More on Rankings

Query-independent LAR

- Have an a-priori ordering of the web pages
- Q: Set of pages that contain the keywords in the query q
- Present the pages in Q ordered according to order π
- What are the advantages of such an approach?

InDegree algorithm

- Rank pages according to in-degree

$$
-w_{i}=|B(i)|
$$

1. Red Page
2. Yellow Page
3. Blue Page
4. Purple Page
5. Green Page

PageRank algorithm [BP98]

- Good authorities should be pointed by good authorities
- Random walk on the web graph
- pick a page at random
- with probability 1- α jump to a random page
- with probability a follow a random outgoing link
- Rank according to the stationary distribution

$$
P R(p)=\alpha \sum_{q \rightarrow p} \frac{P R(q)}{|F(q)|}+<-\alpha \frac{-1}{n}
$$

1. Red Page
2. Purple Page
3. Yellow Page
4. Blue Page
5. Green Page

Markov chains

- A Markov chain describes a discrete time stochastic process over a set of states

$$
S=\left\{s_{1}, s_{2}, \ldots s_{n}\right\}
$$

according to a transition probability matrix

$$
P=\left\{P_{i j}\right\}
$$

$-P_{i j}=$ probability of moving to state j when at state i

- $\sum_{\mathrm{j}} \mathrm{P}_{\mathrm{ij}}=1$ (stochastic matrix)
- Memorylessness property: The next state of the chain depends only at the current state and not on the past of the process (first order MC)
- higher order MCs are also possible

Random walks

- Random walks on graphs correspond to Markov Chains
- The set of states S is the set of nodes of the graph G
- The transition probability matrix is the probability that we follow an edge from one node to another

An example

State probability vector

- The vector $q^{t}=\left(q^{t}, q^{t}, \ldots, q_{n}^{t}\right)$ that stores the probability of being at state i at time t
$-q_{i}^{0}=$ the probability of starting from state i

$$
q^{t}=q^{t-1} P
$$

An example

$$
\begin{aligned}
\mathrm{P} & =\left[\begin{array}{ccccc}
0 & 1 / 2 & 1 / 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 & 0 & 0 \\
1 / 2 & 0 & 0 & 1 / 2 & 0
\end{array}\right]
\end{aligned}
$$

Stationary distribution

- A stationary distribution for a MC with transition matrix P, is a probability distribution π, such that $\pi=\pi P$
- A MC has a unique stationary distribution if
- it is irreducible
- the underlying graph is strongly connected
- it is aperiodic
- for random walks, the underlying graph is not bipartite
- The probability π_{i} is the fraction of times that we visited state i as $t \rightarrow \infty$
- The stationary distribution is an eigenvector of matrix P
- the principal left eigenvector of P - stochastic matrices have maximum eigenvalue 1

Computing the stationary distribution

- The Power Method
- Initialize to some distribution q^{0}
- Iteratively compute $q^{t}=q^{t-1} p$
- After enough iterations $q^{\dagger} \approx \pi$
- Power method because it computes $q^{t}=q^{0} p^{t}$
- Rate of convergence
- determined by $\mathrm{\lambda}_{2}$

The PageRank random walk

- Vanilla random walk
- make the adjacency matrix stochastic and run a random walk

$$
P=\left[\begin{array}{ccccc}
0 & 1 / 2 & 1 / 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 & 0 & 0 \\
1 / 2 & 0 & 0 & 1 / 2 & 0
\end{array}\right]
$$

The PageRank random walk

- What about sink nodes?
- what happens when the random walk moves to a node without any outgoing inks?

$$
P=\left[\begin{array}{ccccc}
0 & 1 / 2 & 1 / 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 & 0 & 0 \\
1 / 2 & 0 & 0 & 1 / 2 & 0
\end{array}\right]
$$

The PageRank random walk

- Replace these row vectors with a vector v
- typically, the uniform vector

The PageRank random walk

- How do we guarantee irreducibility?
- add a random jump to vector v with prob a
- typically, to a uniform vector

$$
\mathrm{P}^{\prime \prime}=\alpha\left[\begin{array}{ccccc}
0 & 1 / 2 & 1 / 2 & 0 & 0 \\
1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 \\
0 & 1 & 0 & 0 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 & 0 & 0 \\
1 / 2 & 0 & 0 & 0 & 1 / 2
\end{array}\right]+(1-\alpha)\left[\begin{array}{ccccc}
1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 \\
1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 \\
1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 \\
1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 \\
1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5
\end{array}\right]
$$

$P^{\prime \prime}=\alpha P^{\prime}+(1-\alpha) u v^{\top}$, where u is the vector of all $1 s$

Effects of random jump

- Guarantees irreducibility
- Motivated by the concept of random surfer
- Offers additional flexibility
- personalization
- anti-spam
- Controls the rate of convergence
- the second eigenvalue of matrix $P^{\prime \prime}$ is a

