Model Evaluation

e Metrics for Performance Evaluation

— How to evaluate the performance of a model?

e Methods for Performance Evaluation

— How to obtain reliable estimates?

 Methods for Model Comparison

— How to compare the relative performance of
different models?

Metrics for Performance
Evaluation

* Focus on the predictive capability of a model

— Rather than how fast it takes to classify or build
models, scalability, etc.

e Confusion Matrix:

PREDICTED CLASS

ACTUAL
CLASS

Class=Yes | Class=No
Class=Yes a TP b: FN
Class=No c: FP d: TN

a: TP (true positive)
b: FN (false negative)
c: FP (false positive)

d: TN (true negative)

Metrics for Performance Evaluation...

PREDICTED CLASS

Accuracy =

Class=Yes | Class=No
Class=Yes a b
ACTUAL (TP) (FN)
CLASS Class=No C d
(FP) (TN)
 Most widely-used metric:
a-+d TP+TN

at+b+c+d TP+TN+FP+FN

Limitation of Accuracy

* Consider a 2-class problem
— Number of Class 0 examples = 9990
— Number of Class 1 examples = 10

* |f model predicts everything to be class O,
accuracy is 9990/10000 = 99.9 %

— Accuracy is misleading because model does not
detect any class 1 example

Cost Matrix

PREDICTED CLASS

C()) Class=Yes |Class=No

ACTUAL Class=Yes | C(Yes|Yes) | C(No|Yes)

CLASS Class=No C(Yes|No) C(No|No)

C(i|j): Cost of misclassifying class j example as class i

Computing Cost of Classification

Cost PREDICTED CLASS
Matrix
C(il) + -
ACTUAL
+ -
CLASS 1 100
- 1 0
Model PREDICTED CLASS Model PREDICTED CLASS
M, M,
+ - + -
ACTUAL ACTUAL
+ +
CLASS 150 40 ClAGS 250 45
- 60 250 - 5 200

Cost =3910 Cost =4255

Cost vs Accuracy

Count PREDICTED CLASS
Class=Yes | Class=No
Class=Yes a b
ACTUAL
CLASS | Class=No C d
Cost PREDICTED CLASS
Class=Yes | Class=No
Class=Yes P q
ACTUAL
CLASS | Class=No g D

Accuracy is proportional to cost if
1. C(Yes|No)=C(No|Yes) = q
2. C(Yes|Yes)=C(No|No) =p

N=a+b+c+d

Accuracy = (a + d)/N

Cost=p(a+d)+q(b+c)
=p(a+d)+q(N—a-d)
=gN-(g-p)(a+d)
=N [q—(g-p) x Accuracy]

Cost-Sensitive Measures

a TP

at+c TP+FP
a TP

atb TP+FN
21p 2a 2TP

r+p 2a+b+c 2TP+FP+FN

Precision(p)=

Recall(r)=

F-measure(F)=

e Precision is biased towards C(Yes|Yes) & C(Yes|No)
e Recall is biased towards C(Yes|Yes) & C(No| Yes)

e F-measure is biased towards all except C(No|No)

wa+wd

Weighted Accuracy =
wa+wb+wc+wd

Model Evaluation

e Metrics for Performance Evaluation

— How to evaluate the performance of a model?

e Methods for Performance Evaluation

— How to obtain reliable estimates?

 Methods for Model Comparison

— How to compare the relative performance of
different models?

Methods for Performance
Evaluation

e How to obtain a reliable estimate of
performance?

* Performance of a model may depend on other
factors besides the learning algorithm:

— Class distribution
— Cost of misclassification
— Size of training and test sets

Accuracy

Learning Curve

S5

S0 F

-] -] oo oo
- m - m
T T T T

.

[y}
=
T

55

Al

45
10

10

10 10 10
Sample Size

® Learning curve shows how
accuracy changes with
varying sample size

e Requires a sampling
schedule for creating
learning curve

Effect of small sample size:
- Bias in the estimate

- Variance of estimate

Methods of Estimation

Holdout

— Reserve 2/3 for training and 1/3 for testing

Random subsampling

— Repeated holdout

Cross validation

— Partition data into k disjoint subsets

— k-fold: train on k-1 partitions, test on the remaining one
— Leave-one-out: k=n

Bootstrap

— Sampling with replacement

Model Evaluation

e Metrics for Performance Evaluation

— How to evaluate the performance of a model?

e Methods for Performance Evaluation

— How to obtain reliable estimates?

 Methods for Model Comparison

— How to compare the relative performance of
different models?

ROC (Receiver Operating Characteristic)

 Developed in 1950s for signal detection theory to
analyze noisy signals

— Characterize the trade-off between positive hits and false
alarms

 ROC curve plots TPR (on the y-axis) against FPR (on
the x-axis)

P PREDICTED CLASS
TPR = Yes No
TP + FN
Yes a b
Actual (TP) | (FN)
~FP No C d
R TN (FP) | (TN)

ROC (Receiver Operating Characteristic)

* Performance of each classifier represented as
a point on the ROC curve
— changing the threshold of algorithm, sample

distribution or cost matrix changes the location of
the point

ROC Curve

- 1-dimensional data set containing 2 classes (positive and negative)

- any points located at x > t is classified as positive

1

0.016 . |
’ |
0.014 - N | i 0.9
! ",
Ll Negative ; | | Positive | 0a
Class - Class
0.0t - “. | | 07
|
0.008 - | 1 OB
! =
|\ Tg
0.006 B i S os
[ak]
| 2
0.004 - | - " 04,
*
| A ’o”
0002 - | " 4 003
- *
] = J'f] | | \ \T - | ”" (e
=0 15 10 5 0oy 5 10 15 20 '
*
o 0.1
At threshold t:
*
* 0 1 1 1 1 1 1

| | |
a 0.1 0z 03 04 o5 0B 07 08 089

TP=0.5, FN=0.5, FP=0.12, FN=0.88 False Posite

(TP,FP):

