Lecture outline

• Dimensionality reduction
 – SVD/PCA
 – CUR decompositions

• Nearest-neighbor search in low dimensions
 – kd-trees
Datasets in the form of matrices

We are given \(n \) objects and \(d \) features describing the objects.
(Each object has \(d \) numeric values describing it.)

Dataset
An **n-by-d** matrix \(A \), \(A_{ij} \) shows the “**importance**” of feature \(j \) for object \(i \).
Every row of \(A \) represents an object.

Goal
1. **Understand** the structure of the data, e.g., the underlying process generating the data.
2. **Reduce the number of features** representing the data
Market basket matrices

\[A_{ij} = \text{quantity of } j\text{-th product purchased by the } i\text{-th customer} \]

Find a subset of the products that characterize customer behavior
Social-network matrices

\(A \)

\(A_{ij} = \) participation of the \(i \)-th user in the \(j \)-th group

Find a subset of the groups that accurately clusters social-network users
Document matrices

\[A_{ij} = \text{frequency of the } j\text{-th term in the } i\text{-th document} \]

Find a subset of the terms that accurately clusters the documents
Recommendation systems

\[A_{ij} = \text{frequency of the } j\text{-th product is bought by the } i\text{-th customer} \]

Find a subset of the products that accurately describe the behavior of the customers.
The Singular Value Decomposition (SVD)

Data matrices have n rows (one for each object) and d columns (one for each feature).

Rows: vectors in a Euclidean space,

Two objects are "close" if the angle between their corresponding vectors is small.

$$A = \begin{pmatrix} 1 & .5 \\ .5 & 1 \end{pmatrix}$$
SVD: Example

Input: 2-d dimensional points

Output:

1st (right) singular vector: direction of maximal variance,

2nd (right) singular vector: direction of maximal variance, after removing the projection of the data along the first singular vector.
Singular values

σ_1: measures how much of the data variance is explained by the first singular vector.

σ_2: measures how much of the data variance is explained by the second singular vector.
SVD decomposition

\[
\begin{pmatrix}
A
\end{pmatrix}_{n \times d} =
\begin{pmatrix}
U
\end{pmatrix}_{n \times \ell} \cdot
\begin{pmatrix}
\Sigma
\end{pmatrix}_{\ell \times \ell} \cdot
\begin{pmatrix}
V
\end{pmatrix}_{\ell \times d}^T
\]

\(U \ (V)\): orthogonal matrix containing the left (right) singular vectors of \(A\).
\(\Sigma\): diagonal matrix containing the singular values of \(A\):
\((\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_\ell)\)

Exact computation of the SVD takes \(O(\min\{mn^2, m^2n\})\) time. The top \(k\) left/right singular vectors/values can be computed faster using Lanczos/Arnoldi methods.
SVD and Rank-k approximations

\[A = U \Sigma V^T \]
Rank-k approximations (A_k)

$$
\begin{pmatrix}
 A_k
\end{pmatrix}_{n \times d} =
\begin{pmatrix}
 U_k
\end{pmatrix}_{n \times k} \cdot
\begin{pmatrix}
 \Sigma_k
\end{pmatrix}_{k \times k} \cdot
\begin{pmatrix}
 V_k^T
\end{pmatrix}_{k \times d}
$$

$U_k (V_k)$: orthogonal matrix containing the top k left (right) singular vectors of A_k.

Σ_k: diagonal matrix containing the top k singular values of A_k.

A_k is the best approximation of A.
SVD as an optimization problem

Find C to minimize:

$$\min_C \left\| A - C X \right\|_F^2$$

$$\|A\|_F^2 = \sum_{i,j} A_{ij}^2$$

Given C it is easy to find X from standard least squares. However, the fact that we can find the optimal C is fascinating!
PCA and SVD

- PCA is SVD done on centered data

- PCA looks for such a direction that the data projected to it has the maximal variance

- PCA/SVD continues by seeking the next direction that is orthogonal to all previously found directions

- All directions are orthogonal
How to compute the PCA

1. Center the data by subtracting the mean of each column
2. Compute the SVD of the centered matrix A' (i.e., find the first k singular values/vectors)
 \[A' = U\Sigma V^T \]
3. The principal components are the columns of V, the coordinates of the data in the basis defined by the principal components are $U\Sigma$
Singular values tell us something about the variance

- The variance in the direction of the k-th principal component is given by the corresponding singular value σ_k^2

- Singular values can be used to estimate how many components to keep

- **Rule of thumb**: keep enough to explain 85% of the variation:

$$\frac{\sum_{j=1}^{k} \sigma_j^2}{\sum_{j=1}^{n} \sigma_j^2} \approx 0.85$$
SVD is the Rolls-Royce and the Swiss Army Knife of Numerical Linear Algebra.”*

*Dianne O’Leary, MMDS ’06
SVD as an optimization problem

Find C to minimize:

$$\min_C \left\| A - C \times X \right\|_F^2$$

$$\left\| A \right\|_F^2 = \sum_{i,j} A_{ij}^2$$

Given C it is easy to find X from standard least squares. However, the fact that we can find the optimal C is fascinating!
The **CX**-decomposition

Find \(\mathbf{C} \) that contains subset of the columns of \(\mathbf{A} \) to minimize:

\[
\min_{\mathbf{C}} \left\| \mathbf{A} - \mathbf{C} \mathbf{X} \right\|_F^2
\]

\[
\left\| \mathbf{A} \right\|_F^2 = \sum_{i,j} A_{ij}^2
\]

Given \(\mathbf{C} \) it is easy to find \(\mathbf{X} \) from standard least squares. However, finding \(\mathbf{C} \) is now hard!!!
Why \textit{CX}-decomposition

• If A is an object-feature matrix, then selecting “representative” columns is equivalent to selecting “representative” features.

