More on Rankings

Query-independent LAR

Have an a-priori ordering of the web pages

Q: Set of pages that contain the keywords in the

query q
Present the pages in Q ordered according to
order it

What are the advantages of such an approach?

InDegree algorithm

 Rank pages according to in-degree

—w; = | B(i)|

1. Red Page

3. Blue Page
4. Purple Page
5. Green Page

PageRank algorithm [BP98]

Good authorities should be
pointed by good authorities

Random walk on the web graph

— pick a page at random

— with probability 1- o jump to a
random page

— with probability a follow a random
outgoing link

Rank according to the stationary
distribution

PR =Y T D

i~ [F ()

9

. Red Page

Purple Page

Blue Page

. Green Page

Markov chains

A Markov chain describes a discrete time stochastic process
over a set of states
S=1{s., S, ... S}
according to a transition probability matrix
P={P,}

— P, = probability of moving to state j when at state |
* 2,P;=1(stochastic matrix)

* Memorylessness property: The next state of the chain
depends only at the current state and not on the past of the
process (first order MC)

— higher order MCs are also possible

Random walks

 Random walks on graphs correspond to
Markov Chains

— The set of states S is the set of nodes of the graph
G

— The is the probability
that we follow an edge from one node to another

An example

_ /El\
_ \K\

01100

0 12 12 0 0
0 0 0 0 1
P={0 1 0 0 O Vs v,
1/3 13 Y3 0 0
12 0 0 0 12

State probability vector

* The vector ' =(qg%,q%, ... ,g",) that stores the
probability of being at state i at time t

— g% =the probability of starting from state i

qt - qt—l P

An example

0 12 12
0 0 0
P=|0 1 O
1/3 13 1/3

=1/3q%,+1/2q'.

g, =1/2 ¢ +q95+1/3qf,

qt+].3 — 1/2 + 1/3 qt4
qt+14 — 1/2 th

t+1 — Nt
g 5s=40,

0
0
0
0

12 0 0 12

o O O —~= O

_ /El\ .
\&\

Vg

Stationary distribution

A stationary distribution for a MC with transition matrix P, is a
probability distribution T, such that Tt = ntP

A MC has a unique stationary distribution if
— itisirreducible
e the underlying graph is strongly connected
— itis aperiodic
e for random walks, the underlying graph is not bipartite

The probability 1t is the fraction of times that we visited state
last— 0O

The stationary distribution is an eigenvector of matrix P

— the principal left eigenvector of P — stochastic matrices have maximum
eigenvalue 1

Computing the stationary distribution

* The Power Method
— Initialize to some distribution g°
— Iteratively compute g' = q*'P
— After enough iterations gq'= 1t
— Power method because it computes gt = gq°P*

e Rate of convergence
— determined by A,

The PageRank random walk

e Vanilla random walk

— make the adjacency matrix stochastic and run a
random walk

"0 12 12 0 0] = /H\B

0 0 0 O
P={0 1 0 O

1/3 1/3 1/3 0
2o oo |=|—7]

©O O O+~ O
_—
/
N

The PageRank random walk

e What about sink nodes?

— what happens when the random walk moves to a
node without any outgoing inks?

0 0 0 O
P-l0 1 0 0
1/3 1/3 13 0
12 0 0 1/2

0 12 12 0 O - /H\B

gy
/
AN

The PageRank random walk

* Replace these row vectors with a vector v

— typically, the uniform vector

0 12 12 0 0]

(5 15 15 15 15| /\\

P_l0 1 0 0 o0
/3 13 13 0 0 \ /
12 0 0 12 0

1 ifiis sink
0 otherwise

P,=P+dVT d:{

The PageRank random walk

* How do we guarantee irreducibility?

