
More on Rankings

Query-independent LAR

• Have an a-priori ordering of the web pages

• Q: Set of pages that contain the keywords in the
query q

• Present the pages in Q ordered according to
order π

• What are the advantages of such an approach?

InDegree algorithm

• Rank pages according to in-degree

– wi = |B(i)|

1. Red Page

2. Yellow Page

3. Blue Page

4. Purple Page

5. Green Page

w=1 w=1

w=2

w=3
w=2

PageRank algorithm [BP98]

• Good authorities should be
pointed by good authorities

• Random walk on the web graph
– pick a page at random

– with probability 1- α jump to a
random page

– with probability α follow a random
outgoing link

• Rank according to the stationary
distribution

•

1. Red Page

2. Purple Page

3. Yellow Page

4. Blue Page

5. Green Page
nqF

qPR
pPR

pq

1
1

)(

)(
)(

Markov chains

• A Markov chain describes a discrete time stochastic process
over a set of states

according to a transition probability matrix

– Pij = probability of moving to state j when at state i
• ∑jPij = 1 (stochastic matrix)

• Memorylessness property: The next state of the chain
depends only at the current state and not on the past of the
process (first order MC)
– higher order MCs are also possible

S = {s1, s2, … sn}

P = {Pij}

Random walks

• Random walks on graphs correspond to
Markov Chains

– The set of states S is the set of nodes of the graph
G

– The transition probability matrix is the probability
that we follow an edge from one node to another

An example

v1
v2

v3

v4
v5

2100021

00313131

00010

10000

0021210

P

10001

00111

00010

10000

00110

A

State probability vector

• The vector qt = (qt
1,qt

2, … ,qt
n) that stores the

probability of being at state i at time t

– q0
i

= the probability of starting from state i

qt = qt-1 P

An example

0210021

00313131

00010

10000

0021210

P

v1
v2

v3

v4
v5

qt+1
1 = 1/3 qt

4 + 1/2 qt
5

qt+1
2 = 1/2 qt

1 + qt
3 + 1/3 qt

4

qt+1
3 = 1/2 qt

1 + 1/3 qt
4

qt+1
4 = 1/2 qt

5

qt+1
5 = qt

2

Stationary distribution

• A stationary distribution for a MC with transition matrix P, is a
probability distribution π, such that π = πP

• A MC has a unique stationary distribution if
– it is irreducible

• the underlying graph is strongly connected

– it is aperiodic
• for random walks, the underlying graph is not bipartite

• The probability πi is the fraction of times that we visited state
i as t → ∞

• The stationary distribution is an eigenvector of matrix P
– the principal left eigenvector of P – stochastic matrices have maximum

eigenvalue 1

Computing the stationary distribution

• The Power Method
– Initialize to some distribution q0

– Iteratively compute qt = qt-1P

– After enough iterations qt ≈ π

– Power method because it computes qt = q0Pt

• Rate of convergence
– determined by λ2

The PageRank random walk

• Vanilla random walk

– make the adjacency matrix stochastic and run a
random walk

0210021

00313131

00010

10000

0021210

P

The PageRank random walk

• What about sink nodes?

– what happens when the random walk moves to a
node without any outgoing inks?

0210021

00313131

00010

00000

0021210

P

0210021

00313131

00010

5151515151

0021210

P'

The PageRank random walk

• Replace these row vectors with a vector v

– typically, the uniform vector

P’ = P + dvT

otherwise0

sink is i if1
d

5151515151

5151515151

5151515151

5151515151

5151515151

2100021

00313131

00010

5151515151

0021210

'P')1(

The PageRank random walk

• How do we guarantee irreducibility?

– add a random jump to vector v with prob α

• typically, to a uniform vector

P’’ = αP’ + (1-α)uvT, where u is the vector of all 1s

Effects of random jump

• Guarantees irreducibility

• Motivated by the concept of random surfer

• Offers additional flexibility

– personalization

– anti-spam

• Controls the rate of convergence

– the second eigenvalue of matrix P’’ is α

A PageRank algorithm

• Performing vanilla power method is now too
expensive – the matrix is not sparse

q0 = v
t = 1
repeat

t = t +1

until δ < ε

1tTt q'P'q
1tt qqδ

Efficient computation of y = (P’’)T x

βvyy

yx β

xαPy

11

T

Random walks on undirected graphs

• In the stationary distribution of a random walk
on an undirected graph, the probability of
being at node i is proportional to the
(weighted) degree of the vertex

