
Link Analysis Ranking



How do search engines decide how to 
rank your query results?

• Guess why Google ranks the query results the 
way it does

• How would you do it?



Naïve ranking of query results

• Given query q

• Rank the web pages p in the index based on 
sim(p,q)

• Scenarios where this is not such a good idea?



Why Link Analysis?

• First generation search engines
– view documents as flat text files
– could not cope with size, spamming, user needs

• Example: Honda website, keywords: automobile 
manufacturer

• Second generation search engines
– Ranking becomes critical
– use of Web specific data: Link Analysis
– shift from relevance to authoritativeness
– a success story for the network analysis



Link Analysis: Intuition

• A link from page p to page q denotes 
endorsement

– page p considers page q an authority on a subject

– mine the web graph of recommendations

– assign an authority value to every page



Link Analysis Ranking Algorithms

• Start with a collection 
of web pages

• Extract the underlying 
hyperlink graph

• Run the LAR algorithm 
on the graph

• Output: an authority 
weight for each node
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Algorithm input

• Query dependent: rank a small subset of 
pages related to a specific query

– HITS (Kleinberg 98) was proposed as query 
dependent

• Query independent: rank the whole Web

– PageRank (Brin and Page 98) was proposed as 
query independent



Query-dependent LAR

• Given a query q, find a subset of web pages S

that are related to S

• Rank the pages in S based on some ranking 
criterion



Query-dependent input

Root Set
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Properties of a good seed set S

• S is relatively small.

• S is rich in relevant pages.

• S contains most (or many) of the strongest 
authorities.



How to construct a good seed set S

• For query q first collect the t highest-ranked 
pages for q from a text-based search engine to 
form set Γ

• S = Γ

• Add to S all the pages pointing to Γ

• Add to S all the pages that pages from Γ point 
to



Link Filtering

• Navigational links: serve the purpose of moving 
within a site (or to related sites)

• www.espn.com → www.espn.com/nba

• www.yahoo.com → www.yahoo.it

• www.espn.com → www.msn.com

• Filter out navigational links

– same domain name

– same IP address 



How do we rank the pages in seed set 
S?

• In degree?

• Intuition

• Problems



Hubs and Authorities [K98]

• Authority is not necessarily 
transferred directly 
between authorities

• Pages have double identity
– hub identity

– authority identity

• Good hubs point to good
authorities

• Good authorities are 
pointed by good hubs

hubs authorities



HITS Algorithm

• Initialize all weights to 1.

• Repeat until convergence
– O operation : hubs collect the weight of the authorities

– I operation: authorities collect the weight of the hubs

– Normalize weights under some norm
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HITS and eigenvectors

• The HITS algorithm is a power-method eigenvector 
computation

– in vector terms at = ATht-1 and ht = Aat-1

– so at = ATAat-1 and ht = AATht-1

– The authority weight vector a is the eigenvector of ATA and 
the hub weight vector h is the eigenvector of AAT

– Why do we need normalization?

• The vectors a and h are singular vectors of the matrix 
A



Singular Value Decomposition

• r : rank of matrix A

• σ1≥ σ2≥ … ≥σr : singular values (square roots of eig-vals AAT, ATA)

• : left singular vectors (eig-vectors of AAT)

• : right singular vectors (eig-vectors of ATA)
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Singular Value Decomposition

• Linear trend v in matrix A:
– the tendency of the row 

vectors of A to align with 
vector v

– strength of the linear trend: 
Av

• SVD discovers the linear 
trends in the data

• ui , vi : the i-th strongest linear 
trends

• σi : the strength of the i-th 
strongest linear trend

σ1

σ2
v1

v2

 HITS discovers the strongest linear trend in the 
authority space



HITS and the TKC effect

• The HITS algorithm favors the most dense 
community of hubs and authorities

– Tightly Knit Community (TKC) effect
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HITS and the TKC effect

• The HITS algorithm favors the most dense 
community of hubs and authorities

– Tightly Knit Community (TKC) effect

32n
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3n ∙ 2n

3n ∙ 2n

3n ∙ 2n

after n iterationsweight of node p is 
proportional to the number 
of (BF)n paths that leave 
node p



HITS and the TKC effect

• The HITS algorithm favors the most dense 
community of hubs and authorities

– Tightly Knit Community (TKC) effect
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Query-independent LAR

• Have an a-priori ordering of the web pages

• Q:  Set of pages that contain the keywords in the 
query q

• Present the pages in Q ordered according to 
order π

• What are the advantages of such an approach?