• This leads to easier \textit{interpretability}; compare to eigenfeatures, which are linear combinations of all features.
Algorithms for the \textbf{CX} decomposition

- The \textit{SVD-based} algorithm

- The \textit{greedy} algorithm

- The \textit{k-means-based} algorithm
Algorithms for the CX decomposition

• The **SVD-based** algorithm
 – Do SVD first
 – Map k columns of A to the left singular vectors

• The **greedy** algorithm
 – Greedily pick k columns of A that minimize the error

• The **k-means-based** algorithm
 – Find k centers (by clustering the columns)
 – Map the k centers to columns of A
Discussion on the CX decomposition

• The vectors in C are not orthogonal – they do not define a space

• It maintains the sparsity of the data
Nearest Neighbour in low dimensions
Definition

• Given: a set X of n points in \mathbb{R}^d
• Nearest neighbor: for any query point $q \in \mathbb{R}^d$
 return the point $x \in X$ minimizing $L_p(x,q)$
Motivation

• **Learning**: Nearest neighbor rule

• **Databases**: Retrieval

• Donald Knuth in vol.3 of *The Art of Computer Programming* called it the post-office problem, referring to the application of assigning a resident to the nearest-post office
Nearest neighbor rule
MNIST dataset “2”
Methods for computing NN

• Linear scan: $O(nd)$ time

• This is pretty much all what is known for exact algorithms with theoretical guarantees

• In practice:
 – *kd-trees* work “well” in “low-medium” dimensions
2-dimensional kd-trees

- A data structure to support range queries in \(\mathbb{R}^2 \)
 - Not the most efficient solution in theory
 - Everyone uses it in practice

- Preprocessing time: \(\mathcal{O}(n \log n) \)
- Space complexity: \(\mathcal{O}(n) \)
- Query time: \(\mathcal{O}(n^{1/2} + k) \)
2-dimensional kd-trees

• Algorithm:
 – Choose x or y coordinate (alternate)
 – Choose the median of the coordinate; this defines a horizontal or vertical line
 – Recurse on both sides

• We get a binary tree:
 – Size $O(n)$
 – Depth $O(\log n)$
 – Construction time $O(n \log n)$
Construction of kd-trees
The complete kd-tree
Region of node v

Region(v) : the subtree rooted at v stores the points in black dots
Searching in kd-trees

• Range-searching in 2-d
 – Given a set of \(n \) points, build a data structure that for any query rectangle \(R \) reports all point in \(R \)
kd-tree: range queries

- Recursive procedure starting from $v = \text{root}$
- **Search** (v, R)
 - If v is a leaf, then report the point stored in v if it lies in R
 - Otherwise, if $\text{Reg}(v)$ is contained in R, report all points in the subtree(v)
 - Otherwise:
 - If $\text{Reg(left}(v))$ intersects R, then Search$(\text{left}(v), R)$
 - If $\text{Reg(right}(v))$ intersects R, then Search$(\text{right}(v), R)$
Query time analysis

• We will show that **Search** takes at most $O(n^{1/2} + P)$ time, where P is the number of reported points

 – The total time needed to report all points in all sub-trees is $O(P)$

 – We just need to bound the number of nodes v such that $\text{region}(v)$ intersects R but is not contained in R (i.e., boundary of R intersects the boundary of $\text{region}(v)$)

 – **gross overestimation**: bound the number of $\text{region}(v)$ which are crossed by any of the 4 horizontal/vertical lines
Query time (Cont’d)

- **Q(n):** max number of regions in an n-point kd-tree intersecting a (say, vertical) line?

 If ℓ intersects **region**(v) (due to vertical line splitting), then after two levels it intersects 2 regions (due to 2 vertical splitting lines)

 The number of regions intersecting ℓ is $Q(n)=2+2Q(n/4) \Rightarrow Q(n)=(n^{1/2})$
d-dimensional kd-trees

- A data structure to support range queries in \mathbb{R}^d
- Preprocessing time: $O(n \log n)$
- Space complexity: $O(n)$
- Query time: $O(n^{1-1/d} + k)$
Construction of the d-dimensional \textit{kd-trees}

- The construction algorithm is similar as in 2-\textit{d}
- At the root we split the set of points into two subsets of same size by a hyperplane vertical to x_1-axis
- At the children of the root, the partition is based on the second coordinate: x_2-coordinate
- At depth d, we start all over again by partitioning on the first coordinate
- The recursion stops until there is only one point left, which is stored as a leaf