
Lecture outline

• Dimensionality reduction

– SVD/PCA

– CUR decompositions

• Nearest-neighbor search in low dimensions

– kd-trees

Datasets in the form of matrices

We are given n objects and d features describing the objects.
(Each object has d numeric values describing it.)

Dataset
An n-by-d matrix A, Aij shows the “importance” of feature j for
object i.
Every row of A represents an object.

Goal
1. Understand the structure of the data, e.g., the underlying

process generating the data.
2. Reduce the number of features representing the data

Market basket matrices

n customers

d products
(e.g., milk, bread, wine, etc.)

Aij = quantity of j-th product
purchased by the i-th customer

Find a subset of the products that characterize
customer behavior

Social-network matrices

n users

d groups
(e.g., BU group, opera, etc.)

Aij = partiticipation of the i-th
user in the j-th group

Find a subset of the groups that accurately clusters
social-network users

Document matrices

n documents

d terms
(e.g., theorem, proof, etc.)

Aij = frequency of the j-th
term in the i-th document

Find a subset of the terms that accurately clusters
the documents

Recommendation systems

n customers

d products

Aij = frequency of the j-
th product is bought by
the i-th customer

Find a subset of the products that accurately
describe the behavior or the customers

The Singular Value
Decomposition (SVD)

feature 1

fe
a

tu
re

 2

Object x

Object d

(d,x)

Data matrices have n rows (one for each
object) and d columns (one for each
feature).

Rows: vectors in a Euclidean space,

Two objects are “close” if the angle
between their corresponding vectors is
small.

4.0 4.5 5.0 5.5 6.0
2

3

4

5

SVD: Example

Input: 2-d dimensional points

Output:

1st (right) singular
vector

1st (right) singular vector:
direction of maximal variance,

2nd (right)
singular
vector

2nd (right) singular vector:
direction of maximal variance, after
removing the projection of the
data along the first singular vector.

Singular values

1: measures how much of the
data variance is explained by the
first singular vector.

2: measures how much of the
data variance is explained by the
second singular vector.1

4.0 4.5 5.0 5.5 6.0
2

3

4

5

1st (right) singular
vector

2nd (right)
singular
vector

SVD decomposition

U (V): orthogonal matrix containing the left (right) singular
vectors of A.
S: diagonal matrix containing the singular values of A:
(1 ≥ 2 ≥ … ≥ ℓ)

Exact computation of the SVD takes O(min{mn2 , m2n}) time.
The top k left/right singular vectors/values can be computed
faster using Lanczos/Arnoldi methods.

0

0

n x d n x ℓ ℓ x ℓ ℓ x d

A VTSU=

objects

features

significant

noise
n

o
is

e noise

si
gn

if
ic

an
t

sig.

=

SVD and Rank-k approximations

Rank-k approximations (Ak)

Uk (Vk): orthogonal matrix containing the top k left (right)
singular vectors of A.
Sk: diagonal matrix containing the top k singular values of A

Ak is an approximation of A

n x d n x k k x k k x d

Ak is the best
approximation of A

SVD as an optimization problem

Given C it is easy to find X from standard least squares.
However, the fact that we can find the optimal C is
fascinating!

Frobenius norm:
2

min
Fdkkndn

C XCA




Find C to minimize:


ji

ijF
AA

,

22

PCA and SVD

• PCA is SVD done on centered data

• PCA looks for such a direction that the data
projected to it has the maximal variance

• PCA/SVD continues by seeking the next direction
that is orthogonal to all previously found directions

• All directions are orthogonal

How to compute the PCA

• Data matrix A, rows = data points, columns =
variables (attributes, features, parameters)

1. Center the data by subtracting the mean of each
column

2. Compute the SVD of the centered matrix A’ (i.e.,
find the first k singular values/vectors)
A’ = UΣVT

3. The principal components are the columns of V, the
coordinates of the data in the basis defined by the
principal components are UΣ

Singular values tell us something
about the variance

• The variance in the direction of the k-th principal component
is given by the corresponding singular value σk

2

• Singular values can be used to estimate how many
components to keep

• Rule of thumb: keep enough to explain 85% of the variation:

85.0

1

2

1

2











n

j

j

k

j

j





SVD is “the Rolls-Royce and the Swiss Army
Knife of Numerical Linear Algebra.”*
*Dianne O’Leary, MMDS ’06

SVD as an optimization problem

Given C it is easy to find X from standard least squares.
However, the fact that we can find the optimal C is
fascinating!