A PageRank algorithm

- Performing vanilla power method is now too expensive - the matrix is not sparse
$q^{0}=v$
$t=1$
repeat

$$
\begin{aligned}
& q^{\mathrm{t}}=\left(\bigotimes^{\prime \prime}\right) q^{\mathrm{t}-1} \\
& \delta=\left\|q^{-1}-q^{\mathrm{t}-1}\right\| \\
& \mathrm{t}=\mathrm{t}+1
\end{aligned}
$$

until $\delta<\varepsilon$

Efficient computation of $y=\left(P^{\prime \prime}\right)^{\top} x$

$$
\begin{aligned}
& y=a P^{\top} x \\
& \beta=\|x\|_{1}-\|y\|_{1} \\
& y=y+\beta v
\end{aligned}
$$

Random walks on undirected graphs

- In the stationary distribution of a random walk on an undirected graph, the probability of being at node i is proportional to the (weighted) degree of the vertex
- Random walks on undirected graphs are not "interesting"

Research on PageRank

- Specialized PageRank
- personalization [BP98]
- instead of picking a node uniformly at random favor specific nodes that are related to the user
- topic sensitive PageRank [HO2]
- compute many PageRank vectors, one for each topic
- estimate relevance of query with each topic
- produce final PageRank as a weighted combination
- Updating PageRank [Chien et al 2002]
- Fast computation of PageRank
- numerical analysis tricks
- node aggregation techniques
- dealing with the "Web frontier"

Topic-sensitive pagerank

- HITS-based scores are very inefficient to compute
- PageRank scores are independent of the queries
- Can we bias PageRank rankings to take into account query keywords?

Topic-sensitive PageRank

Topic-sensitive PageRank

- Conventional PageRank computation:
- $r^{(t+1)}(v)=\Sigma_{u \in N(v)} r^{(t)}(u) / d(v)$
- $N(v)$: neighbors of v
- $d(v)$: degree of v
- $r=$ Mxr
- $M^{\prime}=(1-\alpha) P+\alpha[1 / n]_{n \times n}$
- $r=(1-\alpha) \operatorname{Pr}+\alpha[1 / n]_{n \times n} r=(1-\alpha) M r+\alpha p$
- $p=[1 / n]_{n \times 1}$

Topic-sensitive PageRank

- $r=(1-\alpha) \operatorname{Pr}+\alpha p$
- Conventional PageRank: p is a uniform vector with values 1/n
- Topic-sensitive PageRank uses a non-uniform personalization vector p
- Not simply a post-processing step of the PageRank computation
- Personalization vector p introduces bias in all iterations of the iterative computation of the PageRank vector

Personalization vector

- In the random-walk model, the personalization vector represents the addition of a set of transition edges, where the probability of an artificial edge (u, v) is αp_{v}
- Given a graph the result of the PageRank computation only depends on α and p : PR(α, p)

Topic-sensitive PageRank: Overall approach

- Preprocessing
- Fix a set of k topics
- For each topic c_{j} compute the PageRank scores of page u wrt to the j-th topic: $\mathrm{r}(\mathrm{u}, \mathrm{j})$
- Query-time processing:
- For query q compute the total score of page u wrt q as score $(u, q)=\sum_{j=1 \ldots k} \operatorname{Pr}\left(c_{j} \mid q\right) r(u, j)$

Topic-sensitive PageRank: Preprocessing

- Create k different biased PageRank vectors using some pre-defined set of k categories
(c_{1}, \ldots, c_{k})
- T_{j} : set of URLs in the j -th category
- Use non-uniform personalization vector $p=w_{j}$ such that:

$$
w_{j}(v)=\left\{\begin{array}{c}
\frac{1}{T_{j}}, v \in T_{j} \\
0, \mathrm{o} / \mathrm{w}
\end{array}\right.
$$

Topic-sensitive PageRank: Query-time

 processing- D_{j} : class term vectors consisting of all the terms appearing in the k pre-selected categories

$$
\operatorname{Pr}\left(c_{j} \mid q\right)=\frac{\operatorname{Pr}\left(c_{j}\right) \operatorname{Pr}\left(q \mid c_{j}\right)}{\operatorname{Pr}(q)} \propto \operatorname{Pr}\left(c_{j}\right) \prod_{i} \operatorname{Pr}\left(q_{i} \mid c_{j}\right)
$$

- How can we compute $\mathrm{P}\left(\mathrm{c}_{\mathrm{j}}\right)$?
- How can we compute $\operatorname{Pr}\left(\mathrm{q}_{\mathrm{i}} \mid \mathrm{c}_{\mathrm{j}}\right)$?
- Comparing results of Link Analysis Ranking algorithms
- Comparing and aggregating rankings

Comparing LAR vectors

$$
\begin{aligned}
\square & \square \\
\square & \square \\
\mathrm{w}_{1} & =\left[\begin{array}{ccccc}
1 & 0.8 & 0.5 & 0.3 & 0
\end{array}\right] \\
\mathrm{w}_{2} & =\left[\begin{array}{lllll}
0.9 & 1 & 0.7 & 0.6 & 0.8
\end{array}\right]
\end{aligned}
$$

- How close are the LAR vectors w_{1}, w_{2} ?