• Random walks on undirected graphs are not
“interesting”

Research on PageRank

• Specialized PageRank
– personalization [BP98]

• instead of picking a node uniformly at random favor specific nodes that
are related to the user

– topic sensitive PageRank [H02]
• compute many PageRank vectors, one for each topic

• estimate relevance of query with each topic

• produce final PageRank as a weighted combination

• Updating PageRank [Chien et al 2002]

• Fast computation of PageRank
– numerical analysis tricks

– node aggregation techniques

– dealing with the “Web frontier”

Topic-sensitive pagerank

• HITS-based scores are very inefficient to compute

• PageRank scores are independent of the queries

• Can we bias PageRank rankings to take into
account query keywords?

Topic-sensitive PageRank

Topic-sensitive PageRank

• Conventional PageRank computation:

• r(t+1)(v)=ΣuЄN(v)r
(t)(u)/d(v)

• N(v): neighbors of v
• d(v): degree of v
• r = Mxr

• M’ = (1-α)P+ α[1/n]nxn

• r = (1-α)Pr+ α[1/n]nxnr = (1-α)Mr+ αp
• p = [1/n]nx1

Topic-sensitive PageRank

• r = (1-α)Pr+ αp
• Conventional PageRank: p is a uniform vector with values

1/n

• Topic-sensitive PageRank uses a non-uniform
personalization vector p

• Not simply a post-processing step of the PageRank
computation

• Personalization vector p introduces bias in all iterations of
the iterative computation of the PageRank vector

Personalization vector

• In the random-walk model, the
personalization vector represents the addition
of a set of transition edges, where the
probability of an artificial edge (u,v) is αpv

• Given a graph the result of the PageRank
computation only depends on α and p :
PR(α,p)

Topic-sensitive PageRank: Overall
approach

• Preprocessing

– Fix a set of k topics

– For each topic cj compute the PageRank scores of
page u wrt to the j-th topic: r(u,j)

• Query-time processing:

– For query q compute the total score of page u wrt
q as score(u,q) = Σj=1…k Pr(cj|q) r(u,j)

Topic-sensitive PageRank:
Preprocessing

• Create k different biased PageRank vectors
using some pre-defined set of k categories
(c1,…,ck)

• Tj: set of URLs in the j-th category

• Use non-uniform personalization vector p=wj

such that:

o/w ,0

,
1

)(
j

jj

Tv
Tvw

Topic-sensitive PageRank: Query-time
processing

• Dj: class term vectors consisting of all the
terms appearing in the k pre-selected
categories

• How can we compute P(cj)?

• How can we compute Pr(qi|cj)?

i

jij

jj

j cqc
q

cqc
qc)|Pr()Pr(

)Pr(

)|Pr()Pr(
)|Pr(

• Comparing results of Link Analysis Ranking
algorithms

• Comparing and aggregating rankings

Comparing LAR vectors

• How close are the LAR vectors w1, w2?

w1 = [1 0.8 0.5 0.3 0]

w2 = [0.9 1 0.7 0.6 0.8]

Distance between LAR vectors

• Geometric distance: how close are the
numerical weights of vectors w1, w2?

[i]w[i]ww,wd 21211

w1 = [1.0 0.8 0.5 0.3 0.0]

w2 = [0.9 1.0 0.7 0.6 0.8]

d1(w1,w2) = 0.1+0.2+0.2+0.3+0.8 = 1.6

Distance between LAR vectors

• Rank distance: how close are the ordinal
rankings induced by the vectors w1, w2?

– Kendal’s τ distance

 pairsdistinct ofnumber total

orderdifferent a in ranked pairs
w,wd 21r

Outline

• Rank Aggregation

– Computing aggregate scores

– Computing aggregate rankings - voting

Rank Aggregation

• Given a set of rankings R1,R2,…,Rm of a set of
objects X1,X2,…,Xn produce a single ranking R
that is in agreement with the existing rankings

Examples

• Voting

– rankings R1,R2,…,Rm are the voters, the objects
X1,X2,…,Xn are the candidates.

Examples

• Combining multiple scoring functions

– rankings R1,R2,…,Rm are the scoring functions, the
objects X1,X2,…,Xn are data items.

