Lecture outline

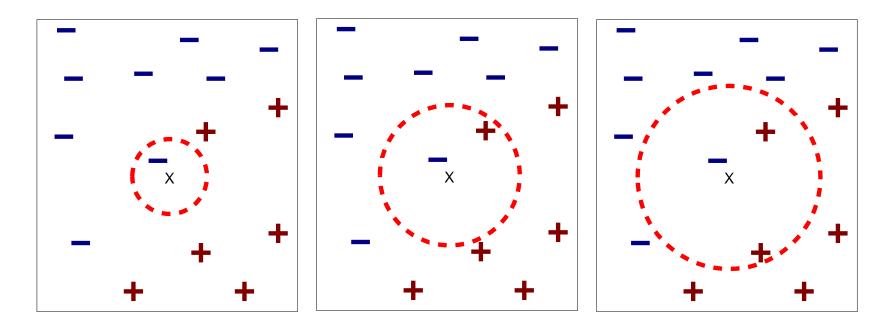
- Classification
- Naïve Bayes classifier
- Nearest-neighbor classifier

Eager vs Lazy learners

• Eager learners: learn the model as soon as the training data becomes available

- Lazy learners: delay model-building until testing data needs to be classified
 - Rote classifier: memorizes the entire training data

k-nearest neighbor classifiers



(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

k-nearest neighbors of a record x are data points that have the k smallest distance to x

k-nearest neighbor classification

- Given a data record x find its k closest points
 Closeness: Euclidean, Hamming, Jaccard distance
- Determine the class of x based on the classes in the neighbor list
 - Majority vote
 - Weigh the vote according to distance
 - e.g., weight factor, $w = 1/d^2$
 - Probabilistic voting

Characteristics of nearest-neighbor classifiers

- Instance of *instance-based* learning
- No model building (lazy learners)
 - Lazy learners: computational time in classification
 - Eager learners: computational time in model building
- Decision trees try to find global models, k-NN take into account local information
- K-NN classifiers depend a lot on the choice of proximity measure

Bayes Theorem

- X, Y random variables
- Joint probability: Pr(X=x,Y=y)
- Conditional probability: Pr(Y=y | X=x)
- Relationship between joint and conditional probability distributions

 $Pr(X,Y) = Pr(X | Y) \times Pr(Y) = Pr(Y | X) \times Pr(X)$

• Bayes Theorem:

$$\Pr(Y \mid X) = \frac{\Pr(X \mid Y) \Pr(Y)}{\Pr(X)}$$

Bayes Theorem for Classification

- X: attribute set
- Y: class variable
- Y depends on X in a *non-determininstic* way
- We can capture this dependence using Pr(Y|X) : Posterior probability VS Pr(Y): Prior probability

Building the Classifier

- Training phase:
 - Learning the posterior probabilities Pr(Y | X) for every combination of X and Y based on training data

- Test phase:
 - For test record X', compute the class Y' that maximizes the posterior probability

Pr(Y' | X')

Bayes Classification: Example

	binary categorical continuous class				
	binary	catego	continu	class	
Tid	Home Owner	Marital Status	Annual Income	Defaulted Borrower	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

Figure 4.6. Training set for predicting borrowers who will default on loan payments.

X'=(Home Owner=No, Marital Status=Married, AnnualIncome=120K) Compute: **Pr(Yes|X')**, **Pr(No|X')** pick No or Yes with max Prob.

How can we compute these probabilities??

Computing posterior probabilities

• Bayes Theorem

$$\Pr(Y \mid X) = \frac{\Pr(X \mid Y) \Pr(Y)}{\Pr(X)}$$

- P(X) is constant and can be ignored
- P(Y): estimated from training data; compute the fraction of training records in each class
- **P(X|Y)**?

Naïve Bayes Classifier

$$\Pr(X \mid Y = y) = \prod_{i=1}^{d} \Pr(X_i \mid Y = y)$$

- Attribute set X = {X₁,...,X_d} consists of d attributes
- Conditional independence:
 - X conditionally independent of Y, given X:
 Pr(X|Y,Z) = Pr(X|Z)

- Pr(X,Y|Z) = Pr(X|Z)xPr(Y|Z)

Naïve Bayes Classifier

$$\Pr(X \mid Y = y) = \prod_{i=1}^{d} \Pr(X_i \mid Y = y)$$

 Attribute set X = {X₁,...,X_d} consists of d attributes

$$\Pr(Y \mid X) = \frac{\Pr(Y) \prod_{i=1}^{d} \Pr(X_i \mid Y)}{\Pr(X)}$$

Conditional probabilities for categorical attributes

- Categorical attribute X_i
- Pr(Xi = xi | Y=y): fraction of training instances in class y that take value x_i on the i-th attribute

Pr(homeOwner = yes|No) = 3/7

Pr(MaritalStatus = Single | Yes) = 2/3

			ical .	OUS
	binary	catego	iical continu	class
Tid	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Figure 4.6. Training set for predicting borrowers who will default on loan payments.

Estimating conditional probabilities for continuous attributes?

• Discretization?

• How can we discretize?

Naïve Bayes Classifier: Example

- X' = (HomeOwner = No, MaritalStatus = Married, Income=120K)
- Need to compute Pr(Y | X') or Pr(Y)xPr(X' | Y)
- But **Pr(X' | Y)** is
 - **Y = No**:
 - Pr(HO=No|No)xPr(MS=Married|No)xPr(Inc=120K|No) = 4/7x4/7x0.0072 = 0.0024
 - Y=Yes:
 - Pr(HO=No|Yes)xPr(MS=Married|Yes)xPr(Inc=120K|Yes)
 = 1x0x1.2x10⁻⁹ = 0

Naïve Bayes Classifier: Example

- X' = (HomeOwner = No, MaritalStatus = Married, Income=120K)
- Need to compute Pr(Y | X') or Pr(Y)xPr(X' | Y)
- But **Pr(X' | Y = Yes)** is **0**?
- Correction process:

$$\Pr(X_i = x_i \mid Y = y_j) = \frac{n_c + mp}{n + m}$$

n_c: number of training examples from class y_j that take value x_i
 n: total number of instances from class y_j
 m: equivalent sample size (balance between prior and posterior)
 p: user-specified parameter (prior probability)

Characteristics of Naïve Bayes Classifier

- Robust to isolated noise points
 - noise points are averaged out
- Handles missing values
 - Ignoring missing-value examples
- Robust to irrelevant attributes

– If X_i is irrelevant, P(X_i Y) becomes almost uniform

• Correlated attributes degrade the performance of NB classifier