More on Rankings

Query-independent LAR

• Have an a-priori ordering of the web pages

- Q: Set of pages that contain the keywords in the query q
- Present the pages in Q ordered according to order π

• What are the advantages of such an approach?

InDegree algorithm

• Rank pages according to in-degree

 $-w_{i} = |B(i)|$

- 1. Red Page
- 2. Yellow Page
- 3. Blue Page
- 4. Purple Page
- 5. Green Page

PageRank algorithm [BP98]

- Good authorities should be pointed by good authorities
- Random walk on the web graph
 - pick a page at random
 - with probability 1- α jump to a random page
 - with probability a follow a random outgoing link
- Rank according to the stationary distribution

•
$$PR(p) = \alpha \sum_{q \to p} \frac{PR(q)}{|F(q)|} + \P - \alpha \frac{1}{n}$$

- 1. Red Page
- 2. Purple Page
- 3. Yellow Page
- 4. Blue Page
- 5. Green Page

Markov chains

 A Markov chain describes a discrete time stochastic process over a set of states

 $S = {s_1, s_2, ..., s_n}$

according to a transition probability matrix

 $\mathsf{P} = \{\mathsf{P}_{ij}\}$

- P_{ii} = probability of moving to state j when at state i
 - $\sum_{j} P_{ij} = 1$ (stochastic matrix)
- Memorylessness property: The next state of the chain depends only at the current state and not on the past of the process (first order MC)
 - higher order MCs are also possible

Random walks

- Random walks on graphs correspond to Markov Chains
 - The set of states S is the set of nodes of the graph
 G
 - The transition probability matrix is the probability that we follow an edge from one node to another

An example

State probability vector

 The vector q^t = (q^t₁, q^t₂, ..., q^t_n) that stores the probability of being at state i at time t

 $-q_{i}^{0}$ = the probability of starting from state i

$$q^{t} = q^{t-1} P$$

An example

$$\mathsf{P} = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \end{bmatrix}$$

$$q^{t+1}_{1} = 1/3 q^{t}_{4} + 1/2 q^{t}_{5}$$

$$q^{t+1}_{2} = 1/2 q^{t}_{1} + q^{t}_{3} + 1/3 q^{t}_{4}$$

$$q^{t+1}_{3} = 1/2 q^{t}_{1} + 1/3 q^{t}_{4}$$

$$q^{t+1}_{4} = 1/2 q^{t}_{5}$$

$$q^{t+1}_{5} = q^{t}_{2}$$

Stationary distribution

- A stationary distribution for a MC with transition matrix P, is a probability distribution π , such that $\pi = \pi P$
- A MC has a unique stationary distribution if
 - it is irreducible
 - the underlying graph is strongly connected
 - it is aperiodic
 - for random walks, the underlying graph is not bipartite
- The probability π_i is the fraction of times that we visited state i as $t \to \infty$
- The stationary distribution is an eigenvector of matrix P
 - the principal left eigenvector of P stochastic matrices have maximum eigenvalue 1

Computing the stationary distribution

- The Power Method
 - Initialize to some distribution q⁰
 - Iteratively compute $q^t = q^{t-1}P$
 - After enough iterations $q^t \approx \pi$
 - Power method because it computes $q^t = q^0 P^t$
- Rate of convergence
 - determined by λ_2

- Vanilla random walk
 - make the adjacency matrix stochastic and run a random walk

$$\mathsf{P} = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \end{bmatrix}$$

- What about sink nodes?
 - what happens when the random walk moves to a node without any outgoing inks?

$$P = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \end{bmatrix}$$

Replace these row vectors with a vector v

- typically, the uniform vector

$$P' = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 0 & 1 & 0 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \end{bmatrix}$$

$$P' = P + dv^{T} \qquad d = \begin{cases} 1 & \text{if is sink} \\ 0 & \text{otherwise} \end{cases}$$

- How do we guarantee irreducibility?
 - add a random jump to vector v with prob a
 - typically, to a uniform vector

$$\mathsf{P''} = \alpha \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 0 & 1 & 0 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 0 & 0 & 1/2 \end{bmatrix} + (1 - \alpha) \begin{bmatrix} 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \end{bmatrix}$$

