More on Rankings

Query-independent LAR

Have an a-priori ordering of the web pages

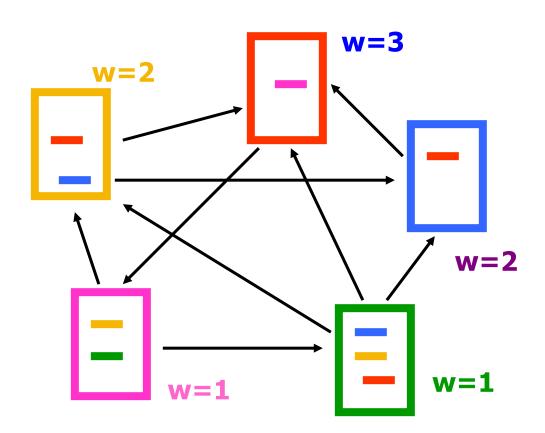
- Q: Set of pages that contain the keywords in the query q
- Present the pages in ${\bf Q}$ ordered according to order ${\bf \pi}$

What are the advantages of such an approach?

InDegree algorithm

Rank pages according to in-degree

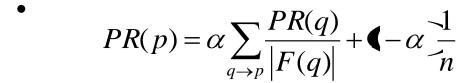
$$-w_i = |B(i)|$$

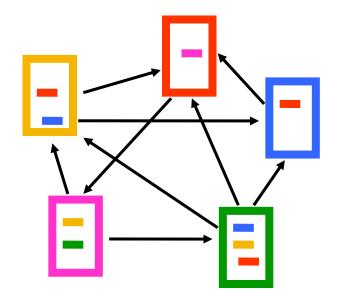


- 1. Red Page
- 2. Yellow Page
- 3. Blue Page
- 4. Purple Page
- 5. Green Page

PageRank algorithm [BP98]

- Good authorities should be pointed by good authorities
- Random walk on the web graph
 - pick a page at random
 - with probability 1- α jump to a random page
 - with probability a follow a random outgoing link
- Rank according to the stationary distribution





- 1. Red Page
- 2. Purple Page
- 3. Yellow Page
- 4. Blue Page
- 5. Green Page

Markov chains

 A Markov chain describes a discrete time stochastic process over a set of states

$$S = \{S_1, S_2, ... S_n\}$$

according to a transition probability matrix

$$P = \{P_{ij}\}$$

- $-P_{ii}$ = probability of moving to state j when at state i
 - $\sum_{i} P_{ij} = 1$ (stochastic matrix)
- Memorylessness property: The next state of the chain depends only at the current state and not on the past of the process (first order MC)
 - higher order MCs are also possible

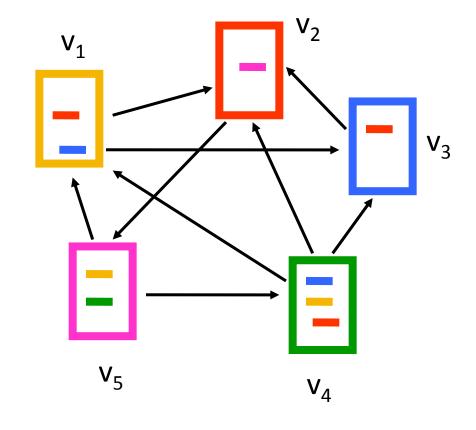
Random walks

- Random walks on graphs correspond to Markov Chains
 - The set of states S is the set of nodes of the graph
 - The transition probability matrix is the probability that we follow an edge from one node to another

An example

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ \hline 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 & 1 \\ \end{bmatrix}$$

$$P = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 0 & 0 & 1/2 \end{bmatrix}$$



State probability vector

- The vector $q^t = (q_1^t, q_2^t, ..., q_n^t)$ that stores the probability of being at state i at time t
 - $-q_i^0$ the probability of starting from state i

$$q^t = q^{t-1} P$$

An example

$$P = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \end{bmatrix}$$

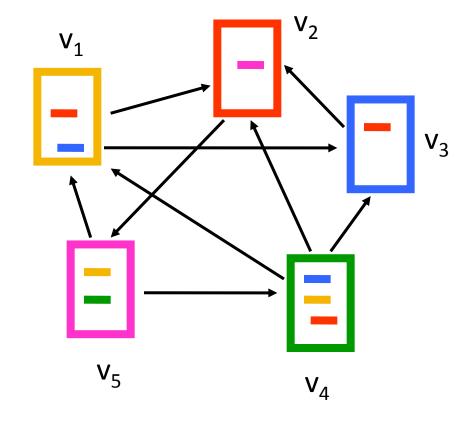
$$q^{t+1}_{1} = 1/3 \ q^{t}_{4} + 1/2 \ q^{t}_{5}$$