Distance between LAR vectors

- Geometric distance: how close are the numerical weights of vectors w_{1}, w_{2} ?

$$
\begin{aligned}
& \mathrm{d}_{1}\left(\mathrm{~N}_{1}, \mathrm{~W}_{2}=\sum\left|\mathrm{W}_{1}[i]-\mathrm{W}_{2}[i]\right|\right. \\
& \text { ㅁㅁㅁ } \\
& W_{1}=\left[\begin{array}{lllll}
1.0 & 0.8 & 0.5 & 0.3 & 0.0
\end{array}\right] \\
& w_{2}=\left[\begin{array}{lllll}
0.9 & 1.0 & 0.7 & 0.6 & 0.8
\end{array}\right] \\
& \mathrm{d}_{1}\left(\mathrm{w}_{1}, \mathrm{w}_{2}\right)=0.1+0.2+0.2+0.3+0.8=1.6
\end{aligned}
$$

Distance between LAR vectors

- Rank distance: how close are the ordinal rankings induced by the vectors w_{1}, w_{2} ?
- Kendal's τ distance

$$
\mathrm{d}_{\mathrm{r}}\left(\mathrm{w}_{1}, \mathrm{w}_{2} \overline{\bar{j}} \frac{\text { pairs ranked in a different order }}{\text { total number of distinct pairs }}\right.
$$

Outline

- Rank Aggregation
- Computing aggregate scores
- Computing aggregate rankings - voting

Rank Aggregation

- Given a set of rankings $R_{1}, R_{2}, \ldots, R_{m}$ of a set of objects $X_{1}, X_{2}, \ldots, X_{n}$ produce a single ranking R that is in agreement with the existing rankings

Examples

- Voting
- rankings $R_{1}, R_{2}, \ldots, R_{m}$ are the voters, the objects $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$ are the candidates.

Examples

- Combining multiple scoring functions
- rankings $R_{1}, R_{2}, \ldots, R_{m}$ are the scoring functions, the objects $X_{1}, X_{2}, \ldots, X_{n}$ are data items.
- Combine the PageRank scores with term-weighting scores
- Combine scores for multimedia items
- color, shape, texture
- Combine scores for database tuples
- find the best hotel according to price and location

Examples

- Combining multiple sources
- rankings $R_{1}, R_{2}, \ldots, R_{m}$ are the sources, the objects $X_{1}, X_{2}, \ldots, X_{n}$ are data items.
- meta-search engines for the Web
- distributed databases
- P2P sources

Variants of the problem

- Combining scores
- we know the scores assigned to objects by each ranking, and we want to compute a single score
- Combining ordinal rankings
- the scores are not known, only the ordering is known
- the scores are known but we do not know how, or do not want to combine them
- e.g. price and star rating

Combining scores

- Each object X_{i} has m scores $\left(r_{i 1}, r_{i 2}, \ldots, r_{i m}\right)$
- The score of object X_{i} is computed using an aggregate scoring function $\mathrm{f}\left(\mathrm{r}_{\mathrm{i} 1}, \mathrm{r}_{\mathrm{i} 2}, \ldots, \mathrm{r}_{\mathrm{im}}\right)$

	R_{1}	R_{2}	R_{3}
X_{1}	1	0.3	0.2
X_{2}	0.8	0.8	0
X_{3}	0.5	0.7	0.6
X_{4}	0.3	0.2	0.8
X_{5}	0.1	0.1	0.1

Combining scores

- Each object X_{i} has m scores $\left(r_{i 1}, r_{i 2}, \ldots, r_{i m}\right)$
- The score of object X_{i} is computed using an aggregate scoring function $f\left(r_{i_{1}}, r_{i 2}, \ldots, r_{i m}\right)$
$-f\left(r_{i 1}, r_{i 2}, \ldots, r_{i m}\right)=\min \left\{r_{i 1}, r_{i 2}, \ldots, r_{i m}\right\}$

	R_{1}	R_{2}	R_{3}	R
X_{1}	1	0.3	0.2	0.2
X_{2}	0.8	0.8	0	0
X_{3}	0.5	0.7	0.6	0.5
X_{4}	0.3	0.2	0.8	0.2
X_{5}	0.1	0.1	0.1	0.1