 $P'' = \alpha P' + (1-\alpha)uv^T$, where u is the vector of all 1s

Effects of random jump

- Guarantees irreducibility
- Motivated by the concept of random surfer
- Offers additional flexibility
 - personalization
 - anti-spam
- Controls the rate of convergence
 - the second eigenvalue of matrix P" is **a**

A PageRank algorithm

 Performing vanilla power method is now too expensive – the matrix is not sparse

$$q^{0} = v$$

$$t = 1$$

repeat

$$q^{t} = \mathbf{P}^{"} \mathbf{q}^{t-1}$$

$$\delta = \|q^{t} - q^{t-1}\|$$

$$t = t + 1$$

until $\delta < \varepsilon$

Efficient computation of $y = (P'')^T x$

$$y = aP^{T}x$$
$$\beta = ||x||_{1} - ||y||_{1}$$
$$y = y + \beta v$$

Random walks on undirected graphs

 In the stationary distribution of a random walk on an undirected graph, the probability of being at node i is proportional to the (weighted) degree of the vertex

 Random walks on undirected graphs are not "interesting"

Research on PageRank

- Specialized PageRank
 - personalization [BP98]
 - instead of picking a node uniformly at random favor specific nodes that are related to the user
 - topic sensitive PageRank [H02]
 - compute many PageRank vectors, one for each topic
 - estimate relevance of query with each topic
 - produce final PageRank as a weighted combination
- Updating PageRank [Chien et al 2002]
- Fast computation of PageRank
 - numerical analysis tricks
 - node aggregation techniques
 - dealing with the "Web frontier"

Topic-sensitive pagerank

• HITS-based scores are very inefficient to compute

• PageRank scores are independent of the queries

• Can we bias PageRank rankings to take into account query keywords?

Topic-sensitive PageRank

Topic-sensitive PageRank

- Conventional PageRank computation:
- $r^{(t+1)}(v) = \sum_{u \in N(v)} r^{(t)}(u)/d(v)$
- N(v): neighbors of v
- d(v): degree of v
- **r** = Mxr
- $M' = (1-\alpha)P + \alpha [1/n]_{nxn}$
- $r = (1-\alpha)Pr + \alpha [1/n]_{nxn}r = (1-\alpha)Mr + \alpha p$
- $p = [1/n]_{nx1}$

Topic-sensitive PageRank

- $r = (1-\alpha)Pr + \alpha p$
- Conventional PageRank: p is a uniform vector with values 1/n
- Topic-sensitive PageRank uses a non-uniform personalization vector p
- Not simply a post-processing step of the PageRank computation
- Personalization vector p introduces bias in all iterations of the iterative computation of the PageRank vector

Personalization vector

- In the random-walk model, the personalization vector represents the addition of a set of transition edges, where the probability of an artificial edge (u,v) is αp_v
- Given a graph the result of the PageRank computation only depends on α and p:
 PR(α,p)

Topic-sensitive PageRank: Overall approach

- Preprocessing
 - Fix a set of k topics
 - For each topic c_j compute the PageRank scores of page u wrt to the j-th topic: r(u,j)

• Query-time processing:

– For query q compute the total score of page u wrt q as score(u,q) = Σ_{j=1...k} Pr(c_j | q) r(u,j)

Topic-sensitive PageRank: Preprocessing

- Create k different biased PageRank vectors using some pre-defined set of k categories (c₁,...,c_k)
- T_j: set of URLs in the **j**-th category
- Use non-uniform personalization vector p=w_j such that:

$$w_j(v) = \begin{cases} \frac{1}{T_j}, v \in T_j \\ 0, \text{o/w} \end{cases}$$

Topic-sensitive PageRank: Query-time processing

 D_j: class term vectors consisting of all the terms appearing in the k pre-selected categories

$$\Pr(c_j | q) = \frac{\Pr(c_j) \Pr(q | c_j)}{\Pr(q)} \propto \Pr(c_j) \prod_i \Pr(q_i | c_j)$$

- How can we compute P(c_i)?
- How can we compute Pr(q_i | c_i)?

 Comparing results of Link Analysis Ranking algorithms

• Comparing and aggregating rankings

Comparing LAR vectors

$w_1 = \begin{bmatrix} 0.9 & 1 & 0.7 & 0.6 & 0.8 \end{bmatrix}$

• How close are the LAR vectors w_1, w_2 ?