— add a random jump to vector v with prob @
« typically, to a uniform vector

0 12 12 0 0 1/5 1/5 1/5 1/5 1/5
1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5
PP=o/ 0 1 0 0 O |+(1-a)1/5 15 1/5 1/5 1/5
1/3 13 1/3 0 0 1/5 1/5 1/5 1/5 1/5
12 0 0 0 1/2 1/5 1/5 1/5 1/5 1/5

P” =aP’ + (1-a)uv’, where u is the vector of all 1s

Effects of random jump

Guarantees irreducibility
Motivated by the concept of random surfer
Offers additional flexibility

— personalization
— anti-spam
Controls the rate of convergence

— the second eigenvalue of matrix P” is @

A PageRank algorithm

Performing vanilla power method is now too
expensive — the matrix is not sparse

ql=v Efficient computation of y = (P”’)" x
t=1
repeat y=aP'x
q'=€"3q" B =], ~[¥l,
5=a"-q"| y=y+Bv
t=t+1
until 6 < €

Random walks on undirected graphs

* |n the stationary distribution of a random walk
on an undirected graph, the probability of
being at node i is proportional to the
(weighted) degree of the vertex

 Random walks on undirected graphs are not
“interesting”

Research on PageRank

* Specialized PageRank

— personalization [BP98]

* instead of picking a node uniformly at random favor specific nodes that
are related to the user

— topic sensitive PageRank [HO2]
* compute many PageRank vectors, one for each topic
» estimate relevance of query with each topic
* produce final PageRank as a weighted combination

* Updating PageRank [Chien et al 2002]

* Fast computation of PageRank
— numerical analysis tricks
— node aggregation techniques
— dealing with the “Web frontier”

Topic-sensitive pagerank

* HITS-based scores are very inefficient to compute
* PageRank scores are independent of the queries

* Can we bias PageRank rankings to take into
account query keywords?

Topic-sensitive PageRank

Topic-sensitive PageRank

Conventional PageRank computation:
r(t+1)(v)=zuEN(V)r(t)(u)/d(v)

N(v): neighbors of v
d(v): degree of v
r = Mxr

M’ = (1-a)P+ af1/n]

r = (1-a)Pr+ a[l/n]
p=[1/n],,

r =(1-o)Pr+ ap

nxn

Topic-sensitive PageRank

r= (1-a)Pr+ ap

Conventional PageRank: p is a uniform vector with values
1/n

Topic-sensitive PageRank uses a non-uniform
personalization vector p

Not simply a post-processing step of the PageRank
computation

Personalization vector p introduces bias in all iterations of
the iterative computation of the PageRank vector

Personalization vector

* In the random-walk model, the
personalization vector represents the addition
of a set of transition edges, where the
probability of an artificial edge (u,v) is ap,

* Given a graph the result of the PageRank
computation only dependson acand p :
PR(a,p)

Topic-sensitive PageRank: Overall
approach

* Preprocessing
— Fix a set of k topics

— For each topic ¢; compute the PageRank scores of
page u wrt to the j-th topic: r(u,j)

* Query-time processing:

— For query q compute the total score of page u wrt
q as score(u,q) = Z; , Pr(c;|q) r(u,j)

Topic-sensitive PageRank:
Preprocessing

* Create k different biased PageRank vectors
using some pre-defined set of k categories

(€q)eesCy)
* T;: set of URLs in the j-th category

* Use non-uniform personalization vector p=wW;
such that:

i,VeTj
Wj(V)=< TJ.

. 0,0/w

Topic-sensitive PageRank: Query-time
processing

* D;: class term vectors consisting of all the
terms appearing in the k pre-selected
categories

Pr(c;)Pr(g|c;)

Pr(c; |) = Pr(a)

oC Pr(cj)l__[Pr(qi c;)

* How can we compute P(c;)?
* How can we compute Pr(qg;|c;)?

 Comparing results of Link Analysis Ranking
algorithms

* Comparing and aggregating rankings

Comparing LAR vectors

1 0.8 0.5 0.3 0]
w,=[09 1 0.7 0.6 0.8]

* How close are the LAR vectors w,, w,?

Distance between LAR vectors

e Geometric distance: how close are the
numerical weights of vectors w,, w,?

d1 Wuwz :: Z‘Wl [1] _Wz[l:”
OO 000

w;=[1.0 0.8 0.5 0.3 0.0]
w,=[09 1.0 0.7 0.6 0.8]
d,(w;,w,) = 0.1+0.2+0.2+0.3+0.8 = 1.6

Distance between LAR vectors

e Rank distance: how close are the ordinal
rankings induced by the vectors w,, w,?

— Kendal’s T distance

—~ pairs ranked in a different order
dr (Vqu)_- .)
total number of distinct pairs