Combining scores

- Each object X_{i} has m scores $\left(r_{i 1}, r_{i 2}, \ldots, r_{i m}\right)$
- The score of object X_{i} is computed using an aggregate scoring function $f\left(r_{i 1}, r_{i 2}, \ldots, r_{i m}\right)$
$-f\left(r_{i 1}, r_{i 2}, \ldots, r_{i m}\right)=\max \left\{r_{i 1}, r_{i 2}, \ldots, r_{i m}\right\}$

	R_{1}	R_{2}	R_{3}	R
X_{1}	1	0.3	0.2	1
X_{2}	0.8	0.8	0	0.8
X_{3}	0.5	0.7	0.6	0.7
X_{4}	0.3	0.2	0.8	0.8
X_{5}	0.1	0.1	0.1	0.1

Combining scores

- Each object X_{i} has m scores $\left(r_{i 1}, r_{i 2}, \ldots, r_{i m}\right)$
- The score of object X_{i} is computed using an aggregate scoring function $f\left(r_{i 1}, r_{i 2}, \ldots, r_{i m}\right)$
$-f\left(r_{i 1}, r_{i 2}, \ldots, r_{i m}\right)=r_{i 1}+r_{i 2}+\ldots+r_{i m}$

	R_{1}	R_{2}	R_{3}	R
X_{1}	1	0.3	0.2	1.5
X_{2}	0.8	0.8	0	1.6
X_{3}	0.5	0.7	0.6	1.8
X_{4}	0.3	0.2	0.8	1.3
X_{5}	0.1	0.1	0.1	0.3

Top-k

- Given a set of n objects and m scoring lists sorted in decreasing order, find the top-k objects according to a scoring function f
- top-k: a set T of k objects such that $f\left(r_{j 1}, \ldots, r_{j m}\right) \leq$ $f\left(r_{i 1}, \ldots, r_{i m}\right)$ for every object X_{i} in T and every object X_{j} not in T
- Assumption: The function f is monotone
$-f\left(r_{1}, \ldots, r_{m}\right) \leq f\left(r_{1}{ }^{\prime}, \ldots, r_{m}{ }^{\prime}\right)$ if $r_{i} \leq r_{i}^{\prime}$ for all i
- Objective: Compute top-k with the minimum cost

Cost function

- We want to minimize the number of accesses to the scoring lists
- Sorted accesses: sequentially access the objects in the order in which they appear in a list
- $\operatorname{cost} \mathrm{C}_{\mathrm{s}}$
- Random accesses: obtain the cost value for a specific object in a list
$-\operatorname{cost} \mathrm{C}_{\mathrm{r}}$
- If s sorted accesses and r random accesses minimize $s^{C_{s}}+\mathrm{rC}_{\mathrm{r}}$

Example

R_{1}				
X_{1}	1			
X_{2}	0.8			
X_{3}	0.5			
X_{4}	0.3			
X_{5}	0.1			
X_{2}				
X_{3}	0.8			
X_{1}	0.3			
X_{4}	0.2			
X_{5}	0.1	\quad	R_{3}	
:---	:---:			
X_{4}	0.8			
X_{3}	0.6			
X_{1}	0.2			
X_{5}	0.1			
X_{2}	0			

- Compute top-2 for the sum aggregate function

Fagin's Algorithm

1. Access sequentially all lists in parallel until there are k objects that have been seen in all lists

R_{1}	
X_{1}	1
X_{2}	0.8
X_{3}	0.5
X_{4}	0.3
X_{5}	0.1

R_{2}	
X_{2}	0.8
X_{3}	0.7
X_{1}	0.3
X_{4}	0.2
X_{5}	0.1

R_{3}	
X_{4}	0.8
X_{3}	0.6
X_{1}	0.2
X_{5}	0.1
X_{2}	0

Fagin's Algorithm

1. Access sequentially all lists in parallel until there are k objects that have been seen in all lists

R_{1}				
X_{1}	1			
X_{2}	0.8			
X_{3}	0.5			
X_{4}	0.3			
X_{5}	0.1	\quad	R_{2}	
:---	:---			
X_{2}	0.8			
X_{3}	0.7			
X_{1}	0.3			
X_{4}	0.2			
X_{5}	0.1	\quad	R_{3}	
:---:	:---:			
X_{4}	0.8			
X_{3}	0.6			
X_{1}	0.2			
X_{5}	0.1			
X_{2}	0			

Fagin's Algorithm

1. Access sequentially all lists in parallel until there are k objects that have been seen in all lists

R_{1}				
X_{1}	1			
X_{2}	0.8			
X_{3}	0.5			
X_{4}	0.3			
X_{5}	0.1	\quad	R_{2}	
:---	:---			
X_{2}	0.8			
	0.7			
X_{1}	0.3			
X_{4}	0.2			
X_{5}	0.1	\quad	R_{3}	
:---:	:---:	:---:		
X_{4}	0.8			
X_{1}	0.6			
X_{5}	0.1			
X_{2}	0			

