More on Rankings
Query-independent LAR

• Have an a-priori ordering of the web pages

• Q: Set of pages that contain the keywords in the query q
• Present the pages in Q ordered according to order π

• What are the advantages of such an approach?
InDegree algorithm

• Rank pages according to in-degree
 \[w_i = |B(i)| \]
PageRank algorithm [BP98]

- Good authorities should be pointed by good authorities
- Random walk on the web graph
 - pick a page at random
 - with probability $1 - \alpha$ jump to a random page
 - with probability α follow a random outgoing link
- Rank according to the stationary distribution

$$PR(p) = \alpha \frac{PR(q)}{|F(q)|} + (1 - \alpha) \frac{1}{n}$$

1. Red Page
2. Purple Page
3. Yellow Page
4. Blue Page
5. Green Page
Markov chains

• A Markov chain describes a discrete time stochastic process over a set of states
 \[S = \{s_1, s_2, \ldots, s_n\} \]

according to a transition probability matrix
 \[P = \{P_{ij}\} \]

 – \(P_{ij} \) = probability of moving to state \(j \) when at state \(i \)
 • \(\sum_j P_{ij} = 1 \) (stochastic matrix)

• **Memorylessness property**: The next state of the chain depends only at the current state and not on the past of the process (first order MC)
 – higher order MCs are also possible
Random walks

- Random walks on graphs correspond to Markov Chains
 - The set of states S is the set of nodes of the graph G
 - The transition probability matrix is the probability that we follow an edge from one node to another
An example

\[
A = \begin{bmatrix}
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

\[
P = \begin{bmatrix}
0 & 1/2 & 1/2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
1/3 & 1/3 & 1/3 & 0 & 0 \\
1/2 & 0 & 0 & 0 & 1/2 \\
\end{bmatrix}
\]
State probability vector

• The vector $q^t = (q^t_1, q^t_2, \ldots, q^t_n)$ that stores the probability of being at state i at time t
 - q^0_i = the probability of starting from state i

$$q^t = q^{t-1} P$$
An example

\[P = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \end{bmatrix} \]

\begin{align*}
q^{t+1}_1 &= \frac{1}{3} q^t_4 + \frac{1}{2} q^t_5 \\
q^{t+1}_2 &= \frac{1}{2} q^t_1 + q^t_3 + \frac{1}{3} q^t_4 \\
q^{t+1}_3 &= \frac{1}{2} q^t_1 + \frac{1}{3} q^t_4 \\
q^{t+1}_4 &= \frac{1}{2} q^t_5 \\
q^{t+1}_5 &= q^t_2
\end{align*}
Stationary distribution

A stationary distribution for a MC with transition matrix P, is a probability distribution π, such that $\pi = \pi P$

A MC has a unique stationary distribution if
- it is irreducible
 - the underlying graph is strongly connected
- it is aperiodic
 - for random walks, the underlying graph is not bipartite

The probability π_i is the fraction of times that we visited state i as $t \to \infty$

The stationary distribution is an eigenvector of matrix P
- the principal left eigenvector of P – stochastic matrices have maximum eigenvalue 1
Computing the stationary distribution

• The Power Method
 – Initialize to some distribution \(q^0 \)
 – Iteratively compute \(q^t = q^{t-1}P \)
 – After enough iterations \(q^t \approx \pi \)
 – Power method because it computes \(q^t = q^0P^t \)

• Rate of convergence
 – determined by \(\lambda_2 \)
The PageRank random walk

• Vanilla random walk
 – make the adjacency matrix stochastic and run a random walk

\[
P = \begin{bmatrix}
0 & 1/2 & 1/2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
1/3 & 1/3 & 1/3 & 0 & 0 \\
1/2 & 0 & 0 & 1/2 & 0
\end{bmatrix}
\]
The PageRank random walk

• What about sink nodes?
 – what happens when the random walk moves to a node without any outgoing links?

\[
P = \begin{bmatrix}
0 & 1/2 & 1/2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1/3 & 1/3 & 1/3 & 0 & 0 \\
1/2 & 0 & 0 & 1/2 & 0
\end{bmatrix}
\]
The PageRank random walk

• Replace these row vectors with a vector \mathbf{v}—typically, the uniform vector $\mathbf{P'} = \mathbf{P} + d\mathbf{v}^T$

\[
\mathbf{P'} = \begin{bmatrix}
0 & 1/2 & 1/2 & 0 & 0 \\
1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\
0 & 1 & 0 & 0 & 0 \\
1/3 & 1/3 & 1/3 & 0 & 0 \\
1/2 & 0 & 0 & 1/2 & 0
\end{bmatrix}
\]

\[
d = \begin{cases}
1 & \text{if } i \text{ is sink} \\
0 & \text{otherwise}
\end{cases}
\]
The PageRank random walk

• How do we guarantee irreducibility?
 – add a random jump to vector v with prob α
• typically, to a uniform vector

\[
P'' = \alpha \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 0 & 0 & 1/2 \end{bmatrix} + (1 - \alpha) \begin{bmatrix} 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \end{bmatrix}
\]

\[P'' = \alpha P' + (1-\alpha)uv^T, \text{ where } u \text{ is the vector of all 1s}\]
Effects of random jump

- Guarantees irreducibility
- Motivated by the concept of random surfer
- Offers additional flexibility
 - personalization
 - anti-spam
- Controls the rate of convergence
 - the second eigenvalue of matrix P'' is α
A PageRank algorithm

- Performing vanilla power method is now too expensive – the matrix is not sparse

\[
q^0 = v \\
t = 1 \\
\text{repeat} \\
\quad q^t = (P'')^T q^{t-1} \\
\quad \delta = \|q^t - q^{t-1}\| \\
\quad t = t + 1 \\
\text{until } \delta < \varepsilon
\]

Efficient computation of \(y = (P'')^T x \)

\[
y = \alpha P^T x \\
\beta = \|x\|_1 - \|y\|_1 \\
y = y + \beta v
\]
Random walks on undirected graphs

• In the stationary distribution of a random walk on an undirected graph, the probability of being at node i is proportional to the (weighted) degree of the vertex.