Distance between LAR vectors

 Geometric distance: how close are the numerical weights of vectors w₁, w₂?

$$d_{1} \langle w_{1}, w_{2} \rangle = \sum |w_{1}[i] - w_{2}[i]|$$

$$w_{1} = [1.0 \ 0.8 \ 0.5 \ 0.3 \ 0.0]$$

$$w_{2} = [0.9 \ 1.0 \ 0.7 \ 0.6 \ 0.8]$$

$$d_{1}(w_{1}, w_{2}) = 0.1 + 0.2 + 0.2 + 0.3 + 0.8 = 1.6$$

Distance between LAR vectors

 Rank distance: how close are the ordinal rankings induced by the vectors w₁, w₂?

– Kendal's τ distance

$$d_r \langle w_1, w_2 \rangle = \frac{\text{pairs ranked in a different order}}{\text{total number of distinct pairs}}$$

Outline

- Rank Aggregation
 - Computing aggregate scores
 - Computing aggregate rankings voting

Rank Aggregation

Given a set of rankings R₁, R₂,..., R_m of a set of objects X₁, X₂,..., X_n produce a single ranking R that is in agreement with the existing rankings

Examples

• Voting

- rankings $R_1, R_2, ..., R_m$ are the voters, the objects $X_1, X_2, ..., X_n$ are the candidates.

Examples

- Combining multiple scoring functions
 - rankings R₁, R₂,..., R_m are the scoring functions, the objects X₁, X₂,..., X_n are data items.
 - Combine the PageRank scores with term-weighting scores
 - Combine scores for multimedia items
 - color, shape, texture
 - Combine scores for database tuples
 - find the best hotel according to price and location

Examples

- Combining multiple sources
 - rankings $R_1, R_2, ..., R_m$ are the sources, the objects $X_1, X_2, ..., X_n$ are data items.
 - meta-search engines for the Web
 - distributed databases
 - P2P sources

Variants of the problem

- Combining scores
 - we know the scores assigned to objects by each ranking, and we want to compute a single score
- Combining ordinal rankings
 - the scores are not known, only the ordering is known
 - the scores are known but we do not know how, or do not want to combine them
 - e.g. price and star rating
- Each object X_i has m scores (r_{i1},r_{i2},...,r_{im})
- The score of object X_i is computed using an aggregate scoring function f(r_{i1},r_{i2},...,r_{im})

	R_1	R_2	R_3
X ₁	1	0.3	0.2
X ₂	0.8	0.8	0
X ₃	0.5	0.7	0.6
X ₄	0.3	0.2	0.8
X ₅	0.1	0.1	0.1

- Each object X_i has m scores (r_{i1},r_{i2},...,r_{im})
- The score of object X_i is computed using an aggregate scoring function f(r_{i1},r_{i2},...,r_{im})
 - $f(r_{i1}, r_{i2}, ..., r_{im}) = \min\{r_{i1}, r_{i2}, ..., r_{im}\}$

	R ₁	R ₂	R_3	R
X_1	1	0.3	0.2	0.2
X ₂	0.8	0.8	0	0
X ₃	0.5	0.7	0.6	0.5
X ₄	0.3	0.2	0.8	0.2
X ₅	0.1	0.1	0.1	0.1

- Each object X_i has m scores (r_{i1},r_{i2},...,r_{im})
- The score of object X_i is computed using an aggregate scoring function f(r_{i1},r_{i2},...,r_{im})
 - $f(r_{i1}, r_{i2}, ..., r_{im}) = \max\{r_{i1}, r_{i2}, ..., r_{im}\}$

	R_1	R ₂	R_3	R
X_1	1	0.3	0.2	1
X ₂	0.8	0.8	0	0.8
X ₃	0.5	0.7	0.6	0.7
X ₄	0.3	0.2	0.8	0.8
X ₅	0.1	0.1	0.1	0.1

- Each object X_i has m scores (r_{i1},r_{i2},...,r_{im})
- The score of object X_i is computed using an aggregate scoring function f(r_{i1},r_{i2},...,r_{im})