• Combine the PageRank scores with term-weighting
scores

• Combine scores for multimedia items
– color, shape, texture

• Combine scores for database tuples
– find the best hotel according to price and location

Examples

• Combining multiple sources

– rankings R1,R2,…,Rm are the sources, the objects
X1,X2,…,Xn are data items.

• meta-search engines for the Web

• distributed databases

• P2P sources

Variants of the problem

• Combining scores
– we know the scores assigned to objects by each

ranking, and we want to compute a single score

• Combining ordinal rankings
– the scores are not known, only the ordering is

known

– the scores are known but we do not know how, or
do not want to combine them

• e.g. price and star rating

Combining scores

• Each object Xi has m scores
(ri1,ri2,…,rim)

• The score of object Xi is
computed using an
aggregate scoring function
f(ri1,ri2,…,rim)

R1 R2 R3

X1 1 0.3 0.2

X2 0.8 0.8 0

X3 0.5 0.7 0.6

X4 0.3 0.2 0.8

X5 0.1 0.1 0.1

Combining scores

• Each object Xi has m scores
(ri1,ri2,…,rim)

• The score of object Xi is
computed using an aggregate
scoring function f(ri1,ri2,…,rim)

– f(ri1,ri2,…,rim) = min{ri1,ri2,…,rim}

R1 R2 R3 R

X1 1 0.3 0.2 0.2

X2 0.8 0.8 0 0

X3 0.5 0.7 0.6 0.5

X4 0.3 0.2 0.8 0.2

X5 0.1 0.1 0.1 0.1

Combining scores

• Each object Xi has m scores
(ri1,ri2,…,rim)

• The score of object Xi is
computed using an aggregate
scoring function f(ri1,ri2,…,rim)

– f(ri1,ri2,…,rim) = max{ri1,ri2,…,rim}

R1 R2 R3 R

X1 1 0.3 0.2 1

X2 0.8 0.8 0 0.8

X3 0.5 0.7 0.6 0.7

X4 0.3 0.2 0.8 0.8

X5 0.1 0.1 0.1 0.1

Combining scores

• Each object Xi has m scores
(ri1,ri2,…,rim)

• The score of object Xi is
computed using an aggregate
scoring function f(ri1,ri2,…,rim)

– f(ri1,ri2,…,rim) = ri1 + ri2 + …+ rim

R1 R2 R3 R

X1 1 0.3 0.2 1.5

X2 0.8 0.8 0 1.6

X3 0.5 0.7 0.6 1.8

X4 0.3 0.2 0.8 1.3

X5 0.1 0.1 0.1 0.3

Top-k

• Given a set of n objects and m scoring lists sorted in
decreasing order, find the top-k objects according to
a scoring function f

• top-k: a set T of k objects such that f(rj1,…,rjm) ≤
f(ri1,…,rim) for every object Xi in T and every object Xj
not in T

• Assumption: The function f is monotone
– f(r1,…,rm) ≤ f(r1’,…,rm’) if ri ≤ ri’ for all i

• Objective: Compute top-k with the minimum cost

Cost function

• We want to minimize the number of accesses to the
scoring lists

• Sorted accesses: sequentially access the objects in
the order in which they appear in a list
– cost Cs

• Random accesses: obtain the cost value for a specific
object in a list
– cost Cr

• If s sorted accesses and r random accesses minimize
s Cs + r Cr

Example

• Compute top-2 for the sum aggregate function

R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0

Fagin’s Algorithm

1. Access sequentially all lists in parallel until
there are k objects that have been seen in all
lists

R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0

Fagin’s Algorithm

1. Access sequentially all lists in parallel until
there are k objects that have been seen in all
lists

R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0

Fagin’s Algorithm

1. Access sequentially all lists in parallel until
there are k objects that have been seen in all
lists

R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0

Fagin’s Algorithm

1. Access sequentially all lists in parallel until
there are k objects that have been seen in all
lists

R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0

Fagin’s Algorithm

1. Access sequentially all lists in parallel until
there are k objects that have been seen in all
lists

R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0

Fagin’s Algorithm

2. Perform random accesses to obtain the
scores of all seen objects

R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0

Fagin’s Algorithm

3. Compute score for all objects and find the
top-k

R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0

R

X3 1.8

X2 1.6

X1 1.5

X4 1.3

Fagin’s Algorithm

• X5 cannot be in the top-2 because of the
monotonicity property

– f(X5) ≤ f(X1) ≤ f(X3)

