Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?

- Methods for Performance Evaluation
 - How to obtain reliable estimates?

- Methods for Model Comparison
 - How to compare the relative performance of different models?

Metrics for Performance Evaluation

- Focus on the predictive capability of a model
 - Rather than how fast it takes to classify or build models, scalability, etc.
- Confusion Matrix:

	PREDICTED CLASS						
		Class=No					
4.07.141	Class=Yes	a: TP	b: FN				
ACTUAL CLASS	Class=No	c: FP	d: TN				

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Metrics for Performance Evaluation...

	PREDICTED CLASS						
		Class=Yes	Class=No				
ACTUAL	Class=Yes	a (TP)	b (FN)				
CLASS	Class=No	c (FP)	d (TN)				

Most widely-used metric:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Limitation of Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10

- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class 1 example

Cost Matrix

	PREDICTED CLASS					
ACTUAL	C(i j)	Class=Yes	Class=No			
	Class=Yes	C(Yes Yes)	C(No Yes)			
CLASS	Class=No	C(Yes No)	C(No No)			

C(i|j): Cost of misclassifying class j example as class i

Computing Cost of Classification

Cost Matrix	PREDICTED CLASS				
ACTUAL CLASS	C(i j)	+	-		
	+	-1	100		
	-	1	0		

Model M ₁	PREDI	CTED (CLASS
ACTUAL CLASS		+	-
	+	150	40
	•	60	250

Accuracy = 80%

Cost = 3910

Model M ₂	PREDICTED CLASS					
ACTUAL CLASS		+	-			
	+	250	45			
	•	5	200			

Accuracy = 90%

Cost = 4255

Cost vs Accuracy

Count	PREDICTED CLASS						
		Class=Yes	Class=No				
ACTUAL	Class=Yes	а	b				
CLASS	Class=No	С	d				

Accuracy is proportional to cost if

1.
$$C(Yes|No)=C(No|Yes)=q$$

2.
$$C(Yes|Yes)=C(No|No)=p$$

$$N = a + b + c + d$$

Accuracy =
$$(a + d)/N$$

Cost = p (a + d) + q (b + c)
= p (a + d) + q (N - a - d)
= q N - (q - p)(a + d)
= N [q - (q-p)
$$\times$$
 Accuracy]

Cost-Sensitive Measures

Precision(p)=
$$\frac{a}{a+c} = \frac{TP}{TP+FP}$$

Recall(r)= $\frac{a}{a+b} = \frac{TP}{TP+FN}$
F-measure(F)= $\frac{2rp}{r+p} = \frac{2a}{2a+b+c} = \frac{2TP}{2TP+FP+FN}$

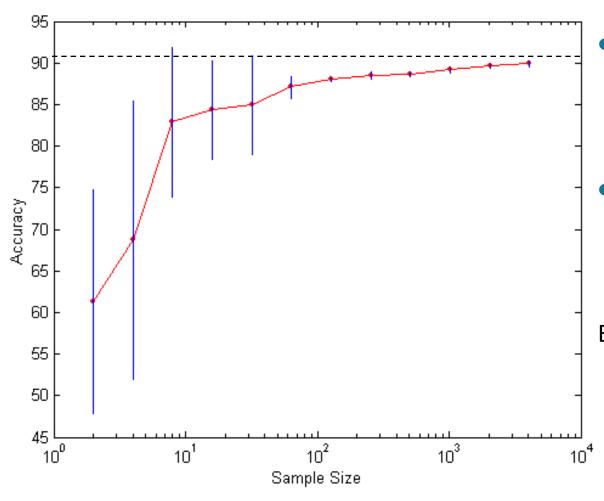
- Precision is biased towards C(Yes | Yes) & C(Yes | No)
- Recall is biased towards C(Yes | Yes) & C(No | Yes)
- F-measure is biased towards all except C(No No)

Weighted Accuracy =
$$\frac{w_1 a + w_4 d}{w_1 a + w_2 b + w_3 c + w_4 d}$$

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?

- Methods for Performance Evaluation
 - How to obtain reliable estimates?


- Methods for Model Comparison
 - How to compare the relative performance of different models?

Methods for Performance Evaluation

 How to obtain a reliable estimate of performance?

- Performance of a model may depend on other factors besides the learning algorithm:
 - Class distribution
 - Cost of misclassification
 - Size of training and test sets

Learning Curve

- Learning curve shows how accuracy changes with varying sample size
- Requires a sampling schedule for creating learning curve

Effect of small sample size:

- Bias in the estimate
- Variance of estimate

Methods of Estimation

Holdout

Reserve 2/3 for training and 1/3 for testing

Random subsampling

Repeated holdout

Cross validation

- Partition data into k disjoint subsets
- k-fold: train on k-1 partitions, test on the remaining one
- Leave-one-out: k=n

Bootstrap

Sampling with replacement

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?