$$q^{t+1}_{2} = 1/2 \ q^{t}_{1} + q^{t}_{3} + 1/3 \ q^{t}_{4}$$

$$q^{t+1}_{3} = 1/2 \ q^{t}_{1} + 1/3 \ q^{t}_{4}$$

$$q^{t+1}_{4} = 1/2 \ q^{t}_{5}$$

$$q^{t+1}_{5} = q^{t}_{2}$$



Stationary distribution

- A stationary distribution for a MC with transition matrix P, is a probability distribution π , such that $\pi = \pi P$
- A MC has a unique stationary distribution if
 - it is irreducible
 - the underlying graph is strongly connected
 - it is aperiodic
 - for random walks, the underlying graph is not bipartite
- The probability π_i is the fraction of times that we visited state i as $t \to \infty$
- The stationary distribution is an eigenvector of matrix P
 - the principal left eigenvector of P stochastic matrices have maximum eigenvalue 1

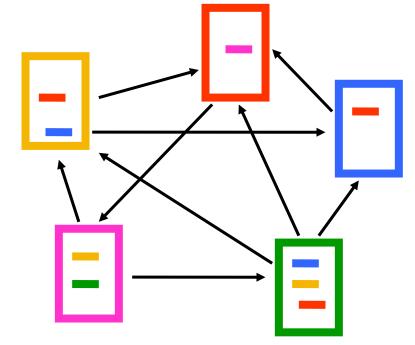
Computing the stationary distribution

- The Power Method
 - Initialize to some distribution q⁰
 - Iteratively compute $q^t = q^{t-1}P$
 - After enough iterations $q^t \approx \pi$
 - Power method because it computes $q^t = q^0P^t$
- Rate of convergence
 - determined by λ_2

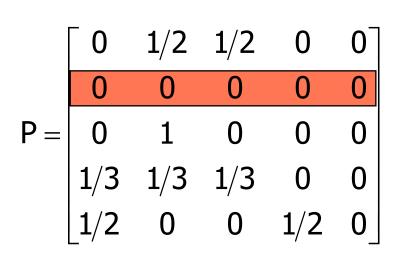
Vanilla random walk

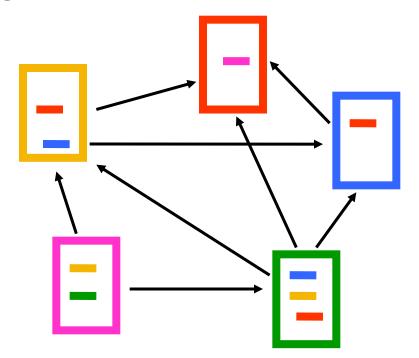
make the adjacency matrix stochastic and run a random walk

$$P = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \end{bmatrix}$$



- What about sink nodes?
 - what happens when the random walk moves to a node without any outgoing inks?



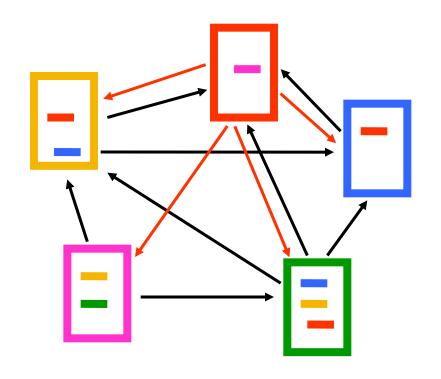


- Replace these row vectors with a vector v
 - typically, the uniform vector

$$P' = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 0 & 1 & 0 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \end{bmatrix}$$

$$P' = P + dv^{T}$$

$$d = \begin{cases} 1 & \text{if i is sink} \\ 0 & \text{otherwise} \end{cases}$$



- How do we guarantee irreducibility?
 - add a random jump to vector v with prob a
 - typically, to a uniform vector

$$\mathsf{P''} = \alpha \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 0 & 1 & 0 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 0 & 0 & 1/2 \end{bmatrix} + (1-\alpha) \begin{bmatrix} 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \end{bmatrix}$$

 $P'' = \alpha P' + (1-\alpha)uv^T$, where u is the vector of all 1s

Effects of random jump

- Guarantees irreducibility
- Motivated by the concept of random surfer
- Offers additional flexibility
 - personalization
 - anti-spam
- Controls the rate of convergence
 - the second eigenvalue of matrix P" is a