R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0

R

X3 1.8

X2 1.6

X1 1.5

X4 1.3

Fagin’s Algorithm

• The algorithm is cost optimal under some
probabilistic assumptions for a restricted class
of aggregate functions

Threshold algorithm

1. Access the elements sequentially

R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0

Threshold algorithm

1. At each sequential access

a. Set the threshold t to be the aggregate of the
scores seen in this access

R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0

t = 2.6

Threshold algorithm

1. At each sequential access

b. Do random accesses and compute the score of
the objects seen

R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0

X1 1.5

X2 1.6

X4 1.3

t = 2.6

Threshold algorithm

1. At each sequential access

c. Maintain a list of top-k objects seen so far

R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0

X2 1.6

X1 1.5

t = 2.6

Threshold algorithm

1. At each sequential access

d. When the scores of the top-k are greater or
equal to the threshold, stop

R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0

t = 2.1

X3 1.8

X2 1.6

Threshold algorithm

1. At each sequential access

d. When the scores of the top-k are greater or
equal to the threshold, stop

R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0

t = 1.0

X3 1.8

X2 1.6

Threshold algorithm

2. Return the top-k seen so far

R1

X1 1

X2 0.8

X3 0.5

X4 0.3

X5 0.1

R2

X2 0.8

X3 0.7

X1 0.3

X4 0.2

X5 0.1

R3

X4 0.8

X3 0.6

X1 0.2

X5 0.1

X2 0

t = 1.0

X3 1.8

X2 1.6

Threshold algorithm

• From the monotonicity property for any
object not seen, the score of the object is less
than the threshold

– f(X5) ≤ t ≤ f(X2)

• The algorithm is instance cost-optimal

– within a constant factor of the best algorithm on
any database

Combining rankings

• In many cases the scores are not known
– e.g. meta-search engines – scores are proprietary

information

• … or we do not know how they were obtained
– one search engine returns score 10, the other 100. What

does this mean?

• … or the scores are incompatible
– apples and oranges: does it make sense to combine price

with distance?

• In this cases we can only work with the rankings

The problem

• Input: a set of rankings R1,R2,…,Rm of the
objects X1,X2,…,Xn. Each ranking Ri is a total
ordering of the objects

– for every pair Xi,Xj either Xi is ranked above Xj or Xj

is ranked above Xi

• Output: A total ordering R that aggregates
rankings R1,R2,…,Rm

Voting theory

• A voting system is a rank aggregation
mechanism

• Long history and literature

– criteria and axioms for good voting systems

What is a good voting system?

• The Condorcet criterion
– if object A defeats every other object in a pairwise

majority vote, then A should be ranked first

• Extended Condorcet criterion
– if the objects in a set X defeat in pairwise comparisons the

objects in the set Y then the objects in X should be ranked
above those in Y

• Not all voting systems satisfy the Condorcet
criterion!

Pairwise majority comparisons

• Unfortunately the Condorcet winner does not
always exist

– irrational behavior of groups

V1 V2 V3

1 A B C

2 B C A

3 C A B

A > B B > C C > A

Pairwise majority comparisons

• Resolve cycles by imposing an agenda

V1 V2 V3

1 A D E

2 B E A

3 C A B

4 D B C

5 E C D

Pairwise majority comparisons

• Resolve cycles by imposing an agenda

V1 V2 V3

1 A D E

2 B E A

3 C A B

4 D B C

5 E C D

A B

A

Pairwise majority comparisons

• Resolve cycles by imposing an agenda

V1 V2 V3

1 A D E

2 B E A

3 C A B

4 D B C

5 E C D

A B

A E

E

Pairwise majority comparisons

• Resolve cycles by imposing an agenda

V1 V2 V3

1 A D E

2 B E A

3 C A B

4 D B C

5 E C D

A B

A E

E D

D

Pairwise majority comparisons

• Resolve cycles by imposing an agenda

• C is the winner

V1 V2 V3

1 A D E

2 B E A

3 C A B

4 D B C

5 E C D

A B

A E

E D

D C

C

Pairwise majority comparisons

• Resolve cycles by imposing an agenda

• But everybody prefers A or B over C

V1 V2 V3

1 A D E

2 B E A

3 C A B

4 D B C

5 E C D

A B

A E

E D

D C

C

Pairwise majority comparisons

• The voting system is not Pareto optimal

– there exists another ordering that everybody
prefers

• Also, it is sensitive to the order of voting

Plurality vote

• Elect first whoever has more 1st position votes

• Does not find a Condorcet winner (C in this
case)

