Lecture outline

- Classification
- Naïve Bayes classifier
- Nearest-neighbor classifier
Eager vs Lazy learners

• Eager learners: learn the model as soon as the training data becomes available

• Lazy learners: delay model-building until testing data needs to be classified
 – Rote classifier: memorizes the entire training data
k-nearest neighbor classifiers

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

k-nearest neighbors of a record x are data points that have the k smallest distance to x
k-nearest neighbor classification

- Given a data record x find its k closest points
 - Closeness: Euclidean, Hamming, Jaccard distance

- Determine the class of x based on the classes in the neighbor list
 - Majority vote
 - Weigh the vote according to distance
 - e.g., weight factor, $w = 1/d^2$
 - Probabilistic voting
Characteristics of nearest-neighbor classifiers

- **Instance of** *instance-based* learning
- **No model building** (lazy learners)
 - Lazy learners: computational time in classification
 - Eager learners: computational time in model building
- **Decision trees** try to find global models, k-NN take into account local information
- **K-NN classifiers** depend a lot on the choice of proximity measure
Bayes Theorem

- X, Y random variables
- Joint probability: $\Pr(X=x,Y=y)$
- Conditional probability: $\Pr(Y=y \mid X=x)$
- Relationship between joint and conditional probability distributions

$$\Pr(X,Y) = \Pr(X \mid Y) \times \Pr(Y) = \Pr(Y \mid X) \times \Pr(X)$$

Bayes Theorem:

$$\Pr(Y \mid X) = \frac{\Pr(X \mid Y) \Pr(Y)}{\Pr(X)}$$
Bayes Theorem for Classification

- \(X \): attribute set
- \(Y \): class variable
- \(Y \) depends on \(X \) in a non-deterministic way
- We can capture this dependence using
 \[
 \text{Pr}(Y|X) : \text{Posterior probability}
 \]
 vs
 \[
 \text{Pr}(Y) : \text{Prior probability}
 \]
Building the Classifier

• Training phase:
 – Learning the posterior probabilities $\Pr(Y|X)$ for every combination of X and Y based on training data

• Test phase:
 – For test record X', compute the class Y' that maximizes the posterior probability $\Pr(Y'|X')$
Bayes Classification: Example

$X'=(\text{Home Owner}=\text{No}, \text{Marital Status}=\text{Married}, \text{Annual Income}=120K)$

Compute: $\Pr(\text{Yes}|X'), \Pr(\text{No}|X')$ pick No or Yes with max Prob.

How can we compute these probabilities?
Computing posterior probabilities

• Bayes Theorem

\[\Pr(Y \mid X) = \frac{\Pr(X \mid Y) \Pr(Y)}{\Pr(X)} \]

• \(\Pr(X) \) is constant and can be ignored

• \(\Pr(Y) \): estimated from training data; compute the fraction of training records in each class

• \(\Pr(X \mid Y) \)?
Naïve Bayes Classifier

\[
\Pr(X \mid Y = y) = \prod_{i=1}^{d} \Pr(X_i \mid Y = y)
\]

• Attribute set \(X = \{X_1, \ldots, X_d\} \) consists of \(d \) attributes

• Conditional independence:
 - \(X \) conditionally independent of \(Y \), given \(X \):
 \[
 \Pr(X \mid Y, Z) = \Pr(X \mid Z)
 \]
 - \(\Pr(X, Y \mid Z) = \Pr(X \mid Z) \times \Pr(Y \mid Z) \)
Naïve Bayes Classifier

\[
\Pr(X \mid Y = y) = \prod_{i=1}^{d} \Pr(X_i \mid Y = y)
\]

- Attribute set \(X = \{X_1,...,X_d\} \) consists of \(d \) attributes

\[
\Pr(Y \mid X) = \frac{\Pr(Y) \prod_{i=1}^{d} \Pr(X_i \mid Y)}{\Pr(X)}
\]
Conditional probabilities for categorical attributes

- Categorical attribute X_i
- $\Pr(X_i = x_i | Y = y)$: fraction of training instances in class y that take value x_i on the i-th attribute

$\Pr(\text{homeOwner} = \text{yes} | \text{No}) = \frac{3}{7}$

$\Pr(\text{MaritalStatus} = \text{Single} | \text{Yes}) = \frac{2}{3}$

Figure 4.6. Training set for predicting borrowers who will default on loan payments.
Estimating conditional probabilities for continuous attributes?

- Discretization?

- How can we discretize?
Naïve Bayes Classifier: Example

• \(X' = (\text{HomeOwner} = \text{No}, \text{MaritalStatus} = \text{Married}, \text{Income}=120K) \)

• Need to compute \(\Pr(Y|X') \) or \(\Pr(Y) \times \Pr(X'|Y) \)

• But \(\Pr(X'|Y) \) is
 – \(Y = \text{No} \):
 • \(\Pr(\text{HO}=\text{No}|\text{No}) \times \Pr(\text{MS}=\text{Married}|\text{No}) \times \Pr(\text{Inc}=120K|\text{No}) \)
 = \(\frac{4}{7} \times \frac{4}{7} \times 0.0072 = 0.0024 \)
 – \(Y=\text{Yes} \):
 • \(\Pr(\text{HO}=\text{No}|\text{Yes}) \times \Pr(\text{MS}=\text{Married}|\text{Yes}) \times \Pr(\text{Inc}=120K|\text{Yes}) \)
 = \(1 \times 0 \times 1.2 \times 10^{-9} = 0 \)
Naïve Bayes Classifier: Example

• \(X' = (\text{HomeOwner} = \text{No}, \text{MaritalStatus} = \text{Married}, \text{Income}=120K)\)

• Need to compute \(\text{Pr}(Y|X')\) or \(\text{Pr}(Y)\times\text{Pr}(X'|Y)\)

• But \(\text{Pr}(X'|Y = \text{Yes})\) is 0?

• Correction process:

\[
\text{Pr}(X_i = x_i \mid Y = y_j) = \frac{n_c + mp}{n + m}
\]

\(n_c\): number of training examples from class \(y_j\) that take value \(x_i\)
\(n\): total number of instances from class \(y_j\)
\(m\): equivalent sample size (balance between prior and posterior)
\(p\): user-specified parameter (prior probability)
Characteristics of Naïve Bayes Classifier

• Robust to isolated noise points
 – noise points are averaged out
• Handles missing values
 – Ignoring missing-value examples
• Robust to irrelevant attributes
 – If X_i is irrelevant, $P(X_i | Y)$ becomes almost uniform
• Correlated attributes degrade the performance of NB classifier