$$- f(r_{i1}, r_{i2}, ..., r_{im}) = r_{i1} + r_{i2} + ... + r_{im}$$

	R ₁	R_2	R_3	R
X_1	1	0.3	0.2	1.5
X ₂	0.8	0.8	0	1.6
X ₃	0.5	0.7	0.6	1.8
X ₄	0.3	0.2	0.8	1.3
X ₅	0.1	0.1	0.1	0.3

Top-k

- Given a set of n objects and m scoring lists sorted in decreasing order, find the top-k objects according to a scoring function f
- top-k: a set T of k objects such that f(r_{j1},...,r_{jm}) ≤ f(r_{i1},...,r_{im}) for every object X_i in T and every object X_j not in T
- Assumption: The function f is monotone
 f(r₁,...,r_m) ≤ f(r₁',...,r_m') if r_i ≤ r_i' for all i
- **Objective:** Compute top-k with the minimum cost

Cost function

- We want to minimize the number of accesses to the scoring lists
- Sorted accesses: sequentially access the objects in the order in which they appear in a list
 - cost C_s
- Random accesses: obtain the cost value for a specific object in a list
 - cost C_r
- If s sorted accesses and r random accesses minimize s $C_s + r C_r$

Example

• Compute top-2 for the sum aggregate function

2. Perform random accesses to obtain the scores of all seen objects

Compute score for all objects and find the top-k

R	\mathbf{R}_1		R ₂		R ₂		R	3
X ₁	1		X ₂	0.8	X ₄	0.8		
X ₂	0.8		X ₃	0.7	X ₃	0.6		
X ₃	0.5		X ₁	0.3	X ₁	0.2		
X ₄	0.3		X ₄	0.2	X ₅	0.1		
X ₅	0.1		X ₅	0.1	X ₂	0		

R		
X ₃	1.8	
X ₂	1.6	
X ₁	1.5	
X ₄	1.3	

X₅ cannot be in the top-2 because of the monotonicity property

 $- f(X_5) \le f(X_1) \le f(X_3)$

R		
X ₃	1.8	
X ₂	1.6	
X ₁	1.5	
X ₄	1.3	

 The algorithm is cost optimal under some probabilistic assumptions for a restricted class of aggregate functions

1. Access the elements sequentially

R ₂		
X ₂	0.8	
X ₃	0.7	
X_1	0.3	
X ₄	0.2	
X ₅	0.1	

R ₃		
X ₄	0.8	
X ₃	0.6	
X ₁	0.2	
X ₅	0.1	
X ₂	0	

- 1. At each sequential access
 - a. Set the threshold t to be the aggregate of the scores seen in this access

- 1. At each sequential access
 - b. Do random accesses and compute the score of the objects seen

- 1. At each sequential access
 - c. Maintain a list of top-k objects seen so far

- 1. At each sequential access
 - d. When the scores of the top-k are greater or equal to the threshold, stop

- 1. At each sequential access
 - d. When the scores of the top-k are greater or equal to the threshold, stop

2. Return the top-k seen so far

 From the monotonicity property for any object not seen, the score of the object is less than the threshold

 $-f(X_5) \le t \le f(X_2)$

The algorithm is instance cost-optimal

 within a constant factor of the best algorithm on
 any database

Combining rankings

- In many cases the scores are not known
 - e.g. meta-search engines scores are proprietary information
- ... or we do not know how they were obtained
 - one search engine returns score 10, the other 100. What does this mean?
- ... or the scores are incompatible
 - apples and oranges: does it make sense to combine price with distance?
- In this cases we can only work with the rankings

The problem

- Input: a set of rankings R₁, R₂,..., R_m of the objects X₁, X₂,..., X_n. Each ranking R_i is a total ordering of the objects
 - for every pair X_i,X_j either X_i is ranked above X_j or X_j is ranked above X_i

 Output: A total ordering R that aggregates rankings R₁, R₂,..., R_m

Voting theory

- A voting system is a rank aggregation mechanism
- Long history and literature

criteria and axioms for good voting systems

What is a good voting system?

• The Condorcet criterion

- if object A defeats every other object in a pairwise majority vote, then A should be ranked first
- Extended Condorcet criterion
 - if the objects in a set X defeat in pairwise comparisons the objects in the set Y then the objects in X should be ranked above those in Y
- Not all voting systems satisfy the Condorcet criterion!

