
More on Rankings



Query-independent LAR

• Have an a-priori ordering of the web pages

• Q:  Set of pages that contain the keywords in the 
query q

• Present the pages in Q ordered according to 
order π

• What are the advantages of such an approach?



InDegree algorithm

• Rank pages according to in-degree

– wi = |B(i)|

1. Red Page

2. Yellow Page

3. Blue Page

4. Purple Page

5. Green Page
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PageRank algorithm [BP98]

• Good authorities should be 
pointed by good authorities

• Random walk on the web graph
– pick a page at random

– with probability 1- α jump to a 
random page

– with probability α follow a random 
outgoing link

• Rank according to the stationary 
distribution

•

1. Red Page

2. Purple Page

3. Yellow Page

4. Blue Page

5. Green Page
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Markov chains

• A Markov chain describes a discrete time stochastic process 
over a set of states

according to a transition probability matrix

– Pij = probability of moving to state j when at state i
• ∑jPij = 1 (stochastic matrix)

• Memorylessness property: The next state of the chain 
depends only at the current state and not on the past of the 
process (first order MC)
– higher order MCs are also possible

S = {s1, s2, … sn}

P = {Pij}



Random walks

• Random walks on graphs correspond to 
Markov Chains

– The set of states S is the set of nodes of the graph 
G

– The transition probability matrix is the probability 
that we follow an edge from one node to another



An example
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State probability vector

• The vector qt = (qt
1,qt

2, … ,qt
n) that stores the 

probability of being at state i at time t

– q0
i

= the probability of starting from state i

qt = qt-1 P



An example
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Stationary distribution

• A stationary distribution for a MC with transition matrix P, is a 
probability distribution π, such that π = πP

• A MC has a unique stationary distribution if 
– it is irreducible

• the underlying graph is strongly connected

– it is aperiodic
• for random walks, the underlying graph is not bipartite

• The probability πi is the fraction of times that we visited  state 
i as t → ∞

• The stationary distribution is an eigenvector of matrix P
– the principal left eigenvector of P – stochastic matrices have maximum 

eigenvalue 1



Computing the stationary distribution

• The Power Method
– Initialize to some distribution q0

– Iteratively compute qt = qt-1P

– After enough iterations qt ≈ π

– Power method because it computes qt = q0Pt

• Rate of convergence
– determined by λ2



The PageRank random walk

• Vanilla random walk

– make the adjacency matrix stochastic and run a 
random walk
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The PageRank random walk

• What about sink nodes?

– what happens when the random walk moves to a 
node without any outgoing inks?
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The PageRank random walk

• Replace these row vectors with a vector v

– typically, the uniform vector

P’ = P + dvT

otherwise0

sink is i if1
d
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The PageRank random walk

• How do we guarantee irreducibility?

– add a random jump to vector v with prob α

• typically, to a uniform vector

P’’ = αP’ + (1-α)uvT,  where u is the vector of all 1s



Effects of random jump

• Guarantees irreducibility

• Motivated by the concept of random surfer

• Offers additional flexibility 

– personalization

– anti-spam

• Controls the rate of convergence

– the second eigenvalue of matrix P’’ is α



A PageRank algorithm

• Performing vanilla power method is now too 
expensive – the matrix is not sparse

q0 = v
t = 1
repeat

t = t +1

until δ < ε
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Random walks on undirected graphs

• In the stationary distribution of a random walk 
on an undirected graph, the probability of 
being at node i is proportional to the 
(weighted) degree of the vertex

• Random walks on undirected graphs are not 
“interesting”



Research on PageRank

• Specialized PageRank
– personalization [BP98]

• instead of picking a node uniformly at random favor specific nodes that 
are related to the user

– topic sensitive PageRank [H02]
• compute many PageRank vectors, one for each topic

• estimate relevance of query with each topic

• produce final PageRank as a weighted combination

• Updating PageRank [Chien et al 2002]

• Fast computation of PageRank
– numerical analysis tricks

– node aggregation techniques

– dealing with the “Web frontier”



Topic-sensitive pagerank

• HITS-based scores are very inefficient to compute

• PageRank scores are independent of the queries

• Can we bias PageRank rankings to take into 
account query keywords? 

Topic-sensitive PageRank



Topic-sensitive PageRank

• Conventional PageRank computation:

• r(t+1)(v)=ΣuЄN(v)r
(t)(u)/d(v)

• N(v): neighbors of v
• d(v): degree of v
• r = Mxr

• M’ = (1-α)P+ α[1/n]nxn

• r = (1-α)Pr+ α[1/n]nxnr = (1-α)Pr+ αp
• p = [1/n]nx1



Topic-sensitive PageRank

• r =  (1-α)Pr+ αp
• Conventional PageRank: p is a uniform vector with values 

1/n

• Topic-sensitive PageRank uses a non-uniform 
personalization vector p

• Not simply a post-processing step of the PageRank
computation

• Personalization vector p introduces bias in all iterations of 
the iterative computation of the PageRank vector



Personalization vector

• In the random-walk model, the 
personalization vector represents the addition 
of a set of transition edges, where the 
probability of an artificial edge (u,v) is αpv

• Given a graph the result of the PageRank
computation only depends on α and p : 
PR(α,p)



Topic-sensitive PageRank: Overall 
approach

• Preprocessing

– Fix a set of k topics

– For each topic cj compute the PageRank scores of 
page u wrt to the j-th topic: r(u,j)

• Query-time processing: 

– For query q compute the total score of page u wrt
q as score(u,q) = Σj=1…k Pr(cj|q) r(u,j)



Topic-sensitive PageRank: 
Preprocessing

• Create k different biased PageRank vectors 
using some pre-defined set of k categories 
(c1,…,ck)

• Tj: set of URLs in the j-th category

• Use non-uniform personalization vector p=wj

such that:
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Topic-sensitive PageRank: Query-time 
processing

• Dj: class term vectors consisting of all the 
terms appearing in the k pre-selected 
categories

• How can we compute P(cj)?

• How can we compute Pr(qi|cj)?
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• Comparing results of Link Analysis Ranking 
algorithms

• Comparing and aggregating rankings



Comparing LAR vectors

• How close are the LAR vectors w1, w2?

w1 = [  1   0.8  0.5  0.3   0  ]

w2 = [ 0.9   1   0.7  0.6  0.8 ]



Distance between LAR vectors

• Geometric distance: how close are the 
numerical weights of vectors w1, w2?

[i]w[i]ww,wd 21211

w1 = [ 1.0  0.8   0.5  0.3  0.0 ]

w2 = [ 0.9  1.0   0.7  0.6  0.8 ]

d1(w1,w2) =   0.1+0.2+0.2+0.3+0.8 = 1.6



Distance between LAR vectors

• Rank distance: how close are the ordinal
rankings induced by the vectors w1, w2?

– Kendal’s τ distance
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