
Lecture outline

• Dimensionality reduction

– SVD/PCA

– CUR decompositions

• Nearest-neighbor search in low dimensions

– kd-trees



Datasets in the form of matrices

We are given n objects and d features describing the objects. 
(Each object has d numeric values describing it.)

Dataset
An n-by-d matrix A, Aij shows the “importance” of feature j for 
object i.
Every row of A represents an object.

Goal
1. Understand the structure of the data, e.g., the underlying 

process generating the data.
2. Reduce the number of features representing the data



Market basket matrices

n customers

d products 
(e.g., milk, bread, wine, etc.)

Aij = quantity of j-th product 
purchased by the i-th customer

Find  a subset of the products that characterize 
customer behavior



Social-network matrices

n users

d groups 
(e.g., BU group, opera, etc.)

Aij = partiticipation of the i-th
user in the  j-th group

Find  a subset of the groups that accurately clusters 
social-network users



Document matrices

n documents

d terms 
(e.g., theorem, proof, etc.)

Aij = frequency of the j-th
term in the i-th document

Find  a subset of the terms that accurately clusters 
the documents



Recommendation systems

n customers

d products 

Aij = frequency of the j-
th product is bought by 
the i-th customer

Find  a subset of the products that accurately 
describe the behavior or the customers



The Singular Value 
Decomposition (SVD)
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Data matrices have n rows (one for each 
object) and d columns (one for each 
feature).

Rows: vectors in a Euclidean space,

Two objects are “close” if the angle 
between their corresponding vectors is 
small. 
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SVD: Example

Input: 2-d dimensional points

Output:

1st (right) singular 
vector

1st (right) singular vector: 
direction of maximal variance,

2nd (right) 
singular 
vector

2nd (right) singular vector: 
direction of maximal variance, after 
removing the projection of the 
data along the first singular vector.



Singular values

1: measures how much of the 
data variance is explained by the 
first singular vector.

2: measures how much of the 
data variance is explained by the 
second singular vector.1
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2nd (right) 
singular 
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SVD decomposition

U (V): orthogonal matrix containing the left (right) singular 
vectors of A.
S: diagonal matrix containing the singular values of A:
(1 ≥ 2 ≥ … ≥ ℓ )

Exact computation of the SVD takes O(min{mn2 , m2n}) time. 
The top k left/right singular vectors/values can be computed 
faster using Lanczos/Arnoldi methods.
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SVD and Rank-k approximations 



Rank-k approximations (Ak)

Uk (Vk): orthogonal matrix containing the top k left (right) 
singular vectors of A.
Sk: diagonal matrix containing the top k singular values of A

Ak is an approximation of A

n x d n x k k x k k x d

Ak is the best
approximation of A



SVD as an optimization problem

Given C it is easy to find X from standard least squares.
However, the fact that we can find the optimal C is 
fascinating!

Frobenius norm:
2
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PCA and SVD

• PCA is SVD done on centered data

• PCA looks for such a direction that the data 
projected to it has the maximal variance

• PCA/SVD continues by seeking the next direction 
that is orthogonal to all previously found directions

• All directions are orthogonal



How to compute the PCA

• Data matrix A, rows = data points, columns = 
variables (attributes, features, parameters)

1. Center the data by subtracting the mean of each 
column

2. Compute the SVD of the centered matrix A’ (i.e., 
find the first k singular values/vectors)                     
A’ = UΣVT

3. The principal components are the columns of V, the 
coordinates of the data in the basis defined by the 
principal components are UΣ



Singular values tell us something 
about the variance

• The variance in the direction of the k-th principal component 
is given by the corresponding singular value σk

2

• Singular values can be used to estimate how many 
components to keep

• Rule of thumb: keep enough to explain 85% of the variation: 
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SVD is “the Rolls-Royce and the Swiss Army 
Knife of Numerical Linear Algebra.”*
*Dianne O’Leary, MMDS ’06



SVD as an optimization problem

Given C it is easy to find X from standard least squares.
However, the fact that we can find the optimal C is 
fascinating!

Frobenius norm:
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The CX-decomposition

Given Cit is easy to find X from standard least squares.
However, finding C is now hard!!! 