- Unfortunately the Condorcet winner does not always exist
 - irrational behavior of groups

$$A > B \qquad B > C \qquad C > A$$

	V_1	V ₂	V ₃
1	А	D	Е
2	В	Е	Α
3	С	Α	В
4	D	В	С
5	Е	С	D

A B

Α

	V_1	V ₂	V ₃
1	Α	D	Е
2	В	Е	Α
3	С	Α	В
4	D	В	С
5	Е	С	D

Α

В

F

Ε

А

E

D

D

• Resolve cycles by imposing an agenda

• C is the winner

• Resolve cycles by imposing an agenda

• But everybody prefers A or B over C

- The voting system is not Pareto optimal
 - there exists another ordering that everybody prefers
- Also, it is sensitive to the order of voting
Plurality vote

• Elect first whoever has more 1st position votes

voters	10	8	7
1	Α	С	В
2	В	А	С
3	С	В	А

Does not find a Condorcet winner (C in this case)

Plurality with runoff

 If no-one gets more than 50% of the 1st position votes, take the majority winner of the first two

voters	10	8	7	2
1	А	С	В	В
2	В	А	С	Α
3	С	В	Α	С

first round: A 10, B 9, C 8 second round: A 18, B 9 winner: A

Plurality with runoff

 If no-one gets more than 50% of the 1st position votes, take the majority winner of the first two

voters	10	8	7	2
1	А	С	В	Α
2	В	А	С	В
3	С	В	А	С

change the order of A and B in the last column

first round: A 12, B 7, C 8 second round: A 12, C 15 winner: C!

Positive Association axiom

• Plurality with runoff violates the positive association axiom

 Positive association axiom: positive changes in preferences for an object should not cause the ranking of the object to decrease

- For each ranking, assign to object X, number of points equal to the number of objects it defeats
 - first position gets n-1 points, second n-2, ..., last 0 points
- The total weight of X is the number of points it accumulates from all rankings

voters	3	2	2
1 (3p)	Α	В	С
2 (2p)	В	С	D
3 (1p)	С	D	А
4 (0p)	D	Α	В

A: 3*3 + 2*0 + 2*1 = 11pB: 3*2 + 2*3 + 2*0 = 12pC: 3*1 + 2*2 + 2*3 = 13pD: 3*0 + 2*1 + 2*2 = 6p

Does not always produce Condorcet winner

• Assume that D is removed from the vote

voters	3	2	2
1 (2p)	Α	В	С
2 (1p)	В	С	Α
3 (0p)	С	А	В

A: 3*2 + 2*0 + 2*1 = 7p B: 3*1 + 2*2 + 2*0 = 7p C: 3*0 + 2*1 + 2*2 = 6p

 Changing the position of D changes the order of the other elements!

Independence of Irrelevant Alternatives

- The relative ranking of X and Y should not depend on a third object Z
 - heavily debated axiom

- The Borda Count of an an object X is the aggregate number of pairwise comparisons that the object X wins
 - follows from the fact that in one ranking X wins all the pairwise comparisons with objects that are under X in the ranking

Voting Theory

 Is there a voting system that does not suffer from the previous shortcomings?

Arrow's Impossibility Theorem

- There is no voting system that satisfies the following axioms
 - Universality
 - all inputs are possible
 - Completeness and Transitivity
 - for each input we produce an answer and it is meaningful
 - Positive Assosiation
 - Independence of Irrelevant Alternatives
 - Non-imposition
 - Non-dictatoriship
- **KENNETH J. ARROW** *Social Choice and Individual Values* (1951). Won Nobel Prize in 1972

Kemeny Optimal Aggregation

- Kemeny distance K(R₁, R₂): The number of pairs of nodes that are ranked in a different order (Kendall-tau)
 - number of bubble-sort swaps required to transform one ranking into another
- Kemeny optimal aggregation minimizes

$$K \langle \langle R_1, \dots, R_m \rangle = \sum_{i=1}^m K \langle \langle R_i \rangle$$

- Kemeny optimal aggregation satisfies the Condorcet criterion and the extended Condorcet criterion
 - maximum likelihood interpretation: produces the ranking that is most likely to have generated the observed rankings
- ...but it is NP-hard to compute
 - easy 2-approximation by obtaining the best of the input rankings, but it is not "interesting"

