Graph Clustering

Why graph clustering is useful?

- Distance matrices are graphs \rightarrow as useful as any other clustering
- Identification of communities in social networks
- Webpage clustering for better data management of web data

Outline

- Min s-t cut problem
- Min cut problem
- Multiway cut
- Minimum k-cut
- Other normalized cuts and spectral graph partitionings

Min s-t cut

- Weighted graph G(V,E)
- An s-t cut $C=(S, T)$ of a graph $G=(V, E)$ is a cut partition of V into S and T such that $s \in S$ and $t \in T$
- Cost of a cut: $\operatorname{Cost}(C)=\Sigma_{e(u, v) u \in S, v \in T} w(e)$
- Problem: Given G, s and t find the minimum cost s-t cut

Max flow problem

- Flow network
- Abstraction for material flowing through the edges
$-\mathbf{G}=(\mathrm{V}, \mathrm{E})$ directed graph with no parallel edges
- Two distinguished nodes: $s=$ source, $t=$ sink
$-c(e)=$ capacity of edge e

Cuts

- An s-t cut is a partition (S, T) of V with $\mathrm{s} \in \mathrm{S}$ and $t \in T$
- capacity of a cut (S, T) is $\operatorname{cap}(\mathrm{S}, \mathrm{T})=\Sigma_{\text {e out of } \mathrm{s}} \mathrm{c}(\mathrm{e})$
- Find s-t cut with the minimum capacity: this problem can be solved optimally in polynomial time by using flow techniques

Flows

- An s-t flow is a function that satisfies
- For each e $\in E 0 \leq f(e) \leq c(e)$ [capacity]
- For each $v \in V-\{s, t\}: \Sigma_{e}$ in to $v f(e)=\Sigma_{\text {e out of } v} f(e)$ [conservation]
- The value of a flow f is: $v(f)=\Sigma_{\text {e out of } s} f(e)$

Max flow problem

- Find s-t flow of maximum value

Flows and cuts

- Flow value lemma: Let f be any flow and let (S, T) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s

$$
\Sigma_{e \text { out of } s} f(e)-\Sigma_{e \text { in to } s} f(e)=v(f)
$$

Flows and cuts

- Weak duality: Let f be any flow and let (S,T) be any s-t cut. Then the value of the flow is at most the capacity of the cut defined by (S, T) :

$v(f) \leq \operatorname{cap}(S, T)$

Certificate of optimality

- Let f be any flow and let (S, T) be any cut. If $\mathrm{v}(\mathrm{f})$ $=\operatorname{cap}(\mathrm{S}, \mathrm{T})$ then f is a max flow and (S, T) is a mincut.
- The min-cut max-flow problems can be solved optimally in polynomial time!

Setting

- Connected, undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- Assignment of weights to edges: w: $\mathrm{E} \rightarrow \mathrm{R}^{+}$
- Cut: Partition of V into two sets: $\mathrm{V}^{\prime}, \mathrm{V}-\mathrm{V}^{\prime}$. The set of edges with one end point in V and the other in V^{\prime} define the cut
- The removal of the cut disconnects \mathbf{G}
- Cost of a cut: sum of the weights of the edges that have one of their end point in V^{\prime} and the other in $\mathrm{V}-\mathrm{V}^{\prime}$

Min cut problem

- Can we solve the min-cut problem using an algorithm for s-t cut?

Randomized min-cut algorithm

- Repeat : pick an edge uniformly at random and merge the two vertices at its end-points
- If as a result there are several edges between some pairs of (newly-formed) vertices retain them all
- Edges between vertices that are merged are removed (no selfloops)
- Until only two vertices remain
- The set of edges between these two vertices is a cut in G and is output as a candidate min-cut

Example of contraction

Observations on the algorithm

- Every cut in the graph at any intermediate stage is a cut in the original graph

Analysis of the algorithm

- C the min-cut of size $\mathrm{k} \rightarrow \mathrm{G}$ has at least $\mathrm{kn} / 2$ edges
- Why?
- E_{i} : the event of not picking an edge of C at the i-th step for $1 \leq i \leq n-2$
- Step 1:
- Probability that the edge randomly chosen is in C is at most $2 k /(k n)=2 / n \rightarrow \operatorname{Pr}\left(E_{1}\right) \geq 1-2 / n$
- Step 2:
- If E_{1} occurs, then there are at least $\mathrm{n}(\mathrm{n}-1) / 2$ edges remaining
- The probability of picking one from C is at most $2 /(n-1) \rightarrow \operatorname{Pr}\left(E_{2} \mid E_{1}\right)=1-2 /(n-1)$
- Step i:
- Number of remaining vertices: $\mathrm{n}-\mathrm{i}+1$
- Number of remaining edges: $k(n-i+1) / 2$ (since we never picked an edge from the cut)
$-\operatorname{Pr}\left(E_{i} \mid \Pi_{j=1 . . . i-1} E_{j}\right) \geq 1-2 /(n-i+1)$
- Probability that no edge in C is ever picked: $\operatorname{Pr}\left(\Pi_{i=1 \ldots n-2} E_{i}\right) \geq \Pi_{i=1 \ldots n-2}(1-2 /(n-i+1))=2 /\left(n^{2}-n\right)$
- The probability of discovering a particular min-cut is larger than $2 / n^{2}$
- Repeat the above algorithm $\mathrm{n}^{2} / 2$ times. The probability that a min-cut is not found is $\left(1-2 / n^{2}\right)^{n^{\wedge} 2 / 2}<1 / e$