• Random walks on undirected graphs are not “interesting.”
Research on PageRank

• Specialized PageRank
 – personalization [BP98]
 • instead of picking a node uniformly at random favor specific nodes that are related to the user
 – topic sensitive PageRank [H02]
 • compute many PageRank vectors, one for each topic
 • estimate relevance of query with each topic
 • produce final PageRank as a weighted combination

• Updating PageRank [Chien et al 2002]

• Fast computation of PageRank
 – numerical analysis tricks
 – node aggregation techniques
 – dealing with the “Web frontier”
Topic-sensitive pagerank

- HITS-based scores are very inefficient to compute
- PageRank scores are independent of the queries
- Can we bias PageRank rankings to take into account query keywords?

Topic-sensitive PageRank
Topic-sensitive PageRank

- Conventional PageRank computation:
 \[r^{(t+1)}(v) = \sum_{u \in N(v)} \frac{r^{(t)}(u)}{d(v)} \]

 - \(N(v) \): neighbors of \(v \)
 - \(d(v) \): degree of \(v \)
 - \(r = Mx \)

 - \(M' = (1-\alpha)P + \alpha [1/n]_{nxn} \)

 - \(r = (1-\alpha)Pr + \alpha [1/n]_{nxn}r = (1-\alpha)Pr + \alpha p \)
 - \(p = [1/n]_{nx1} \)
Topic-sensitive PageRank

- $r = (1-\alpha)Pr + \alpha p$
- **Conventional PageRank**: p is a uniform vector with values $1/n$
- Topic-sensitive PageRank uses a **non-uniform** personalization vector p
- Not simply a post-processing step of the PageRank computation
- Personalization vector p introduces bias in all iterations of the iterative computation of the PageRank vector
Personalization vector

• In the random-walk model, the personalization vector represents the addition of a set of transition edges, where the probability of an artificial edge \((u,v)\) is \(\alpha p_v\).

• Given a graph the result of the PageRank computation only depends on \(\alpha\) and \(p\) : \(PR(\alpha,p)\).
Topic-sensitive PageRank: Overall approach

• Preprocessing
 – Fix a set of k topics
 – For each topic c_j compute the PageRank scores of page u wrt to the j-th topic: $r(u,j)$

• Query-time processing:
 – For query q compute the total score of page u wrt q as $\text{score}(u,q) = \sum_{j=1}^{k} \Pr(c_j | q) r(u,j)$
Topic-sensitive PageRank: Preprocessing

• Create k different biased PageRank vectors using some pre-defined set of k categories $(c_1, ..., c_k)$

• T_j: set of URLs in the j-th category

• Use non-uniform personalization vector $p = w_j$ such that:

$$w_j(v) = \begin{cases}
\frac{1}{T_j}, & v \in T_j \\
0, & \text{o/w}
\end{cases}$$
Topic-sensitive PageRank: Query-time processing

- D_j: class term vectors consisting of all the terms appearing in the k pre-selected categories

$$
Pr(c_j \mid q) = \frac{Pr(c_j) Pr(q \mid c_j)}{Pr(q)} \propto Pr(c_j) \prod_i Pr(q_i \mid c_j)
$$

- How can we compute $P(c_j)$?
- How can we compute $Pr(q_i \mid c_j)$?
• Comparing results of Link Analysis Ranking algorithms

• Comparing and aggregating rankings
Comparing LAR vectors

- How close are the LAR vectors w_1, w_2?

\[
\begin{align*}
 w_1 &= [\begin{array}{ccccc}
 1 & 0.8 & 0.5 & 0.3 & 0 \\
 \end{array}] \\
 w_2 &= [\begin{array}{ccccc}
 0.9 & 1 & 0.7 & 0.6 & 0.8 \\
 \end{array}]
\end{align*}
\]
Distance between LAR vectors

- Geometric distance: how close are the numerical weights of vectors w_1, w_2?

$$d_1(w_1, w_2) = \sum |w_1[i] - w_2[i]|$$

$$w_1 = [1.0 \ 0.8 \ 0.5 \ 0.3 \ 0.0]$$
$$w_2 = [0.9 \ 1.0 \ 0.7 \ 0.6 \ 0.8]$$

$$d_1(w_1, w_2) = 0.1 + 0.2 + 0.2 + 0.3 + 0.8 = 1.6$$
Distance between LAR vectors

• Rank distance: how close are the ordinal rankings induced by the vectors \(w_1, w_2 \)?
 – Kendal’s \(\tau \) distance

\[
d_{r}(w_1, w_2) = \frac{\text{pairs ranked in a different order}}{\text{total number of distinct pairs}}
\]