Locally Kemeny optimal aggregation

 A ranking R is locally Kemeny optimal if there is no bubble-sort swap that produces a ranking R' such that K(R',R₁,...,R_m)≤ K(R',R₁,...,R_m)

- Locally Kemeny optimal is not necessarily Kemeny optimal
- Definitions apply for the case of partial lists also

Locally Kemeny optimal aggregation

- Locally Kemeny optimal aggregation can be computed in polynomial time
 - At the i-th iteration insert the i-th element x in the bottom of the list, and bubble it up until there is an element y such that the majority places y over x
- Locally Kemeny optimal aggregation satisfies the Condorcet and extended Condorcet criterion

Rank Aggregation algorithm [DKNS01]

- Start with an aggregated ranking and make it into a locally Kemeny optimal aggregation
- How do we select the initial aggregation?
 - Use another aggregation method
 - Create a Markov Chain where you move from an object X, to another object Y that is ranked higher by the majority

Spearman's footrule distance

 Spearman's footrule distance: The difference between the ranks R(i) and R'(i) assigned to object i

 Relation between Spearman's footrule and Kemeny distance

Spearman's footrule aggregation

• Find the ranking **R**, that minimizes

$$\mathbf{F},\mathbf{R}_{1},\ldots,\mathbf{R}_{m} = \sum_{i=1}^{m} \mathbf{F},\mathbf{R}_{i}$$

- The optimal Spearman's footrule aggregation can be computed in polynomial time
 - It also gives a 2-approximation to the Kemeny optimal aggregation
- If the median ranks of the objects are unique then this ordering is optimal

Example

R ₃	
1	В
2	С
3	Α
4	D

	R	
1	В	
2	Α	
3	С	
4	D	

• Access the rankings sequentially

R ₂	
1	В
2	Α
3	D
4	С

R ₃	
1	В
2	С
3	Α
4	D

R	
1	
2	
3	
4	

- Access the rankings sequentially
 - when an element has appeared in more than half of the rankings, output it in the aggregated ranking

- Access the rankings sequentially
 - when an element has appeared in more than half of the rankings, output it in the aggregated ranking

- Access the rankings sequentially
 - when an element has appeared in more than half of the rankings, output it in the aggregated ranking

- Access the rankings sequentially
 - when an element has appeared in more than half of the rankings, output it in the aggregated ranking

The Spearman's rank correlation

• Spearman's rank correlation

$$S \langle R \rangle = \sum_{i=1}^{n} \langle R \rangle - R'(i)^{2}$$

 Computing the optimal rank aggregation with respect to Spearman's rank correlation is the same as computing Borda Count

– Computable in polynomial time

Extensions and Applications

- Rank distance measures between partial orderings and top-k lists
- Similarity search
- Ranked Join Indices
- Analysis of Link Analysis Ranking algorithms
- Connections with machine learning

References

- A. Borodin, G. Roberts, J. Rosenthal, P. Tsaparas, Link Analysis Ranking: Algorithms, Theory and Experiments, ACM Transactions on Internet Technologies (TOIT), 5(1), 2005
- Ron Fagin, Ravi Kumar, Mohammad Mahdian, D. Sivakumar, Erik Vee, Comparing and aggregating rankings with ties, PODS 2004
- M. Tennenholtz, and Alon Altman, "On the Axiomatic Foundations of Ranking Systems", Proceedings of IJCAI, 2005
- Ron Fagin, Amnon Lotem, Moni Naor. Optimal aggregation algorithms for middleware, J. Computer and System Sciences 66 (2003), pp. 614-656. Extended abstract appeared in Proc. 2001 ACM Symposium on Principles of Database Systems (PODS '01), pp. 102-113.
- Alex Tabbarok Lecture Notes
- Ron Fagin, Ravi Kumar, D. Sivakumar Efficient similarity search and classification via rank aggregation, Proc. 2003 ACM SIGMOD Conference (SIGMOD '03), pp. 301-312.
- Cynthia Dwork, Ravi Kumar, Moni Naor, D. Sivakumar. Rank Aggregation Methods for the Web. 10th International World Wide Web Conference, May 2001.
- C. Dwork, R. Kumar, M. Naor, D. Sivakumar, "Rank Aggregation Revisited," WWW10; selected as Web Search Area highlight, 2001.