- Methods for Performance Evaluation
 - How to obtain reliable estimates?

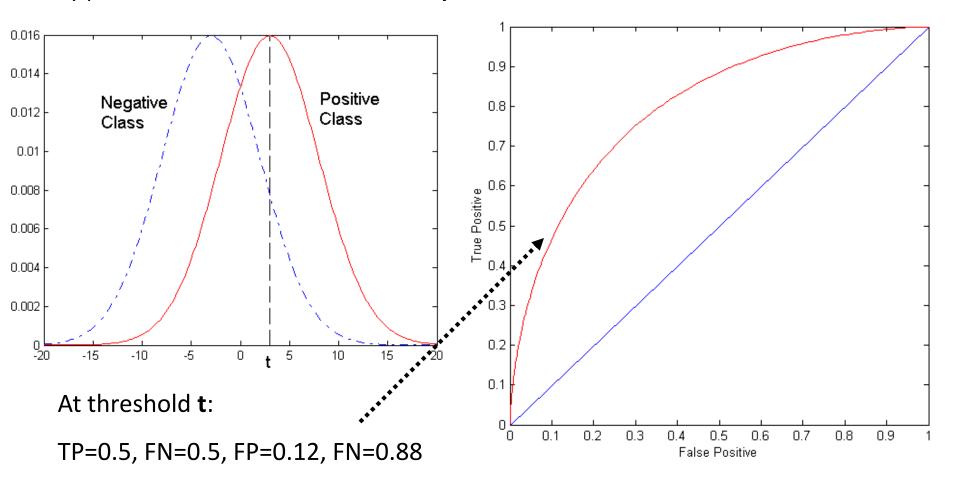
- Methods for Model Comparison
 - How to compare the relative performance of different models?

ROC (Receiver Operating Characteristic)

- Developed in 1950s for signal detection theory to analyze noisy signals
 - Characterize the trade-off between positive hits and false alarms
- ROC curve plots TPR (on the y-axis) against FPR (on the x-axis)

$$TPR = \frac{TP}{TP + FN}$$

$$FPR = \frac{FP}{FP + TN}$$

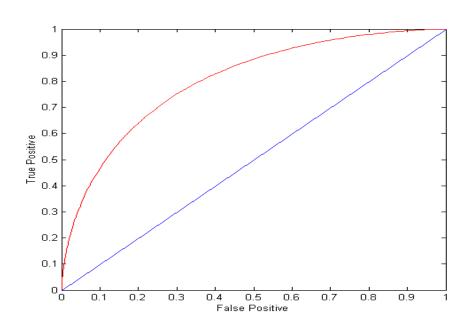

	PREDICTED CLASS					
		Yes	No			
Actual	Yes	a (TP)	b (FN)			
, , 516	No	c (FP)	d (TN)			

ROC (Receiver Operating Characteristic)

- Performance of each classifier represented as a point on the ROC curve
 - changing the threshold of algorithm, sample distribution or cost matrix changes the location of the point

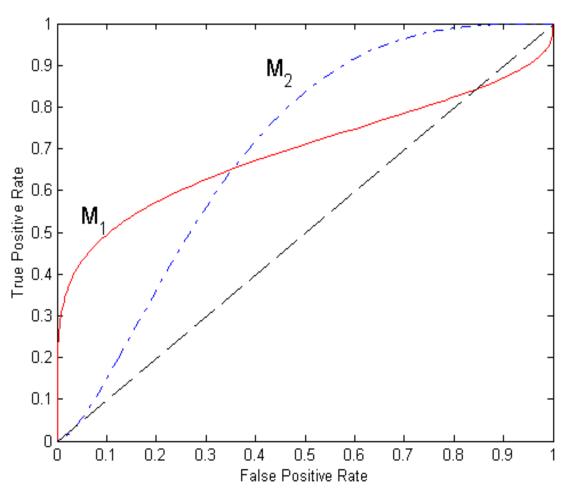
ROC Curve

- 1-dimensional data set containing 2 classes (*positive* and *negative*)
- any points located at x > t is classified as *positive*


ROC Curve

(TP,FP):