2

min
Fdkkndn

C XCA




Find C that contains subset of the columns 
of A to minimize:
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Why CX-decomposition

• If A is an object-feature matrix, then selecting 
“representative” columns is equivalent to 
selecting “representative” features

• This leads to easier interpretability; compare 
to eigenfeatures, which are linear 
combinations of all features.



Algorithms for the CX
decomposition

• The SVD-based algorithm

• The greedy algorithm

• The k-means-based algorithm



Algorithms for the CX
decomposition

• The SVD-based algorithm

– Do SVD first

– Map k columns of A to the left singular vectors

• The greedy algorithm

– Greedily pick k columns of A that minimize the 
error

• The k-means-based algorithm

– Find k centers (by clustering the columns)

– Map the k centers to columns of A



Discussion on the CX 
decomposition

• The vectors in C are not orthogonal – they do 
not define a space

• It maintains the sparcity of the data



Nearest Neighbour in low 
dimensions



Definition

• Given: a set X of n points in Rd

• Nearest neighbor: for any query point qєRd

return the point xєX minimizing Lp(x,q)



Motivation

• Learning: Nearest neighbor rule

• Databases: Retrieval

• Donald Knuth in vol.3 of The Art of Computer 
Programming called it the post-office 
problem, referring to the application of 
assigning a resident to the nearest-post office



Nearest neighbor rule



MNIST dataset “2”



Methods for computing NN 

• Linear scan: O(nd) time

• This is pretty much all what is known for exact 
algorithms with theoretical guarantees

• In practice:

– kd-trees work “well” in “low-medium” dimensions



2-dimensional kd-trees

• A data structure to support range queries in 
R2

– Not the most efficient solution in theory

– Everyone uses it in practice

• Preprocessing time: O(nlogn)

• Space complexity: O(n)

• Query time: O(n1/2+k)



2-dimensional kd-trees

• Algorithm:

– Choose x or y coordinate (alternate)

– Choose the median of the coordinate; this defines a 
horizontal or vertical line

– Recurse on both sides

• We get a binary tree:

– Size O(n)

– Depth O(logn)

– Construction time O(nlogn)



Construction of kd-trees



Construction of kd-trees



Construction of kd-trees



Construction of kd-trees



Construction of kd-trees



The complete kd-tree



Region of node v

Region(v) : the subtree rooted at v stores the points in 
black dots



Searching in kd-trees

• Range-searching in 2-d

– Given a set of n points, build a data structure that 
for any query rectangle R reports all point in R



kd-tree: range queries

• Recursive procedure starting from v = root

• Search (v,R)

– If v is a leaf, then report the point stored in v if it 
lies in R

– Otherwise, if Reg(v) is contained in R, report all 
points in the subtree(v)

– Otherwise:

• If Reg(left(v)) intersects R, then Search(left(v),R)

• If Reg(right(v)) intersects R, then Search(right(v),R)



Query time analysis

• We will show that Search takes at most 
O(n1/2+P) time, where P is the number 
of reported points

– The total time needed to report all 
points in all sub-trees is O(P)

– We just need to bound the number of 
nodes v such that region(v) intersects R
but is not contained in R (i.e., boundary 
of R intersects the boundary of 
region(v))

– gross overestimation: bound the 
number of region(v) which are crossed 
by any of the 4 horizontal/vertical lines



Query time (Cont’d)

• Q(n): max number of regions in an n-point kd-tree intersecting a 
(say, vertical) line?

• If  ℓ intersects region(v) (due to vertical line splitting), then after 
two  levels it intersects 2 regions (due to 2 vertical splitting lines)

• The number of regions intersecting ℓ is Q(n)=2+2Q(n/4) 
Q(n)=(n1/2)



d-dimensional kd-trees

• A data structure to support range queries in Rd

• Preprocessing time: O(nlogn)

• Space complexity: O(n)

• Query time: O(n1-1/d+k)



Construction of the d-dimensional 
kd-trees

• The construction algorithm is similar as in 2-d

• At the root we split the set of points into two subsets 
of same size by a hyperplane vertical to x1-axis

• At the children of the root, the partition is based on 
the second coordinate: x2-coordinate

• At depth d, we start all over again by partitioning on 
the first coordinate

• The recursion stops until there is only one point left, 
which is stored as a leaf