Frobenius norm:
2

min
Fdkkndn

C XCA




Find C to minimize:


ji

ijF
AA

,

22

The CX-decomposition

Given Cit is easy to find X from standard least squares.
However, finding C is now hard!!!

2

min
Fdkkndn

C XCA




Find C that contains subset of the columns
of A to minimize:


ji

ijF
AA

,

22

Why CX-decomposition

• If A is an object-feature matrix, then selecting
“representative” columns is equivalent to
selecting “representative” features

• This leads to easier interpretability; compare
to eigenfeatures, which are linear
combinations of all features.

Algorithms for the CX
decomposition

• The SVD-based algorithm

• The greedy algorithm

• The k-means-based algorithm

Algorithms for the CX
decomposition

• The SVD-based algorithm

– Do SVD first

– Map k columns of A to the left singular vectors

• The greedy algorithm

– Greedily pick k columns of A that minimize the
error

• The k-means-based algorithm

– Find k centers (by clustering the columns)

– Map the k centers to columns of A

Discussion on the CX
decomposition

• The vectors in C are not orthogonal – they do
not define a space

• It maintains the sparcity of the data

Nearest Neighbour in low
dimensions

Definition

• Given: a set X of n points in Rd

• Nearest neighbor: for any query point qєRd

return the point xєX minimizing Lp(x,q)

Motivation

• Learning: Nearest neighbor rule

• Databases: Retrieval

• Donald Knuth in vol.3 of The Art of Computer
Programming called it the post-office
problem, referring to the application of
assigning a resident to the nearest-post office

Nearest neighbor rule

MNIST dataset “2”

Methods for computing NN

• Linear scan: O(nd) time

• This is pretty much all what is known for exact
algorithms with theoretical guarantees

• In practice:

– kd-trees work “well” in “low-medium” dimensions

2-dimensional kd-trees

• A data structure to support range queries in
R2

– Not the most efficient solution in theory

– Everyone uses it in practice

• Preprocessing time: O(nlogn)

• Space complexity: O(n)

• Query time: O(n1/2+k)

2-dimensional kd-trees

• Algorithm:

– Choose x or y coordinate (alternate)

– Choose the median of the coordinate; this defines a
horizontal or vertical line

– Recurse on both sides

• We get a binary tree:

– Size O(n)

– Depth O(logn)

– Construction time O(nlogn)

Construction of kd-trees

Construction of kd-trees

Construction of kd-trees

Construction of kd-trees

Construction of kd-trees

The complete kd-tree

Region of node v

Region(v) : the subtree rooted at v stores the points in
black dots

Searching in kd-trees

• Range-searching in 2-d

– Given a set of n points, build a data structure that
for any query rectangle R reports all point in R

kd-tree: range queries

• Recursive procedure starting from v = root

• Search (v,R)

– If v is a leaf, then report the point stored in v if it
lies in R

– Otherwise, if Reg(v) is contained in R, report all
points in the subtree(v)

– Otherwise:

• If Reg(left(v)) intersects R, then Search(left(v),R)

• If Reg(right(v)) intersects R, then Search(right(v),R)

Query time analysis

• We will show that Search takes at most
O(n1/2+P) time, where P is the number
of reported points

– The total time needed to report all
points in all sub-trees is O(P)

– We just need to bound the number of
nodes v such that region(v) intersects R
but is not contained in R (i.e., boundary
of R intersects the boundary of
region(v))

– gross overestimation: bound the
number of region(v) which are crossed
by any of the 4 horizontal/vertical lines

Query time (Cont’d)

• Q(n): max number of regions in an n-point kd-tree intersecting a
(say, vertical) line?

• If ℓ intersects region(v) (due to vertical line splitting), then after
two levels it intersects 2 regions (due to 2 vertical splitting lines)

• The number of regions intersecting ℓ is Q(n)=2+2Q(n/4) 
Q(n)=(n1/2)

d-dimensional kd-trees

• A data structure to support range queries in Rd

• Preprocessing time: O(nlogn)

• Space complexity: O(n)

• Query time: O(n1-1/d+k)

Construction of the d-dimensional
kd-trees

• The construction algorithm is similar as in 2-d

• At the root we split the set of points into two subsets
of same size by a hyperplane vertical to x1-axis

• At the children of the root, the partition is based on
the second coordinate: x2-coordinate

• At depth d, we start all over again by partitioning on
the first coordinate

• The recursion stops until there is only one point left,
which is stored as a leaf

