.n^{1 / 2}+k\right)$

2-dimensional kd-trees

- Algorithm:
- Choose x or y coordinate (alternate)
- Choose the median of the coordinate; this defines a horizontal or vertical line
- Recurse on both sides
- We get a binary tree:
- Size O(n)
- Depth O(logn)
- Construction time O(nlogn)

Construction of kd-trees

The complete kd-tree

Region of node \mathbf{v}

Region(v) : the subtree rooted at v stores the points in black dots

Searching in kd-trees

- Range-searching in 2-d
- Given a set of n points, build a data structure that for any query rectangle \mathbf{R} reports all point in \mathbf{R}

kd-tree: range queries

- Recursive procedure starting from $\mathbf{v}=$ root
- Search (v,R)
- If v is a leaf, then report the point stored in v if it lies in R
- Otherwise, if $\operatorname{Reg}(v)$ is contained in R, report all points in the subtree(v)
- Otherwise:
- If Reg(left(v)) intersects R, then Search(left(v),R)
- If Reg(right(v)) intersects R, then Search(right(v),R)

Query time analysis

- We will show that Search takes at most $\mathrm{O}\left(\mathrm{n}^{1 / 2}+\mathrm{P}\right)$ time, where P is the number of reported points
- The total time needed to report all points in all sub-trees is $\mathbf{O}(\mathrm{P})$
- We just need to bound the number of nodes v such that region(\mathbf{v}) intersects \mathbf{R} but is not contained in R (i.e., boundary
 of R intersects the boundary of region(v))
- gross overestimation: bound the number of region(v) which are crossed by any of the 4 horizontal/vertical lines

ouerytime (cont'd)

- $\mathrm{Q}(\mathrm{n})$: max number of regions in an n-point kd-tree intersecting a (say, vertical) line?

- If ℓ intersects region(v) (due to vertical line splitting), then after two levels it intersects 2 regions (due to 2 vertical splitting lines)
- The number of regions intersecting ℓ is $Q(n)=2+2 Q(n / 4) \rightarrow$ $Q(n)=\left(n^{1 / 2}\right)$

d-dimensional kd-trees

- A data structure to support range queries in R^{d}
- Preprocessing time: O(nlogn)
- Space complexity: O(n)
- Query time: $O\left(n^{1-1 / d}+k\right)$

Construction of the d-dimensional kd-trees

- The construction algorithm is similar as in 2-d
- At the root we split the set of points into two subsets of same size by a hyperplane vertical to x_{1}-axis
- At the children of the root, the partition is based on the second coordinate: x_{2}-coordinate
- At depth d, we start all over again by partitioning on the first coordinate
- The recursion stops until there is only one point left, which is stored as a leaf