(0,0): declare everything
to be negative class

(1,1): declare everything
to be positive class

(1,0): ideal

Diagonal line:
— Random guessing
— Below diagonal line:

* prediction is opposite of
the true class

ROC Curve

1 1 1 1 1 1 1 1 1
a a1 0.2 0.3 0.4 0.5 0.5 a7 0. [NRE] 1
Positive

PREDICTED CLASS

Actual

Yes No
Yes a b
(TP) (FN)
No C d
(FP) (TN)

—_

Using ROC for Model Comparison

True Positive Hate
= =T — T — B — R
g [N} =N [y [y | 0 (i)
T T T T T T T

=
—

[

=77] ® No model consistently
M, 7 ~~"1 outperform the other

a e M, is better for small
- / ' FPR

M s S e M, is better for large
~ FPR

P { ® Area Under the ROC
/ { curve
4 _ e Ideal: Area=1

| | . e Random guess:

| | |
01 0.2 0.3 0.4 05 06 a7 0.8 09 1
False Positive Rate = Area = 0.5

How to Construct an ROC curve

Instance

P(+|A)

True Class

0.95

+

0.93

+

0.87

0.85

0.85

0.85

0.76

0.53

OO |IN|OO|OT|DRIWIN|PF

0.43

=
o

0.25

e Use classifier that produces
posterior probability for each test
instance P(+|A)

e Sort the instances according to
P(+|A) in decreasing order

e Apply threshold at each unique
value of P(+]|A)

e Count the number of TP, FP,
TN, FN at each threshold

e TP rate, TPR = TP/(TP+FN)
e FP rate, FPR = FP/(FP + TN)

How to construct an ROC curve
B [|- -|-]-]+]-[+]-nm
Threshold >= AR

4
FP 5 5 4 4 3 2 1 1 0 0 0
TN 0 0 1 1 2 3 4 4 5 5 5
FN 0 1 1 2 2 2 2 3 3 4 5
—| TPR 1 0.8 0.8 0.6 0.6 0.6 0.6 0.4 0.4 0.2 0
— | FPR 1 1 0.8 0.8 0.6 0.4 0.2 0.2 0 0 0
1 T T T T T T T T T
09 .
08
07 .
06 .
05t -
0.4 J
03+ i
0.2+ .
01 .
0 ! ! ! ! ! ! ! ! !

Ensemble Methods

* Construct a set of classifiers from the training
data

* Predict class label of previously unseen

records by aggregating predictions made by
multiple classifiers

General Idea

Step 1:
Create Multiple
Data Sets

Step 2:
Build Multiple
Classifiers

Step 3:
Combine
Classifiers

Original
D Training data

:

— I —
oo Voo

—

<
-
-

¢

Why does it work?

* Suppose there are 25 base classifiers
— Each classifier has error rate, € =0.35
— Assume classifiers are independent

— Probability that the ensemble classifier makes a
wrong prediction:

i(zﬂg‘ (1-£)*" =0.06

=13

Examples of Ensemble Methods

* How to generate an ensemble of classifiers?
— Bagging

— Boosting

Bagging

* Sampling with replacement

Original Data 1 2 3 4 5 6 7 8 9 10
Bagging (Round 1) 7 8 10 8 2 5 10 10 5 9
Bagging (Round 2) 1 4 9 1 2 3 2 7 3 2
Bagging (Round 3) 1 8 5 10 5 5 9 6 3 7

* Build classifier on each bootstrap sample

* Each sample has probability (1 — 1/n)" of being
selected

Boosting

* An iterative procedure to adaptively change
distribution of training data by focusing more
on previously misclassified records

— Initially, all N records are assigned equal weights

— Unlike bagging, weights may change at the end of
boosting round

Boosting

* Records that are wrongly classified will have
their weights increased

* Records that are classified correctly will have
their weights decreased

Original Data 1 2 3 4 5 6 7 8 9 10
Boosting (Round 1) 7 3 2 8 7 9 4 10 6 3
Boosting (Round 2) 9 4 5 7 4
Boosting (Round 3) é é 8 | 10 é 5 @ 6 | 3 é:

e Example 4 is hard to classify

e |ts weight is increased, therefore it is more likely
to be chosen again in subsequent rounds

Example: AdaBoost

Base classifiers: C,, C,, ..., C;

Data pairs: (x,y:)

Error rate:

Importance of a classifier:

1, (1-¢
a. =—In

b2 &

Example: AdaBoost

-
e Classification: C™*(X)= argmaxZajﬁ(Cj (X) = Y)

y j=1

* Weight update for every iteration t and classifier j :

WG W < exp ' if C,(x%)=Y,

| Z, |exp” ifCi(x) =Y,

WhereZj IS thenormalizaton factor

* If any intermediate rounds produce error rate higher than
50%, the weights are reverted back to 1/n

Original
Data

Boosting
Round 1

Illustrating AdaBoost

>

A
- ™~
0.1 0.1 0.1
+H+[+] -|-|-|-|-] +|+
B1
0.0094 0.0094 0.4623

=

==

=
|
|
|
|
|

o = 1.9459

Boosting
Round 1

Boosting
Round 2

Boosting
Round 3

Overall

Illustrating AdaBoost

0.0094 | 0.0094
|
|

0.3037 0.0009

LT - -[-

0.4623

B2

I 0.0422

B3

0.0276 0.1819 0.0038 1
|

+++ ++++ + ++!
|

|

+++ - - - - - ++

>

1

|
§ E o = 2.9323
|

o =3.8744