Multiway cut (analogue of s-t cut)

- Problem: Given a set of terminals $\mathrm{S}=\left\{\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{k}}\right\}$ subset of V , a multiway cut is a set of edges whose removal disconnects the terminals from each other. The multiway cut problem asks for the minimum weight such set.
- The multiway cut problem is NP-hard (for $\mathrm{k}>2$)

Algorithm for multiway cut

- For each $\mathrm{i}=1, \ldots, \mathrm{k}$, compute the minimum weight isolating cut for s_{i}, say C_{i}
- Discard the heaviest of these cuts and output the union of the rest, say C
- Isolating cut for s_{i} : The set of edges whose removal disconnects s_{i} from the rest of the terminals
- How can we find a minimum-weight isolating cut?
- Can we do it with a single s-t cut computation?

Approximation result

- The previous algorithm achieves an approximation guarantee of 2-2/k
- Proof

Minimum k-cut

- A set of edges whose removal leaves k connected components is called a k-cut. The minimum k-cut problem asks for a minimum-weight k-cut
- Recursively compute cuts in G (and the resulting connected components) until there are k components left
- This is a (2-2/k)-approximation algorithm

Minimum k-cut algorithm

- Compute the Gomory-Hu tree T for G
- Output the union of the lightest $k-1$ cuts of the $n-1$ cuts associated with edges of T in G; let C be this union
- The above algorithm is a (2-2/k)approximation algorithm

Gomory-Hu Tree

- T is a tree with vertex set V
- The edges of T need not be in E
- Let e be an edge in T; its removal from T creates two connected components with vertex sets (S, S')
- The cut in G defined by partition $\left(S, S^{\prime}\right)$ is the cut associated with e in G

Gomory-Hu tree

- Tree T is said to be the Gomory-Hu tree for G if
- For each pair of vertices u, v in V, the weight of a minimum u-v cut in G is the same as that in T
- For each edge e in $T, w^{\prime}(e)$ is the weight of the cut associated with e in G

Min-cuts again

- What does it mean that a set of nodes are well or sparsely interconnected?
- min-cut: the min number of edges such that when removed cause the graph to become disconnected
- small min-cut implies sparse connectivity
$-\min _{\mathrm{U}} \mathrm{E} \mathbb{U}, \mathrm{V}_{-\mathrm{U}_{-}^{-}}^{-}=\sum_{\mathrm{i} \in \mathrm{U}} \sum_{\mathrm{j} \in \mathrm{V}-\mathrm{U}} \mathrm{A} \mathrm{j}_{-}^{-}$

Measuring connectivity

- What does it mean that a set of nodes are well interconnected?
- min-cut: the min number of edges such that when removed cause the graph to become disconnected
- not always a good idea!

Graph expansion

- Normalize the cut by the size of the smallest component
- Cut ratio:

$$
a=\frac{E(U, V-U)}{\min |(U),|V-U|}
$$

- Graph expansion:

$$
\mathrm{a} \mathbf{G}_{=}^{\prime}=\min _{\mathrm{U}} \frac{\mathrm{E}(U, \mathrm{~V}-\mathrm{U})}{\min \left|\mathbf{U}^{-}\right|,|\mathrm{V}-\mathrm{U}|}
$$

- We will now see how the graph expansion relates to the eigenvalue of the adjacency matrix A

Spectral analysis

- The Laplacian matrix L = D - A where
- A = the adjacency matrix
$-D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$
- $d_{i}=$ degree of node i
- Therefore
$-L(i, i)=d_{i}$
$-L(i, j)=-1$, if there is an edge (i, j)

Laplacian Matrix properties

- The matrix L is symmetric and positive semidefinite
- all eigenvalues of L are positive
- The matrix L has 0 as an eigenvalue, and corresponding eigenvector $\mathrm{w}_{1}=(1,1, \ldots, 1)$
$-\lambda_{1}=0$ is the smallest eigenvalue

The second smallest eigenvalue

- The second smallest eigenvalue (also known as Fielder value) λ_{2} satisfies

$$
\lambda_{2}=\min _{x \perp w_{1},\|x\|=1} x^{\top} L x
$$

- The vector that minimizes λ_{2} is called the Fielder vector. It minimizes

$$
\lambda_{2}=\min _{x \neq 0} \frac{\sum_{(i, j) \in E} \mathbf{k}_{i}-x_{j}{ }^{2},}{\sum_{i} x_{i}^{2}} \text { where } \quad \sum_{i} x_{i}=0
$$