InDegree algorithm

• Rank pages according to in-degree

– wi = |B(i)|

1. Red Page

2. Yellow Page

3. Blue Page

4. Purple Page

5. Green Page

w=1 w=1

w=2

w=3
w=2



PageRank algorithm [BP98]

• Good authorities should be 
pointed by good authorities

• Random walk on the web graph
– pick a page at random

– with probability 1- α jump to a 
random page

– with probability α follow a random 
outgoing link

• Rank according to the stationary 
distribution

•

1. Red Page

2. Purple Page

3. Yellow Page

4. Blue Page

5. Green Page
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Markov chains

• A Markov chain describes a discrete time stochastic process 
over a set of states

according to a transition probability matrix

– Pij = probability of moving to state j when at state i
• ∑jPij = 1 (stochastic matrix)

• Memorylessness property: The next state of the chain 
depends only at the current state and not on the past of the 
process (first order MC)
– higher order MCs are also possible

S = {s1, s2, … sn}

P = {Pij}



Random walks

• Random walks on graphs correspond to 
Markov Chains

– The set of states S is the set of nodes of the graph 
G

– The transition probability matrix is the probability 
that we follow an edge from one node to another



An example
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State probability vector

• The vector qt = (qt
1,qt

2, … ,qt
n) that stores the 

probability of being at state i at time t

– q0
i

= the probability of starting from state i

qt = qt-1 P



An example
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Stationary distribution

• A stationary distribution for a MC with transition matrix P, is a 
probability distribution π, such that π = πP

• A MC has a unique stationary distribution if 
– it is irreducible

• the underlying graph is strongly connected

– it is aperiodic
• for random walks, the underlying graph is not bipartite

• The probability πi is the fraction of times that we visited  state 
i as t → ∞

• The stationary distribution is an eigenvector of matrix P
– the principal left eigenvector of P – stochastic matrices have maximum 

eigenvalue 1



Computing the stationary distribution

• The Power Method
– Initialize to some distribution q0

– Iteratively compute qt = qt-1P

– After enough iterations qt ≈ π

– Power method because it computes qt = q0Pt

• Why does it converge?
– follows from the fact that any vector can be written as a 

linear combination of the eigenvectors
• q0 = v1 + c2v2 + … cnvn

• Rate of convergence
– determined by λ2

t



The PageRank random walk

• Vanilla random walk

– make the adjacency matrix stochastic and run a 
random walk
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The PageRank random walk

• What about sink nodes?

– what happens when the random walk moves to a 
node without any outgoing inks?
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The PageRank random walk

• Replace these row vectors with a vector v

– typically, the uniform vector

P’ = P + dvT
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The PageRank random walk

• How do we guarantee irreducibility?

– add a random jump to vector v with prob α

• typically, to a uniform vector

P’’ = αP’ + (1-α)uvT,  where u is the vector of all 1s



Effects of random jump

• Guarantees irreducibility

• Motivated by the concept of random surfer

• Offers additional flexibility 

– personalization

– anti-spam

• Controls the rate of convergence

– the second eigenvalue of matrix P’’ is α



A PageRank algorithm

• Performing vanilla power method is now too 
expensive – the matrix is not sparse

q0 = v
t = 1
repeat

t = t +1

until δ < ε
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Random walks on undirected graphs

• In the stationary distribution of a random walk 
on an undirected graph, the probability of 
being at node i is proportional to the 
(weighted) degree of the vertex

• Random walks on undirected graphs are not 
“interesting”



Research on PageRank

• Specialized PageRank
– personalization [BP98]

• instead of picking a node uniformly at random favor specific nodes that 
are related to the user

– topic sensitive PageRank [H02]
• compute many PageRank vectors, one for each topic

• estimate relevance of query with each topic

• produce final PageRank as a weighted combination

• Updating PageRank [Chien et al 2002]

• Fast computation of PageRank
– numerical analysis tricks

– node aggregation techniques

– dealing with the “Web frontier”



Previous work

• The problem of identifying the most important nodes 
in a network has been studied before in social 
networks and bibliometrics

• The idea is similar

– A link from node p to node q denotes endorsement

– mine the network at hand

– assign an centrality/importance/standing value to every 
node



Social network analysis

• Evaluate the centrality of individuals in social 
networks

– degree centrality
• the (weighted) degree of a node

– distance centrality
• the average (weighted) distance of a node to the rest in the graph

– betweenness centrality
• the average number of (weighted) shortest paths that use node v
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Counting paths – Katz 53

• The importance of a node is measured by the 
weighted sum of paths that lead to this node

• Am[i,j] = number of paths of length m from i to j

• Compute 

• converges when b < λ1(A)

• Rank nodes according to the column sums of the 
matrix P
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Bibliometrics

• Impact factor (E. Garfield 72)

– counts the number of citations received for papers 
of the journal in the previous two years

• Pinsky-Narin 76

– perform a random walk on the set of journals

– Pij = the fraction of citations from journal i that are 
directed to journal j