Fagin's Algorithm

1. Access sequentially all lists in parallel until there are k objects that have been seen in all lists

R_{1}		R_{2}		R_{3}	
X_{1}	1		0.8		0.8
χ_{2}	0.8		0.7		0.6
	0.5	X_{1}	0.3		0.2
X_{4}	0.3	X_{4}	0.2	X_{5}	0.1
X_{5}	0.1		0.1	x_{2}	0

Fagin's Algorithm

1. Access sequentially all lists in parallel until there are k objects that have been seen in all lists

R_{1}		R_{2}		R_{3}	
	1		0.8		0.8
	0.8		0.7		0.6
	0.5		0.3		0.2
X_{4}	0.3	X_{4}	0.2	X_{5}	0.1
X_{5}	0.1		0.1	X_{2}	0

Fagin's Algorithm

2. Perform random accesses to obtain the scores of all seen objects

R_{1}		R_{2}		R_{3}	
	1		0.8	X	0.8
	0.8		0.7		0.6
	0.5	X	0.3	X_{1}	0.2
	0.3		0.2	X_{5}	0.1
X_{5}	0.1	X_{5}	0.1		0

Fagin's Algorithm

3. Compute score for all objects and find the top-k

R_{1}		R_{2}		R_{3}	
X_{1}	1		0.8		0.8
X_{2}	0.8		0.7		0.6
	0.5	X	0.3	x	0.2
	0.3		0.2	X_{5}	0.1
X_{5}	0.1	X_{5}	0.1		0

R	
X_{3}	1.8
X_{2}	1.6
X_{1}	1.5
X_{4}	1.3

Fagin's Algorithm

- X_{5} cannot be in the top- 2 because of the monotonicity property

$$
-f\left(X_{5}\right) \leq f\left(X_{1}\right) \leq f\left(X_{3}\right)
$$

R_{1}		R_{2}		R_{3}	
	1		0.8		0.8
	0.8		0.7		0.6
	0.5	X_{1}	0.3	X	0.2
X_{4}	0.3		0.2	X_{5}	0.1
X_{5}	0.1	X_{5}	0.1		0

R	
X_{3}	1.8
X_{2}	1.6
X_{1}	1.5
X_{4}	1.3

Fagin's Algorithm

- The algorithm is cost optimal under some probabilistic assumptions for a restricted class of aggregate functions

Threshold algorithm

1. Access the elements sequentially

R_{1}	
X_{1}	1
X_{2}	0.8
X_{3}	0.5
X_{4}	0.3
X_{5}	0.1

R_{2}	
X_{2}	0.8
X_{3}	0.7
X_{1}	0.3
X_{4}	0.2
X_{5}	0.1

R_{3}	
X_{4}	0.8
X_{3}	0.6
X_{1}	0.2
X_{5}	0.1
X_{2}	0

Threshold algorithm

1. At each sequential access
a. Set the threshold t to be the aggregate of the scores seen in this access

R_{1}				
X_{1}	1			
X_{2}	0.8			
X_{3}	0.5			
X_{4}	0.3			
X_{5}	0.1	\quad	R_{2}	
:---:	:---:			
X_{2}	0.8			
X_{3}	0.7			
X_{1}	0.3			
X_{4}	0.2			
X_{5}	0.1	\quad	R_{3}	
:---:	:---:			
X_{4}	0.8			
X_{3}	0.6			
X_{1}	0.2			
X_{5}	0.1			

Threshold algorithm

1. At each sequential access
b. Do random accesses and compute the score of the objects seen

R_{1}				
X_{1}	1			
X_{2}	0.8			
X_{3}	0.5			
X_{4}	0.3			
X_{5}	0.1	\quad	R_{2}	
:---:	:---:			
X_{2}	0.8			
X_{3}	0.7			
X_{1}	0.3			
X_{4}	0.2			
X_{5}	0.1	\quad	R_{3}	
:---:	:---:			
X_{4}	0.8			
X_{1}	0.2			
X_{5}	0.1			

Threshold algorithm

1. At each sequential access
c. Maintain a list of top-k objects seen so far

R_{1}				
X_{1}	1			
X_{2}	0.8			
X_{3}	0.5			
X_{4}	0.3			
X_{5}	0.1	\quad	R_{2}	
:---:	:---:			
X_{2}	0.8			
X_{3}	0.7			
X_{1}	0.3			
X_{4}	0.2			
X_{5}	0.1	\quad	R_{3}	
:---:	:---:			
X_{3}	0.6			
X_{1}	0.2			
X_{5}	0.1			
X_{2}	0			

Threshold algorithm

1. At each sequential access
d. When the scores of the top-k are greater or equal to the threshold, stop

R_{1}				
X_{1}	1			
X_{2}	0.8			
	0.5			
X_{4}	0.3			
X_{5}	0.1	\quad	R_{2}	
:---	:---			
X_{2}	0.8			
	0.7			
X_{1}	0.3			
X_{4}	0.2			
X_{5}	0.1	\quad	R_{3}	
:---:	:---:			
X_{4}	0.8			
X_{1}	0.2			
X_{2}	0.1			

