Lecture outline

• Nearest-neighbor search in low dimensions
 – kd-trees

• Nearest-neighbor search in high dimensions
 – LSH

• Applications to data mining
Definition

• Given: a set X of n points in \mathbb{R}^d
• Nearest neighbor: for any query point $q \in \mathbb{R}^d$
 return the point $x \in X$ minimizing $D(x, q)$

• **Intuition:** Find the point in X that is the *closest* to q
Motivation

- **Learning**: Nearest neighbor rule
- **Databases**: Retrieval
- **Data mining**: Clustering
- Donald Knuth in vol.3 of *The Art of Computer Programming* called it the post-office problem, referring to the application of assigning a resident to the *nearest-post office*
Nearest-neighbor rule
MNIST dataset “2”
Methods for computing NN

• **Linear scan:** $O(nd)$ time

• This is pretty much all what is known for exact algorithms with theoretical guarantees

• In practice:
 – *kd-trees* work “well” in “low-medium” dimensions
2-dimensional kd-trees

• A data structure to support range queries in \mathbb{R}^2
 – Not the most efficient solution in theory
 – Everyone uses it in practice

• Preprocessing time: $O(n \log n)$
• Space complexity: $O(n)$
• Query time: $O(n^{1/2} + k)$
2-dimensional kd-trees

• Algorithm:
 – Choose \textbf{x} or \textbf{y} coordinate (alternate)
 – Choose the median of the coordinate; this defines a horizontal or vertical line
 – Recurse on both sides

• We get a binary tree:
 – Size \textbf{O}(n)
 – Depth \textbf{O}(\log n)
 – Construction time \textbf{O}(n \log n)
Construction of kd-trees
The complete kd-tree
Region of node v

Region(v) : the subtree rooted at v stores the points in black dots
Searching in kd-trees

• Range-searching in 2-d
 – Given a set of \(n \) points, build a data structure that for any query rectangle \(R \) reports all point in \(R \)
kd-tree: range queries

• Recursive procedure starting from \(v = \text{root} \)

• **Search** \((v, R)\)

 – If \(v \) is a leaf, then report the point stored in \(v \) if it lies in \(R \)

 – Otherwise, if \(\text{Reg}(v) \) is contained in \(R \), report all points in the **subtree**\((v)\)

 – Otherwise:

 • If \(\text{Reg}(\text{left}(v)) \) intersects \(R \), then **Search**\((\text{left}(v), R)\)

 • If \(\text{Reg}(\text{right}(v)) \) intersects \(R \), then **Search**\((\text{right}(v), R)\)
Query time analysis

- We will show that **Search** takes at most $O(n^{1/2} + P)$ time, where P is the number of reported points.
 - The total time needed to report all points in all sub-trees is $O(P)$.
 - We just need to bound the number of nodes v such that $\text{region}(v)$ intersects R but is not contained in R (i.e., boundary of R intersects the boundary of $\text{region}(v)$).
 - *Gross overestimation*: bound the number of $\text{region}(v)$ which are crossed by any of the 4 horizontal/vertical lines.
Query time (Cont’d)

- **Q(n):** max number of regions in an n-point kd-tree intersecting a (say, vertical) line?

- If \(\ell \) intersects region(\(v \)) (due to vertical line splitting), then after two levels it intersects 2 regions (due to 2 vertical splitting lines)

- The number of regions intersecting \(\ell \) is \(Q(n) = 2 + 2Q(n/4) \) \(\Rightarrow \) \(Q(n) = (n^{1/2}) \)
d-dimensional kd-trees

- A data structure to support range queries in \mathbb{R}^d
 - Preprocessing time: $O(n \log n)$
 - Space complexity: $O(n)$
 - Query time: $O(n^{1-1/d} + k)$
Construction of the d-dimensional kd-trees

- The construction algorithm is similar as in 2-d
- At the root we split the set of points into two subsets of same size by a hyperplane vertical to x_1-axis
- At the children of the root, the partition is based on the second coordinate: x_2-coordinate
- At depth d, we start all over again by partitioning on the first coordinate
- The recursion stops until there is only one point left, which is stored as a leaf
Locality-sensitive hashing (LSH)

- **Idea**: Construct hash functions \(h: \mathbb{R}^d \rightarrow \mathbb{U} \) such that for any pair of points \(p, q \):
 - If \(D(p,q) \leq r \), then \(\Pr[h(p)=h(q)] \) is high
 - If \(D(p,q) \geq cr \), then \(\Pr[h(p)=h(q)] \) is small