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (1,0): ideal

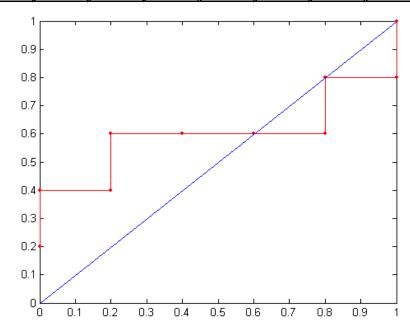


- Random guessing
- Below diagonal line:
 - prediction is opposite of the true class

	PREDICTED CLASS						
		Yes	No				
Actual	Yes	a (TP)	b (FN)				
, 1010.01	No	c (FP)	d (TN)				

Using ROC for Model Comparison

- No model consistently outperform the other
 - M₁ is better for small
 FPR
 - M₂ is better for large
 FPR
- Area Under the ROC curve
 - Ideal: Area = 1
 - Random guess:
 - Area = 0.5

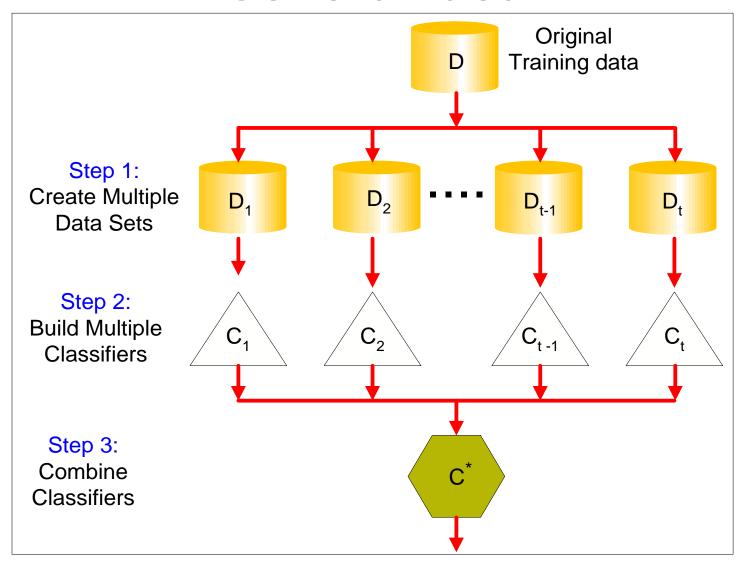

How to Construct an ROC curve

Instance	P(+ A)	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

- Use classifier that produces posterior probability for each test instance P(+|A)
- Sort the instances according to P(+|A) in decreasing order
- Apply threshold at each unique value of P(+|A)
- Count the number of TP, FP,
 TN, FN at each threshold
- TP rate, TPR = TP/(TP+FN)
- FP rate, FPR = FP/(FP + TN)

How to construct an ROC curve

	Class	+	-	+	-	-	-	+	-	+	+	
Threshold	= < k	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1	1	2	3	4	4	5	5	5
	FN	0	1	1	2	2	2	2	3	3	4	5
→	TPR	1	0.8	8.0	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
\longrightarrow	FPR	1	1	0.8	8.0	0.6	0.4	0.2	0.2	0	0	0



Ensemble Methods

Construct a set of classifiers from the training data

 Predict class label of previously unseen records by aggregating predictions made by multiple classifiers

General Idea

Why does it work?

- Suppose there are 25 base classifiers
 - Each classifier has error rate, ε = 0.35
 - Assume classifiers are independent
 - Probability that the ensemble classifier makes a wrong prediction:

$$\sum_{i=13}^{25} {25 \choose i} \varepsilon^i (1-\varepsilon)^{25-i} = 0.06$$

Examples of Ensemble Methods

- How to generate an ensemble of classifiers?
 - Bagging

Boosting

Bagging

Sampling with replacement

Original Data	1	2	3	4	5	6	7	8	9	10
Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7

- Build classifier on each bootstrap sample
- Each sample has probability (1 1/n)ⁿ of being selected

Boosting

 An iterative procedure to adaptively change distribution of training data by focusing more on previously misclassified records

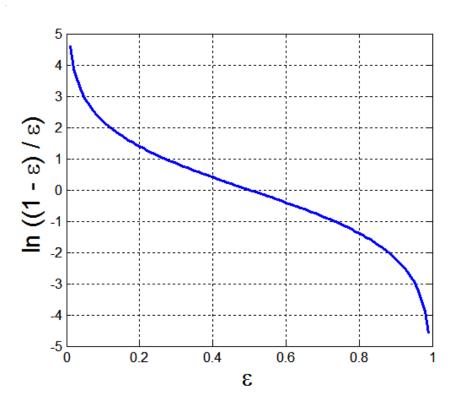
- Initially, all N records are assigned equal weights
- Unlike bagging, weights may change at the end of boosting round