Threshold algorithm

1. At each sequential access
d. When the scores of the top-k are greater or equal to the threshold, stop

R_{1}		R_{2}		R_{3}	
X_{1}	1	X	0.8	X4	0.8
	0.8		0.7		0.6
	0.5	X_{1}	0.3	X_{1}	0.2
X_{4}	0.3	X_{4}	0.2	X_{5}	0.1
X_{5}	0.1	X_{5}	0.1	x_{2}	0

Threshold algorithm

2. Return the top-k seen so far

R_{1}		R_{2}		R_{3}	
X_{1}	1	X	0.8	X_{4}	0.8
	0.8		0.7		0.6
	0.5	X_{1}	0.3	X_{1}	0.2
X_{4}	0.3	X_{4}	0.2	X_{5}	0.1
X_{5}	0.1	X_{5}	0.1	x_{2}	0

Threshold algorithm

- From the monotonicity property for any object not seen, the score of the object is less than the threshold
$-\mathrm{f}\left(\mathrm{X}_{5}\right) \leq \mathrm{t} \leq \mathrm{f}\left(\mathrm{X}_{2}\right)$
- The algorithm is instance cost-optimal
- within a constant factor of the best algorithm on any database

Combining rankings

- In many cases the scores are not known
- e.g. meta-search engines - scores are proprietary information
- ... or we do not know how they were obtained
- one search engine returns score 10 , the other 100 . What does this mean?
- ... or the scores are incompatible
- apples and oranges: does it make sense to combine price with distance?
- In this cases we can only work with the rankings

The problem

- Input: a set of rankings $R_{1}, R_{2}, \ldots, R_{m}$ of the objects $X_{1}, X_{2}, \ldots, X_{n}$. Each ranking R_{i} is a total ordering of the objects
- for every pair X_{i}, X_{j} either X_{i} is ranked above X_{j} or X_{j} is ranked above X_{i}
- Output: A total ordering R that aggregates rankings $R_{1}, R_{2}, \ldots, R_{m}$

Voting theory

- A voting system is a rank aggregation mechanism
- Long history and literature
- criteria and axioms for good voting systems

What is a good voting system?

- The Condorcet criterion
- if object A defeats every other object in a pairwise majority vote, then A should be ranked first
- Extended Condorcet criterion
- if the objects in a set X defeat in pairwise comparisons the objects in the set Y then the objects in X should be ranked above those in Y
- Not all voting systems satisfy the Condorcet criterion!

Pairwise majority comparisons

- Unfortunately the Condorcet winner does not always exist
- irrational behavior of groups

	V_{1}	$\mathrm{~V}_{2}$	$\mathrm{~V}_{3}$
1	A	B	C
2	B	C	A
3	C	A	B

$$
\mathrm{A}>\mathrm{B} \quad \mathrm{~B}>\mathrm{C} \quad \mathrm{C}>\mathrm{A}
$$

Pairwise majority comparisons

- Resolve cycles by imposing an agenda

	V_{1}	$\mathrm{~V}_{2}$	$\mathrm{~V}_{3}$
1	A	D	E
2	B	E	A
3	C	A	B
4	D	B	C
5	E	C	D

Pairwise majority comparisons

- Resolve cycles by imposing an agenda

	V_{1}	$\mathrm{~V}_{2}$	$\mathrm{~V}_{3}$
1	A	D	E
2	B	E	A
3	C	A	B
4	D	B	C
5	E	C	D

Pairwise majority comparisons

- Resolve cycles by imposing an agenda

	V_{1}	$\mathrm{~V}_{2}$	$\mathrm{~V}_{3}$
1	A	D	E
2	B	E	A
3	C	A	B
4	D	B	C
5	E	C	D

Pairwise majority comparisons

- Resolve cycles by imposing an agenda

	V_{1}	$\mathrm{~V}_{2}$	$\mathrm{~V}_{3}$
1	A	D	E
2	B	E	A
3	C	A	B
4	D	B	C
5	E	C	D

Pairwise majority comparisons

- Resolve cycles by imposing an agenda

	V_{1}	$\mathrm{~V}_{2}$	$\mathrm{~V}_{3}$
1	A	D	E
2	B	E	A
3	C	A	B
4	D	B	C
5	E	C	D

- C is the winner

Pairwise majority comparisons

- Resolve cycles by imposing an agenda

	V_{1}	$\mathrm{~V}_{2}$	$\mathrm{~V}_{3}$
1	A	D	E
2	B	E	A
3	C	A	B
4	D	B	C
5	E	C	D