- Then, we can solve the “approximate NN” problem by hashing

- LSH is a general framework; for a given \(D \) we need to find the right \(h \)
Approximate Nearest Neighbor

- Given a set of points X in \mathbb{R}^d and query point $q \in \mathbb{R}^d$
- Approximate r-Nearest Neighbor search returns:
 - Returns $p \in P$, $D(p,q) \leq r$
 - Returns NO if there is no $p' \in X$, $D(p',q) \leq cr$
Locality-Sensitive Hashing (LSH)

- A family H of functions $h: \mathbb{R}^d \rightarrow \mathbb{U}$ is called (P_1, P_2, r, cr)-sensitive if for any p, q:
 - if $D(p, q) \leq r$, then $\Pr[h(p) = h(q)] \geq P_1$
 - If $D(p, q) \geq cr$, then $\Pr[h(p) = h(q)] \leq P_2$

- $P_1 > P_2$

- Example: Hamming distance
 - LSH functions: $h(p) = p_i$, i.e., the i-th bit of p
 - Probabilities: $\Pr[h(p) = h(q)] = 1 - D(p, q)/d$
Algorithm -- preprocessing

- \(g(p) = <h_1(p), h_2(p), ..., h_k(p)> \)

- Preprocessing
 - Select \(g_1, g_2, ..., g_L \)
 - For all \(p \in X \) hash \(p \) to buckets \(g_1(p), ..., g_L(p) \)
 - Since the number of possible buckets might be large we only \textit{maintain the non empty ones}.

- Running time?
Algorithm -- query

- **Query** q:
 - Retrieve the points from buckets $g_1(q), g_2(q), \ldots, g_L(q)$ and let points retrieved be x_1, \ldots, x_L
 - If $D(x_i, q) \leq r$ report it
 - Otherwise report that there does not exist such a NN
 - Answer the query based on the retrieved points
 - Time $O(dL)$
Applications of LSH in data mining

• Numerous....
Applications

• Find pages with similar sets of words (for clustering or classification)

• Find users in Netflix data that watch similar movies

• Find movies with similar sets of users

• Find images of related things
How would you do it?

• Finding very similar items might be computationally demanding task

• We can relax our requirement to finding *somewhat similar* items
Running example: comparing documents

• Documents have common text, but no common topic
• Easy special cases:
 – Identical documents
 – Fully contained documents (letter by letter)
• General case:
 – Many small pieces of one document appear out of order in another. What do we do then?
Finding similar documents

• Given a collection of documents, find pairs of documents that have lots of text in common
 – Identify mirror sites or web pages
 – Plagiarism
 – Similar news articles
Key steps

• **Shingling**: convert documents (news articles, emails, etc) to sets

• **LSH**: convert large sets to *small signatures*, while preserving the similarity

• Compare the signatures instead of the actual documents
Shingles

• A **k-shingle** (or **k-gram**) is a sequence of **k** characters that appears in a document

• If doc = abcab and k=3, then 2-singles: \{ab, bc, ca\}

• Represent a document by a set of **k**-shingles
Assumption

• Documents that have similar sets of k-shingles are similar: same text appears in the two documents; the position of the text does not matter

• What should be the value of k?
 – What would large or small k mean?
Data model: sets

• Data points are represented as sets (i.e., sets of shingles)

• Similar data points have large intersections in their sets
 – Think of documents and shingles
 – Customers and products
 – Users and movies
Similarity measures for sets

• Now we have a set representation of the data

• Jaccard coefficient

• A, B sets (subsets of some, large, universe U)

$$sim(A, B) = \frac{|A \cap B|}{|A \cup B|}$$
Find similar objects using the Jaccard similarity

• Naïve method?