voters 10 8 7

1 A C B

2 B A C

3 C B A

Plurality with runoff

• If no-one gets more than 50% of the 1st
position votes, take the majority winner of the
first two

voters 10 8 7 2

1 A C B B

2 B A C A

3 C B A C

first round: A 10, B 9, C 8
second round: A 18, B 9
winner: A

Plurality with runoff

• If no-one gets more than 50% of the 1st
position votes, take the majority winner of the
first two

voters 10 8 7 2

1 A C B A

2 B A C B

3 C B A C

first round: A 12, B 7, C 8
second round: A 12, C 15
winner: C!

change the order of
A and B in the last
column

Positive Association axiom

• Plurality with runoff violates the positive
association axiom

• Positive association axiom: positive changes in
preferences for an object should not cause the
ranking of the object to decrease

Borda Count

• For each ranking, assign to object X, number
of points equal to the number of objects it
defeats

– first position gets n-1 points, second n-2, …, last 0
points

• The total weight of X is the number of points it
accumulates from all rankings

Borda Count

• Does not always produce Condorcet winner

voters 3 2 2

1 (3p) A B C

2 (2p) B C D

3 (1p) C D A

4 (0p) D A B

A: 3*3 + 2*0 + 2*1 = 11p
B: 3*2 + 2*3 + 2*0 = 12p
C: 3*1 + 2*2 + 2*3 = 13p
D: 3*0 + 2*1 + 2*2 = 6p

BC

C

B

A

D

Borda Count

• Assume that D is removed from the vote

• Changing the position of D changes the order
of the other elements!

voters 3 2 2

1 (2p) A B C

2 (1p) B C A

3 (0p) C A B

A: 3*2 + 2*0 + 2*1 = 7p
B: 3*1 + 2*2 + 2*0 = 7p
C: 3*0 + 2*1 + 2*2 = 6p

BC

B

A

C

Independence of Irrelevant Alternatives

• The relative ranking of X and Y should not
depend on a third object Z

– heavily debated axiom

Borda Count

• The Borda Count of an an object X is the
aggregate number of pairwise comparisons
that the object X wins

– follows from the fact that in one ranking X wins all
the pairwise comparisons with objects that are
under X in the ranking

Voting Theory

• Is there a voting system that does not suffer
from the previous shortcomings?

Arrow’s Impossibility Theorem

• There is no voting system that satisfies the following axioms
– Universality

• all inputs are possible

– Completeness and Transitivity
• for each input we produce an answer and it is meaningful

– Positive Assosiation

– Independence of Irrelevant Alternatives

– Non-imposition

– Non-dictatoriship

• KENNETH J. ARROW Social Choice and Individual Values
(1951). Won Nobel Prize in 1972

Kemeny Optimal Aggregation

• Kemeny distance K(R1,R2): The number of pairs of nodes that
are ranked in a different order (Kendall-tau)
– number of bubble-sort swaps required to transform one ranking into

another

• Kemeny optimal aggregation minimizes

• Kemeny optimal aggregation satisfies the Condorcet criterion
and the extended Condorcet criterion
– maximum likelihood interpretation: produces the ranking that is most

likely to have generated the observed rankings

• …but it is NP-hard to compute
– easy 2-approximation by obtaining the best of the input rankings, but

it is not “interesting”

m

1i
im1 RR,KR,,RR,K

Locally Kemeny optimal aggregation

• A ranking R is locally Kemeny optimal if there
is no bubble-sort swap that produces a
ranking R’ such that K(R’,R1,…,Rm)≤
K(R’,R1,…,Rm)

• Locally Kemeny optimal is not necessarily
Kemeny optimal

• Definitions apply for the case of partial lists
also

Locally Kemeny optimal aggregation

• Locally Kemeny optimal aggregation can be
computed in polynomial time

– At the i-th iteration insert the i-th element x in the bottom
of the list, and bubble it up until there is an element y such
that the majority places y over x

• Locally Kemeny optimal aggregation satisfies the
Condorcet and extended Condorcet criterion

Rank Aggregation algorithm [DKNS01]

• Start with an aggregated ranking and make it
into a locally Kemeny optimal aggregation

• How do we select the initial aggregation?