- But everybody prefers A or B over C

Pairwise majority comparisons

- The voting system is not Pareto optimal
- there exists another ordering that everybody prefers
- Also, it is sensitive to the order of voting

Plurality vote

- Elect first whoever has more 1st position votes

voters	10	8	7
1	A	C	B
2	B	A	C
3	C	B	A

- Does not find a Condorcet winner (C in this case)

Plurality with runoff

- If no-one gets more than 50% of the 1 st position votes, take the majority winner of the first two

voters	10	8	7	2
1	A	C	B	B
2	B	A	C	A
3	C	B	A	C

first round: A 10, B 9, C 8
second round: A 18, B 9
winner: A

Plurality with runoff

- If no-one gets more than 50% of the 1 st position votes, take the majority winner of the first two

voters	10	8	7	2
1	A	C	B	A
2	B	A	C	B
3	C	B	A	C

change the order of A and B in the last column

first round: A 12, B 7, C 8
second round: A 12, C 15 winner: C!

Positive Association axiom

- Plurality with runoff violates the positive association axiom
- Positive association axiom: positive changes in preferences for an object should not cause the ranking of the object to decrease

Borda Count

- For each ranking, assign to object X, number of points equal to the number of objects it defeats
- first position gets $\mathrm{n}-1$ points, second $\mathrm{n}-2, \ldots$, last 0 points
- The total weight of X is the number of points it accumulates from all rankings

Borda Count

voters	3	2	2
$1(3 p)$	A	B	C
$2(2 p)$	B	C	D
$3(1 p)$	C	D	A
$4(0 p)$	D	A	B

$A: 3^{*} 3+2^{*} 0+2^{*} 1=11 p$	
$B: 3^{*} 2+2^{*} 3+2^{*} 0=12 p$	C
$C: 3^{*} 1+2^{*} 2+2^{*} 3=13 p$	B
$D: 3^{*} 0+2^{*} 1+2^{*} 2=6 p$	A
	D

- Does not always produce Condorcet winner

Borda Count

- Assume that D is removed from the vote

voters	3	2	2	A: $3^{*} 2+2^{*} 0+2^{*} 1=7 p$ B: $3^{*} 1+2^{*} 2+2^{*} 0=7 p$ C: $3^{*} 0+2^{*} 1+2 * 2=6 p$	BC
1 (2p)	A	B	C		B
2 (1p)	B	C	A		A
3 (0p)	C	A	B		C

- Changing the position of D changes the order of the other elements!

Independence of Irrelevant Alternatives

- The relative ranking of X and Y should not depend on a third object Z
- heavily debated axiom

Borda Count

- The Borda Count of an an object X is the aggregate number of pairwise comparisons that the object X wins
- follows from the fact that in one ranking X wins all the pairwise comparisons with objects that are under X in the ranking

Voting Theory

- Is there a voting system that does not suffer from the previous shortcomings?

Arrow's Impossibility Theorem

- There is no voting system that satisfies the following axioms
- Universality
- all inputs are possible
- Completeness and Transitivity
- for each input we produce an answer and it is meaningful
- Positive Assosiation
- Independence of Irrelevant Alternatives
- Non-imposition
- Non-dictatoriship
- KENNETH J. ARROW Social Choice and Individual Values (1951). Won Nobel Prize in 1972

Kemeny Optimal Aggregation

- Kemeny distance $K\left(R_{1}, R_{2}\right)$: The number of pairs of nodes that are ranked in a different order (Kendall-tau)
- number of bubble-sort swaps required to transform one ranking into another
- Kemeny optimal aggregation minimizes

$$
K \ll R_{1}, \ldots, R_{m} \overline{\bar{\tau}} \sum_{i=1}^{m} K \ll R_{i}^{-}
$$

- Kemeny optimal aggregation satisfies the Condorcet criterion and the extended Condorcet criterion
- maximum likelihood interpretation: produces the ranking that is most likely to have generated the observed rankings
- ...but it is NP-hard to compute
- easy 2-approximation by obtaining the best of the input rankings, but it is not "interesting"

Locally Kemeny optimal aggregation

- A ranking R is locally Kemeny optimal if there is no bubble-sort swap that produces a ranking R^{\prime} such that $K\left(R^{\prime}, R_{1}, \ldots, R_{m}\right) \leq$ $K\left(R^{\prime}, R_{1}, \ldots, R_{m}\right)$
- Locally Kemeny optimal is not necessarily Kemeny optimal
- Definitions apply for the case of partial lists also

Locally Kemeny optimal aggregation

- Locally Kemeny optimal aggregation can be computed in polynomial time
- At the i-th iteration insert the i-th element x in the bottom of the list, and bubble it up until there is an element y such that the majority places y over x
- Locally Kemeny optimal aggregation satisfies the Condorcet and extended Condorcet criterion

Rank Aggregation algorithm [DKNSO1]