• Problems with the naïve method?
 – There are too many objects
 – Each object consists of too many sets
Speeding up the naïve method

• Represent every object by a signature (summary of the object)
• Examine pairs of signatures rather than pairs of objects
• Find all similar pairs of signatures
• **Check point:** check that objects with similar signatures are actually similar
Still problems

• Comparing large number of signatures with each other may take too much time (although it takes less space)

• The method can produce pairs of objects that might not be similar (false positives). The check point needs to be enforced
Creating signatures

• For object x, signature of x ($\text{sign}(x)$) is much smaller (in space) than x

• For objects x, y it should hold that $\text{sim}(x,y)$ is almost the same as $\text{sim}(\text{sing}(x),\text{sign}(y))$
Intuition behind Jaccard similarity

- Consider two objects: \(x, y \)

\[
\begin{array}{c|c|c}
& x & y \\
\hline
a & 1 & 1 \\
b & 1 & 0 \\
c & 0 & 1 \\
d & 0 & 0 \\
\end{array}
\]

- \(a \): # of rows of form same as \(a \)
- \(\text{sim}(x,y) = \frac{a}{(a+b+c)} \)
A type of signatures -- minhashes

- Randomly **permute** the rows

- \(h(x) \): first row (in permuted data) in which column \(x \) has an 1

- Use several (e.g., 100) independent hash functions to design a signature
“Surprising” property

• The probability (over all permutations of rows) that $h(x)=h(y)$ is the same as $\text{sim}(x,y)$

• Both of them are $a/(a+b+c)$

• So?
 – The similarity of signatures is the fraction of the hash functions on which they agree
Minhash algorithm

• Pick \(k \) (e.g., 100) permutations of the rows

• Think of \(\text{sign}(x) \) as a new vector

• Let \(\text{sign}(x)[i] \): in the \(i \)-th permutation, the index of the \textbf{first row that has 1} for object \(x \)
Example of minhash signatures

- **Input matrix**

<table>
<thead>
<tr>
<th></th>
<th>x1</th>
<th>x2</th>
<th>x3</th>
<th>X4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>3</th>
<th>7</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Example of minhash signatures

- **Input matrix**

<table>
<thead>
<tr>
<th></th>
<th>x1</th>
<th>x2</th>
<th>x3</th>
<th>X4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Minhash signatures:

1. 4
2. 2
3. 1
4. 3
5. 6
6. 7
7. 5

- **Output matrix**

<table>
<thead>
<tr>
<th></th>
<th>x1</th>
<th>x2</th>
<th>x3</th>
<th>X4</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Output: 2 1 3 1
Example of minhash signatures

- Input matrix

<table>
<thead>
<tr>
<th></th>
<th>x1</th>
<th>x2</th>
<th>x3</th>
<th>X4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- Summarized signatures:

1. 3
2. 4
3. 7
4. 6
5. 1
6. 2
7. 5

<table>
<thead>
<tr>
<th></th>
<th>x1</th>
<th>x2</th>
<th>x3</th>
<th>X4</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- Minhash signatures:

3 1 3 1
Example of minhash signatures

• Input matrix

<table>
<thead>
<tr>
<th></th>
<th>x1</th>
<th>x2</th>
<th>x3</th>
<th>x4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

≈

<table>
<thead>
<tr>
<th>x1</th>
<th>x2</th>
<th>x3</th>
<th>x4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>actual</th>
<th>signs</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x1,x2)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(x1,x3)</td>
<td>0.75</td>
<td>2/3</td>
</tr>
<tr>
<td>(x1,x4)</td>
<td>1/7</td>
<td>0</td>
</tr>
<tr>
<td>(x2,x3)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(x2,x4)</td>
<td>0.75</td>
<td>1</td>
</tr>
<tr>
<td>(x3,x4)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Is it now feasible?

• Assume a billion rows
• Hard to pick a random permutation of 1...billion
• **Even representing a random permutation requires 1 billion entries!!!**
• How about accessing rows in permuted order?
• 😞
Being more practical

- Approximating row permutations: pick \(k=100 \) (?) hash functions \((h_1, \ldots, h_k)\)

 for each row \(r \)
 for each column \(c \)
 if \(c \) has 1 in row \(r \)
 for each hash function \(h_i \)
 if \(h_i(r) \) is a smaller value than \(M(i, c) \)
 \(M(i, c) = h_i(r) \);

\(M(i, c) \) will become the smallest value of \(h_i(r) \) for which column \(c \) has 1 in row \(r \); i.e., \(h_i(r) \) gives order of rows for \(i \)-th permutation.
Example of minhash signatures

• Input matrix

<table>
<thead>
<tr>
<th></th>
<th>x1</th>
<th>x2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

\[h(r) = r + 1 \mod 5 \]
\[g(r) = 2r + 1 \mod 5 \]