– Use another aggregation method

– Create a Markov Chain where you move from an
object X, to another object Y that is ranked higher
by the majority

Spearman’s footrule distance

• Spearman’s footrule distance: The difference
between the ranks R(i) and R’(i) assigned to
object i

• Relation between Spearman’s footrule and
Kemeny distance

n

1i

(i)R'R(i)R'R,F

R'R,2KR'R,F R'R,K

Spearman’s footrule aggregation

• Find the ranking R, that minimizes

• The optimal Spearman’s footrule aggregation can be
computed in polynomial time
– It also gives a 2-approximation to the Kemeny optimal

aggregation

• If the median ranks of the objects are unique then
this ordering is optimal

m

1i
im1 RR,FR,,RR,F

Example

R1

1 A

2 B

3 C

4 D

R2

1 B

2 A

3 D

4 C

R3

1 B

2 C

3 A

4 D

A: (1 , 2 , 3)
B: (1 , 1 , 2)
C: (3 , 3 , 4)
D: (3 , 4 , 4)

R

1 B

2 A

3 C

4 D

The MedRank algorithm

• Access the rankings sequentially

R1

1 A

2 B

3 C

4 D

R2

1 B

2 A

3 D

4 C

R3

1 B

2 C

3 A

4 D

R

1

2

3

4

The MedRank algorithm

• Access the rankings sequentially

– when an element has appeared in more than half
of the rankings, output it in the aggregated
ranking

R1

1 A

2 B

3 C

4 D

R2

1 B

2 A

3 D

4 C

R3

1 B

2 C

3 A

4 D

R

1 B

2

3

4

The MedRank algorithm

• Access the rankings sequentially

– when an element has appeared in more than half
of the rankings, output it in the aggregated
ranking

R1

1 A

2 B

3 C

4 D

R2

1 B

2 A

3 D

4 C

R3

1 B

2 C

3 A

4 D

R

1 B

2 A

3

4

The MedRank algorithm

• Access the rankings sequentially

– when an element has appeared in more than half
of the rankings, output it in the aggregated
ranking

R1

1 A

2 B

3 C

4 D

R2

1 B

2 A

3 D

4 C

R3

1 B

2 C

3 A

4 D

R

1 B

2 A

3 C

4

The MedRank algorithm

• Access the rankings sequentially

– when an element has appeared in more than half
of the rankings, output it in the aggregated
ranking

R1

1 A

2 B

3 C

4 D

R2

1 B

2 A

3 D

4 C

R3

1 B

2 C

3 A

4 D

R

1 B

2 A

3 C

4 D

The Spearman’s rank correlation

• Spearman’s rank correlation

• Computing the optimal rank aggregation with
respect to Spearman’s rank correlation is the
same as computing Borda Count

– Computable in polynomial time

n

1i

2
(i)R'R(i)R'R,S

Extensions and Applications

• Rank distance measures between partial
orderings and top-k lists

• Similarity search

• Ranked Join Indices

• Analysis of Link Analysis Ranking algorithms

• Connections with machine learning

References

• A. Borodin, G. Roberts, J. Rosenthal, P. Tsaparas, Link Analysis Ranking: Algorithms, Theory
and Experiments, ACM Transactions on Internet Technologies (TOIT), 5(1), 2005

• Ron Fagin, Ravi Kumar, Mohammad Mahdian, D. Sivakumar, Erik Vee, Comparing and
aggregating rankings with ties , PODS 2004

• M. Tennenholtz, and Alon Altman, "On the Axiomatic Foundations of Ranking Systems",
Proceedings of IJCAI, 2005

• Ron Fagin, Amnon Lotem, Moni Naor. Optimal aggregation algorithms for middleware, J.
Computer and System Sciences 66 (2003), pp. 614-656. Extended abstract appeared in Proc.
2001 ACM Symposium on Principles of Database Systems (PODS '01), pp. 102-113.

• Alex Tabbarok Lecture Notes
• Ron Fagin, Ravi Kumar, D. Sivakumar Efficient similarity search and classification via rank

aggregation, Proc. 2003 ACM SIGMOD Conference (SIGMOD '03), pp. 301-312.
• Cynthia Dwork, Ravi Kumar, Moni Naor, D. Sivakumar. Rank Aggregation Methods for the

Web. 10th International World Wide Web Conference, May 2001.
• C. Dwork, R. Kumar, M. Naor, D. Sivakumar, "Rank Aggregation Revisited," WWW10; selected

as Web Search Area highlight, 2001.