A PageRank algorithm

 Performing vanilla power method is now too expensive – the matrix is not sparse

$$q^{0} = v$$

$$t = 1$$

$$repeat$$

$$q^{t} = \text{(")}q^{t-1}$$

$$\delta = \|q^{t} - q^{t-1}\|$$

$$t = t + 1$$

$$until \delta < \epsilon$$

Efficient computation of $y = (P'')^T x$

$$y = aP^{T}x$$

$$\beta = ||x||_{1} - ||y||_{1}$$

$$y = y + \beta v$$

Random walks on undirected graphs

 In the stationary distribution of a random walk on an undirected graph, the probability of being at node i is proportional to the (weighted) degree of the vertex

 Random walks on undirected graphs are not "interesting"

Research on PageRank

- Specialized PageRank
 - personalization [BP98]
 - instead of picking a node uniformly at random favor specific nodes that are related to the user
 - topic sensitive PageRank [H02]
 - compute many PageRank vectors, one for each topic
 - estimate relevance of query with each topic
 - produce final PageRank as a weighted combination
- Updating PageRank [Chien et al 2002]
- Fast computation of PageRank
 - numerical analysis tricks
 - node aggregation techniques
 - dealing with the "Web frontier"

Topic-sensitive pagerank

HITS-based scores are very inefficient to compute

PageRank scores are independent of the queries

 Can we bias PageRank rankings to take into account query keywords?

Topic-sensitive PageRank

Topic-sensitive PageRank

- Conventional PageRank computation:
- $r^{(t+1)}(v) = \sum_{u \in N(v)} r^{(t)}(u) / d(v)$
- N(v): neighbors of v
- d(v): degree of v
- r = Mxr
- M' = $(1-\alpha)P + \alpha[1/n]_{nxn}$
- $r = (1-\alpha)Pr + \alpha [1/n]_{nxn}r = (1-\alpha)Pr + \alpha p$
- $p = [1/n]_{nx1}$

Topic-sensitive PageRank

- $r = (1-\alpha)Pr + \alpha p$
- Conventional PageRank: p is a uniform vector with values
 1/n
- Topic-sensitive PageRank uses a non-uniform personalization vector p
- Not simply a post-processing step of the PageRank computation
- Personalization vector p introduces bias in all iterations of the iterative computation of the PageRank vector

Personalization vector

- In the random-walk model, the personalization vector represents the addition of a set of transition edges, where the probability of an artificial edge (u,v) is αp_v
- Given a graph the result of the PageRank computation only depends on α and p: PR(α ,p)

Topic-sensitive PageRank: Overall approach

- Preprocessing
 - Fix a set of k topics
 - For each topic c_j compute the PageRank scores of page u wrt to the j-th topic: r(u,j)

- Query-time processing:
 - For query q compute the total score of page u wrt q as $score(u,q) = \sum_{j=1...k} Pr(c_j|q) r(u,j)$

Topic-sensitive PageRank: Preprocessing

- Create k different biased PageRank vectors using some pre-defined set of k categories (c₁,...,c_k)
- T_i: set of URLs in the j-th category
- Use non-uniform personalization vector p=w_j such that:

$$w_j(v) = \begin{cases} \frac{1}{T_j}, v \in T_j \\ 0, \text{ o/w} \end{cases}$$

Topic-sensitive PageRank: Query-time processing

 D_j: class term vectors consisting of all the terms appearing in the k pre-selected categories

$$\Pr(c_j \mid q) = \frac{\Pr(c_j) \Pr(q \mid c_j)}{\Pr(q)} \propto \Pr(c_j) \prod_i \Pr(q_i \mid c_j)$$

- How can we compute P(c_i)?
- How can we compute Pr(q_i | c_i)?

 Comparing results of Link Analysis Ranking algorithms

Comparing and aggregating rankings

Comparing LAR vectors

$$w_1 = [1 0.8 0.5 0.3 0]$$

 $w_2 = [0.9 1 0.7 0.6 0.8]$

• How close are the LAR vectors w_1 , w_2 ?

Distance between LAR vectors

• Geometric distance: how close are the numerical weights of vectors w_1 , w_2 ?

$$d_{1} \cdot (w_{1}, w_{2}) = \sum |w_{1}[i] - w_{2}[i]|$$

$$w_{1} = [1.0 \ 0.8 \ 0.5 \ 0.3 \ 0.0]$$

$$w_{2} = [0.9 \ 1.0 \ 0.7 \ 0.6 \ 0.8]$$

$$d_{1}(w_{1}, w_{2}) = 0.1 + 0.2 + 0.2 + 0.3 + 0.8 = 1.6$$

Distance between LAR vectors

- Rank distance: how close are the ordinal rankings induced by the vectors w₁, w₂?
 - Kendal's τ distance

$$d_r w_1, w_2 = \frac{\text{pairs ranked in a different order}}{\text{total number of distinct pairs}}$$