
Model Evaluation

• Metrics for Performance Evaluation

– How to evaluate the performance of a model?

• Methods for Performance Evaluation

– How to obtain reliable estimates?

• Methods for Model Comparison

– How to compare the relative performance of 
different models?



Metrics for Performance 
Evaluation

• Focus on the predictive capability of a model

– Rather than how fast it takes to classify or build 
models, scalability, etc.

• Confusion Matrix:

PREDICTED CLASS

ACTUAL

CLASS

Class=Yes Class=No

Class=Yes a: TP b: FN

Class=No c: FP d: TN

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)



Metrics for Performance Evaluation…

• Most widely-used metric:

PREDICTED CLASS

ACTUAL

CLASS

Class=Yes Class=No

Class=Yes a

(TP)

b

(FN)

Class=No c

(FP)

d

(TN)

FNFPTNTP

TNTP

dcba

da









Accuracy 



Limitation of Accuracy

• Consider a 2-class problem

– Number of Class 0 examples = 9990

– Number of Class 1 examples = 10

• If model predicts everything to be class 0, 
accuracy is 9990/10000 = 99.9 %

– Accuracy is misleading because model does not 
detect any class 1 example



Cost Matrix

PREDICTED CLASS

ACTUAL

CLASS

C(i|j) Class=Yes Class=No

Class=Yes C(Yes|Yes) C(No|Yes)

Class=No C(Yes|No) C(No|No)

C(i|j): Cost of misclassifying class j example as class i



Computing Cost of Classification

Cost 

Matrix

PREDICTED CLASS

ACTUAL

CLASS

C(i|j) + -

+ -1 100

- 1 0

Model 

M1

PREDICTED CLASS

ACTUAL

CLASS

+ -

+ 150 40

- 60 250

Model 

M2

PREDICTED CLASS

ACTUAL

CLASS

+ -

+ 250 45

- 5 200

Accuracy = 80%

Cost = 3910

Accuracy = 90%

Cost = 4255



Cost vs Accuracy

Count PREDICTED CLASS

ACTUAL

CLASS

Class=Yes Class=No

Class=Yes a b

Class=No c d

Cost PREDICTED CLASS

ACTUAL

CLASS

Class=Yes Class=No

Class=Yes p q

Class=No q p

N = a + b + c + d

Accuracy = (a + d)/N

Cost = p (a + d) + q (b + c)

= p (a + d) + q (N – a – d)

= q N – (q – p)(a + d)

= N [q – (q-p)  Accuracy] 

Accuracy is proportional to cost if
1. C(Yes|No)=C(No|Yes) = q 
2. C(Yes|Yes)=C(No|No) = p



Cost-Sensitive Measures

FNFPTP

TP

cba

a

pr

rp

FNTP

TP

ba

a

FPTP

TP

ca

a






















2

2

2

22
(F) measure-F

(r) Recall

 (p)Precision 

 Precision is biased towards C(Yes|Yes) & C(Yes|No)

 Recall is biased towards C(Yes|Yes) & C(No|Yes)

 F-measure is biased towards all except C(No|No)

dwcwbwaw

dwaw

4321

41Accuracy  Weighted







Model Evaluation

• Metrics for Performance Evaluation

– How to evaluate the performance of a model?

• Methods for Performance Evaluation

– How to obtain reliable estimates?

• Methods for Model Comparison

– How to compare the relative performance of 
different models?



Methods for Performance 
Evaluation

• How to obtain a reliable estimate of 
performance?

• Performance of a model may depend on other 
factors besides the learning algorithm:

– Class distribution

– Cost of misclassification

– Size of training and test sets



Learning Curve

 Learning curve shows how 
accuracy changes with 
varying sample size

 Requires a sampling 
schedule for creating 
learning curve

Effect of small sample size:

- Bias in the estimate

- Variance of estimate



Methods of Estimation
• Holdout

– Reserve 2/3 for training and 1/3 for testing 

• Random subsampling

– Repeated holdout

• Cross validation

– Partition data into k disjoint subsets

– k-fold: train on k-1 partitions, test on the remaining one

– Leave-one-out: k=n

• Bootstrap

– Sampling with replacement



Model Evaluation

• Metrics for Performance Evaluation

– How to evaluate the performance of a model?

• Methods for Performance Evaluation

– How to obtain reliable estimates?

• Methods for Model Comparison

– How to compare the relative performance of 
different models?



ROC (Receiver Operating Characteristic)

• Developed in 1950s for signal detection theory to 
analyze noisy signals 
– Characterize the trade-off between positive hits and false 

alarms

• ROC curve plots TPR (on the y-axis) against FPR (on 
the x-axis)

FNTP

TP
TPR




TNFP

FP
FPR




PREDICTED CLASS

Actual

Yes No

Yes a

(TP)

b

(FN)

No c

(FP)

d

(TN)



ROC (Receiver Operating Characteristic)

• Performance of each classifier represented as 
a point on the ROC curve
– changing the threshold of algorithm, sample 

distribution or cost matrix changes the location of 
the point



ROC Curve

At threshold t:

TP=0.5, FN=0.5, FP=0.12, FN=0.88

- 1-dimensional data set containing 2 classes (positive and negative)

- any points located at x > t is classified as positive



ROC Curve
(TP,FP):