- Start with an aggregated ranking and make it into a locally Kemeny optimal aggregation
- How do we select the initial aggregation?
- Use another aggregation method
- Create a Markov Chain where you move from an object X, to another object Y that is ranked higher by the majority

Spearman's footrule distance

- Spearman's footrule distance: The difference between the ranks $R(i)$ and $R^{\prime}(i)$ assigned to object i

$$
F\left(R^{\prime}\right\rangle \sum_{i=1}^{n}\left|R(i)-R^{\prime}(i)\right|
$$

- Relation between Spearman's footrule and Kemeny distance

Spearman's footrule aggregation

- Find the ranking R, that minimizes

$$
F \mathbb{F}, R_{1}, \ldots, R_{m} \overline{\bar{j}} \sum_{i=1}^{m} F<R_{i}^{-}
$$

- The optimal Spearman's footrule aggregation can be computed in polynomial time
- It also gives a 2-approximation to the Kemeny optimal aggregation
- If the median ranks of the objects are unique then this ordering is optimal

Example

R_{3}	
1	B
2	C
3	A
4	D

R	
1	B
2	A
3	C
4	D

$\mathrm{A}:(1,2,3)$
$\mathrm{B}:(1,1,2)$
$\mathrm{C}:(3,3,4)$
$\mathrm{D}:(3,4,4)$

The MedRank algorithm

- Access the rankings sequentially

R_{1}	
1	A
2	B
3	C
4	D

R_{3}	
1	B
2	C
3	A
4	D

R	
1	
2	
3	
4	

The MedRank algorithm

- Access the rankings sequentially
- when an element has appeared in more than half of the rankings, output it in the aggregated ranking

R_{1}		R_{2}		R_{3}	
1		1	B	1	
2	B	2	A	2	C
3	C	3	D	3	A
4	D	4	C	4	D

R	
1	B
2	
3	
4	

The MedRank algorithm

- Access the rankings sequentially
- when an element has appeared in more than half of the rankings, output it in the aggregated ranking

R_{1}		R_{2}		R_{3}	
1		1	B	1	
2		2		2	C
3	C	3	D	3	A
4	D	4	C	4	D

R	
1	B
2	A
3	
4	

The MedRank algorithm

- Access the rankings sequentially
- when an element has appeared in more than half of the rankings, output it in the aggregated ranking

R_{1}		R_{2}		R_{3}	
1		1	B	1	
2	B	2		2	C
3	C	3	D	3	
4	D	4	C	4	D

R	
1	B
2	A
3	C
4	

The MedRank algorithm

- Access the rankings sequentially
- when an element has appeared in more than half of the rankings, output it in the aggregated ranking

R_{1}		R_{2}		R_{3}	
1		1	B	1	
2	B	2		2	C
3	C	3	D	3	
4	D	4	C	4	D

R	
1	B
2	A
3	C
4	D

The Spearman's rank correlation

- Spearman's rank correlation

$$
S\left(R^{\prime} \overline{\bar{F}} \sum_{i=1}^{n}(i)-R^{\prime}(i)^{2}\right.
$$

- Computing the optimal rank aggregation with respect to Spearman's rank correlation is the same as computing Borda Count
- Computable in polynomial time

Extensions and Applications

- Rank distance measures between partial orderings and top-k lists
- Similarity search
- Ranked Join Indices
- Analysis of Link Analysis Ranking algorithms
- Connections with machine learning

References

- A. Borodin, G. Roberts, J. Rosenthal, P. Tsaparas, Link Analysis Ranking: Algorithms, Theory and Experiments, ACM Transactions on Internet Technologies (TOIT), 5(1), 2005
- Ron Fagin, Ravi Kumar, Mohammad Mahdian, D. Sivakumar, Erik Vee, Comparing and aggregating rankings with ties, PODS 2004
- M. Tennenholtz, and Alon Altman, "On the Axiomatic Foundations of Ranking Systems", Proceedings of IJCAI, 2005
- Ron Fagin, Amnon Lotem, Moni Naor. Optimal aggregation algorithms for middleware, J. Computer and System Sciences 66 (2003), pp. 614-656. Extended abstract appeared in Proc. 2001 ACM Symposium on Principles of Database Systems (PODS '01), pp. 102-113.
- Alex Tabbarok Lecture Notes
- Ron Fagin, Ravi Kumar, D. Sivakumar Efficient similarity search and classification via rank aggregation, Proc. 2003 ACM SIGMOD Conference (SIGMOD '03), pp. 301-312.
- Cynthia Dwork, Ravi Kumar, Moni Naor, D. Sivakumar. Rank Aggregation Methods for the Web. 10th International World Wide Web Conference, May 2001.
- C. Dwork, R. Kumar, M. Naor, D. Sivakumar, "Rank Aggregation Revisited," WWW10; selected as Web Search Area highlight, 2001.