Spectral ordering

- The values of x minimize
- For weighted matrices

$$
\sum_{\substack{x \rightarrow 0}}^{\sum_{\substack{10 j \in \in}} k_{i}-x_{j} z^{2}} \sum_{i} x_{i}^{2} \quad \sum x_{i}=0
$$

$$
\min _{\substack{x \rightarrow 0}} \frac{\sum_{(i n)} A j \sum_{i}-x_{j}{ }^{2}}{\sum_{i} x_{1}^{2}} \quad \sum x_{i}=0
$$

- The ordering according to the x_{i} values will group similar (connected) nodes together
- Physical interpretation: The stable state of springs placed on the edges of the graph

Spectral partition

- Partition the nodes according to the ordering induced by the Fielder vector
- If $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ is the Fielder vector, then split nodes according to a value s
- bisection: s is the median value in u
- ratio cut: s is the value that minimizes α
- sign: separate positive and negative values (s=0)
- gap: separate according to the largest gap in the values of u
- This works well (provably for special cases)

Fieldervalue

- The value λ_{2} is a good approximation of the graph expansion

$$
\begin{aligned}
& \frac{\mathrm{a}(\mathrm{G})^{2}}{2 \mathrm{~d}} \leq \lambda_{2} \leq 2 \mathrm{a}(\mathrm{G}) \\
& \frac{\lambda_{2}}{2} \leq \mathrm{a}(\mathrm{G}) \leq \sqrt{\lambda_{2}\left(\mathrm{~d}-\lambda_{2}\right.}
\end{aligned}
$$

- For the minimum ratio cut of the Fielder vector we have that

$$
\frac{\mathrm{a}^{2}}{2 \mathrm{~d}} \leq \lambda_{2} \leq 2 \mathrm{a}(\mathrm{G})
$$

- If the max degree d is bounded we obtain a good approximation of the minimum expansion cut

Conductance

- The expansion does not capture the intercluster similarity well
- The nodes with high degree are more important
- Graph Conductance
- weighted degrees of nodes in U

$$
\mathrm{d}(\mathrm{U})=\sum_{\mathrm{i} \in \mathrm{U}} \sum_{\mathrm{j} \in \mathrm{U}} \mathrm{~A} \mathrm{j}_{-}^{-}
$$

Conductance and random walks

- Consider the normalized stochastic matrix $M=D^{-1} A$
- The conductance of the Markov Chain M is
- the probability that the random walk escapes set U
- The conductance of the graph is the same as that of the Markov Chain, $\phi(\mathrm{A})=\phi(\mathrm{M})$
- Conductance ϕ is related to the second eigenvalue of the matrix M

$$
\frac{\varphi^{2}}{8} \leq 1-\mu_{2} \leq \varphi
$$

Interpretation of conductance

- Low conductance means that there is some bottleneck in the graph
- a subset of nodes not well connected with the rest of the graph.
- High conductance means that the graph is well connected

Clustering Conductance

- The conductance of a clustering is defined as the minimum conductance over all clusters in the clustering.
- Maximizing conductance of clustering seems like a natural choice

A spectral algorithm

- Create matrix $\mathrm{M}=\mathrm{D}^{-1} \mathrm{~A}$
- Find the second largest eigenvector v
- Find the best ratio-cut (minimum conductance cut) with respect to v
- Recurse on the pieces induced by the cut.
- The algorithm has provable guarantees

A divide and merge methodology

- Divide phase:
- Recursively partition the input into two pieces until singletons are produced
- output: a tree hierarchy
- Merge phase:
- use dynamic programming to merge the leafs in order to produce a tree-respecting flat clustering

Merge phase or dynamic-progamming on trees

- The merge phase finds the optimal clustering in the tree T produced by the divide phase
- \mathbf{k}-means objective with cluster centers $\mathrm{C}_{1}, \ldots, \mathrm{c}_{\mathrm{k}}$:

$$
F\left(\left\{C_{1}, \ldots, C_{k}\right\}\right)=\sum_{i} \sum_{u \in C_{i}} d\left(u, c_{i}\right)^{2}
$$

Dynamic programming on trees

- OPT(C,i): optimal clustering for \mathbf{C} using i clusters
- C_{1}, C_{r} the left and the right children of node \mathbf{C}
- Dynamic-programming recurrence

$$
O P T(C, i)=\left\{\begin{array}{c}
C, \text { wheni }=1 \\
\arg \min _{1 \leq j \leq i} F\left(O P T\left(C_{l}, j\right) \cup O P T\left(C_{r}, i-j\right)\right), \text { otherwise }
\end{array}\right.
$$