• (0,0): declare everything
to be negative class

• (1,1): declare everything
to be positive class

• (1,0): ideal

• Diagonal line:

– Random guessing

– Below diagonal line:

• prediction is opposite of 
the true class

PREDICTED CLASS

Actual

Yes No

Yes a

(TP)

b

(FN)

No c

(FP)

d

(TN)



Using ROC for Model Comparison

 No model consistently 
outperform the other

 M1 is better for small 
FPR

 M2 is better for large 
FPR

 Area Under the ROC 
curve
 Ideal: Area = 1

 Random guess:

 Area = 0.5



How to Construct an ROC curve
Instance P(+|A) True Class

1 0.95 +

2 0.93 +

3 0.87 -

4 0.85 -

5 0.85 -

6 0.85 +

7 0.76 -

8 0.53 +

9 0.43 -

10 0.25 +

• Use classifier that produces 
posterior probability for each test 
instance P(+|A)

• Sort the instances according to 
P(+|A) in decreasing order

• Apply threshold at each unique 
value of P(+|A)

• Count the number of TP, FP, 
TN, FN at each threshold

• TP rate, TPR = TP/(TP+FN)

• FP rate, FPR = FP/(FP + TN)



How to construct an ROC curve
Class + - + - - - + - + +  

P 
0.25 0.43 0.53 0.76 0.85 0.85 0.85 0.87 0.93 0.95 1.00 

TP 5 4 4 3 3 3 3 2 2 1 0 

FP 5 5 4 4 3 2 1 1 0 0 0 

TN 0 0 1 1 2 3 4 4 5 5 5 

FN 0 1 1 2 2 2 2 3 3 4 5 

TPR 1 0.8 0.8 0.6 0.6 0.6 0.6 0.4 0.4 0.2 0 

FPR 1 1 0.8 0.8 0.6 0.4 0.2 0.2 0 0 0 

 

Threshold >= 

ROC Curve:



Ensemble Methods

• Construct a set of classifiers from the training 
data

• Predict class label of previously unseen 
records by aggregating predictions made by 
multiple classifiers



General Idea
Original

Training data

....
D

1
D

2 D
t-1

D
t

D

Step 1:

Create Multiple

Data Sets

C
1

C
2

C
t -1

C
t

Step 2:

Build Multiple

Classifiers

C*

Step 3:

Combine

Classifiers



Why does it work?

• Suppose there are 25 base classifiers

– Each classifier has error rate,  = 0.35

– Assume classifiers are independent

– Probability that the ensemble classifier makes a 
wrong prediction:




 






25

13

25 06.0)1(
25

i

ii

i




Examples of Ensemble Methods

• How to generate an ensemble of classifiers?

– Bagging

– Boosting



Bagging

• Sampling with replacement

• Build classifier on each bootstrap sample

• Each sample has probability (1 – 1/n)n of being 
selected

Original Data 1 2 3 4 5 6 7 8 9 10

Bagging (Round 1) 7 8 10 8 2 5 10 10 5 9

Bagging (Round 2) 1 4 9 1 2 3 2 7 3 2

Bagging (Round 3) 1 8 5 10 5 5 9 6 3 7



Boosting

• An iterative procedure to adaptively change 
distribution of training data by focusing more 
on previously misclassified records

– Initially, all N records are assigned equal weights

– Unlike bagging, weights may change at the end of 
boosting round



Boosting

• Records that are wrongly classified will have 
their weights increased

• Records that are classified correctly will have 
their weights decreased

Original Data 1 2 3 4 5 6 7 8 9 10

Boosting (Round 1) 7 3 2 8 7 9 4 10 6 3

Boosting (Round 2) 5 4 9 4 2 5 1 7 4 2

Boosting (Round 3) 4 4 8 10 4 5 4 6 3 4

• Example 4 is hard to classify

• Its weight is increased, therefore it is more likely 
to be chosen again in subsequent rounds



Example: AdaBoost

• Base classifiers: C1, C2, …, CT

• Data pairs: (xi,yi)

• Error rate:

• Importance of a classifier: 

 



N

j

jjiji yxCw
N 1

)(
1










 


i

i
i






1
ln

2

1



Example: AdaBoost

• Classification: 

• Weight update for every iteration t and classifier j :

• If any intermediate rounds produce error rate higher than 
50%, the weights are reverted back to 1/n

factorion normalizat  theis    where

)( ifexp

)( ifexp)(
)1(

j

iij

iij

t

t

it

i

Z

yxC

yxC

Z

w
w

j

j




















 



T

j

jj
y

yxCxC
1

)(maxarg)(* 



Boosting

Round 1 + + + -- - - - - -
0.0094 0.0094 0.4623

B1

 = 1.9459

Illustrating AdaBoost
Data points 
for training

Initial weights for each data point

Original

Data + + + -- - - - + +

0.1 0.1 0.1



Illustrating AdaBoost

Boosting

Round 1 + + + -- - - - - -

Boosting

Round 2 - - - -- - - - + +

Boosting

Round 3 + + + ++ + + + + +

Overall + + + -- - - - + +

0.0094 0.0094 0.4623

0.3037 0.0009 0.0422

0.0276 0.1819 0.0038

B1

B2

B3

 = 1.9459

 = 2.9323

 = 3.8744