Boosting

- Records that are wrongly classified will have their weights increased
- Records that are classified correctly will have their weights decreased

Original Data	1	2	3	4	5	6	7	8	9	10
Boosting (Round 1)	7	3	2	8	7	9	4	10	6	3
Boosting (Round 2)	5	4	9	4	2	5	1	7	4	2
Boosting (Round 3)	4	4	8	10	4	5	4	6	3	4

- Example 4 is hard to classify
- Its weight is increased, therefore it is more likely to be chosen again in subsequent rounds


Example: AdaBoost

- Base classifiers: C₁, C₂, ..., C_T
- Data pairs: (x_i,y_i)
- Error rate:

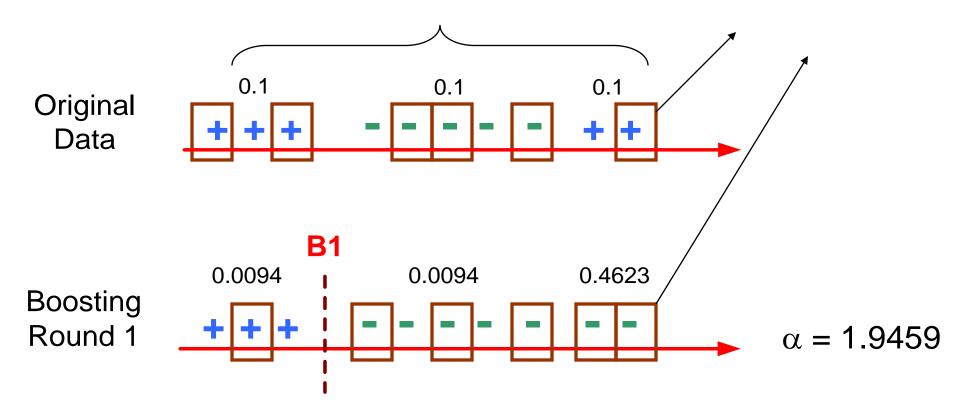
$$\varepsilon_{i} = \frac{1}{N} \sum_{j=1}^{N} w_{j} \delta(C_{i}(x_{j}) \neq y_{j})$$

• Importance of a classifier:

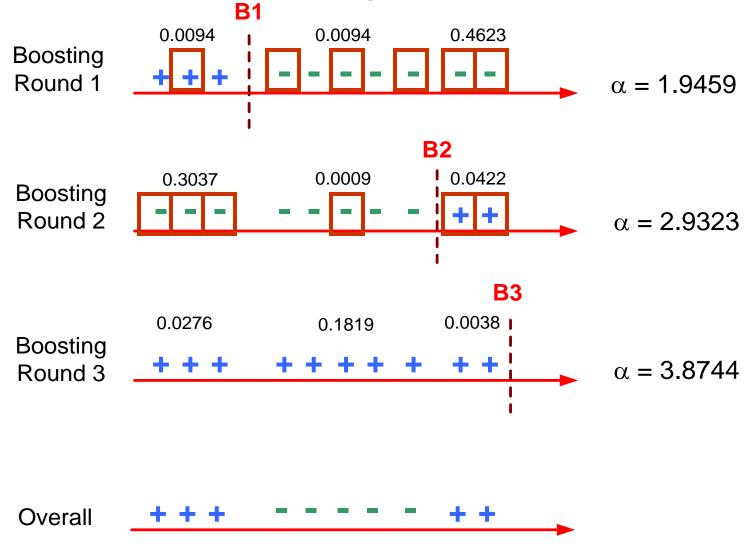
$$\alpha_i = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_i}{\varepsilon_i} \right)$$

Example: AdaBoost

• Classification:
$$C*(x) = \underset{y}{\operatorname{argmax}} \sum_{j=1}^{I} \alpha_j \delta(C_j(x) = y)$$


Weight update for every iteration t and classifier j :

$$w_i^{(t+1)} = \frac{w_i^{(t)}}{Z_t} \begin{cases} \exp^{-\alpha_j} & \text{if } C_j(x_i) = y_i \\ \exp^{\alpha_j} & \text{if } C_j(x_i) \neq y_i \end{cases}$$


where Z_i is the normalization factor

If any intermediate rounds produce error rate higher than 50%, the weights are reverted back to 1/n

Illustrating AdaBoost

Illustrating AdaBoost

