
Graph Clustering

Why graph clustering is useful?

• Distance matrices are graphs as useful as
any other clustering

• Identification of communities in social
networks

• Webpage clustering for better data
management of web data

Outline

• Min s-t cut problem

• Min cut problem

• Multiway cut

• Minimum k-cut

• Other normalized cuts and spectral graph
partitionings

Min s-t cut

• Weighted graph G(V,E)

• An s-t cut C = (S,T) of a graph G = (V, E) is a cut
partition of V into S and T such that s∈S and t∈T

• Cost of a cut: Cost(C) = Σe(u,v) uЄS, v ЄT w(e)

• Problem: Given G, s and t find the minimum cost
s-t cut

Max flow problem

• Flow network

– Abstraction for material flowing through the
edges

– G = (V,E) directed graph with no parallel edges

– Two distinguished nodes: s = source, t= sink

– c(e) = capacity of edge e

Cuts

• An s-t cut is a partition (S,T) of V with sЄS and
tЄT

• capacity of a cut (S,T) is cap(S,T) = Σe out of Sc(e)

• Find s-t cut with the minimum capacity: this
problem can be solved optimally in
polynomial time by using flow techniques

Flows

• An s-t flow is a function that satisfies

– For each eЄE 0≤f(e) ≤c(e) [capacity]

– For each vЄV-{s,t}: Σe in to vf(e) = Σe out of vf(e)
[conservation]

• The value of a flow f is: v(f) = Σe out of s f(e)

Max flow problem

• Find s-t flow of maximum value

Flows and cuts

• Flow value lemma: Let f be any flow and let
(S,T) be any s-t cut. Then, the net flow sent
across the cut is equal to the amount leaving s

Σe out of S f(e) – Σe in to S f(e) = v(f)

Flows and cuts

• Weak duality: Let f be any flow and let (S,T)
be any s-t cut. Then the value of the flow is at
most the capacity of the cut defined by (S,T):

v(f) ≤cap(S,T)

Certificate of optimality

• Let f be any flow and let (S,T) be any cut. If v(f)
= cap(S,T) then f is a max flow and (S,T) is a
min cut.

• The min-cut max-flow problems can be solved
optimally in polynomial time!

Setting

• Connected, undirected graph G=(V,E)

• Assignment of weights to edges: w: ER+

• Cut: Partition of V into two sets: V’, V-V’. The set of edges
with one end point in V and the other in V’ define the cut

• The removal of the cut disconnects G

• Cost of a cut: sum of the weights of the edges that have
one of their end point in V’ and the other in V-V’

Min cut problem

• Can we solve the min-cut problem using an
algorithm for s-t cut?

Randomized min-cut algorithm

• Repeat : pick an edge uniformly at random and merge the
two vertices at its end-points

– If as a result there are several edges between some pairs of
(newly-formed) vertices retain them all

– Edges between vertices that are merged are removed (no self-
loops)

• Until only two vertices remain

• The set of edges between these two vertices is a cut in G
and is output as a candidate min-cut

Example of contraction

e

Observations on the algorithm

• Every cut in the graph at any intermediate
stage is a cut in the original graph

Analysis of the algorithm

• C the min-cut of size k G has at least kn/2 edges
– Why?

• Ei: the event of not picking an edge of C at the i-th step for 1≤i ≤n-2
• Step 1:

– Probability that the edge randomly chosen is in C is at most 2k/(kn)=2/n Pr(E1) ≥ 1-2/n

• Step 2:
– If E1 occurs, then there are at least n(n-1)/2 edges remaining
– The probability of picking one from C is at most 2/(n-1) Pr(E2|E1) = 1 – 2/(n-1)

• Step i:
– Number of remaining vertices: n-i+1
– Number of remaining edges: k(n-i+1)/2 (since we never picked an edge from the cut)
– Pr(Ei|Πj=1…i-1 Ej) ≥ 1 – 2/(n-i+1)
– Probability that no edge in C is ever picked: Pr(Πi=1…n-2 Ei) ≥ Πi=1…n-2(1-2/(n-i+1))=2/(n2-n)

• The probability of discovering a particular min-cut is larger than 2/n2

• Repeat the above algorithm n2/2 times. The probability that a min-cut is not found
is (1-2/n2)n^2/2 < 1/e

Multiway cut (analogue of s-t cut)

• Problem: Given a set of terminals S = {s1,…,sk}
subset of V, a multiway cut is a set of edges
whose removal disconnects the terminals
from each other. The multiway cut problem
asks for the minimum weight such set.

• The multiway cut problem is NP-hard (for k>2)

Algorithm for multiway cut

• For each i=1,…,k, compute the minimum weight
isolating cut for si, say Ci

• Discard the heaviest of these cuts and output the union
of the rest, say C

• Isolating cut for si: The set of edges whose removal
disconnects si from the rest of the terminals

• How can we find a minimum-weight isolating cut?
– Can we do it with a single s-t cut computation?

Approximation result

• The previous algorithm achieves an
approximation guarantee of 2-2/k

• Proof

Minimum k-cut

• A set of edges whose removal leaves k connected
components is called a k-cut. The minimum k-cut
problem asks for a minimum-weight k-cut

• Recursively compute cuts in G (and the resulting
connected components) until there are k
components left

• This is a (2-2/k)-approximation algorithm

Minimum k-cut algorithm

• Compute the Gomory-Hu tree T for G

• Output the union of the lightest k-1 cuts of
the n-1 cuts associated with edges of T in G;
let C be this union

• The above algorithm is a (2-2/k)-
approximation algorithm

Gomory-Hu Tree

• T is a tree with vertex set V

• The edges of T need not be in E

• Let e be an edge in T; its removal from T creates
two connected components with vertex sets
(S,S’)

• The cut in G defined by partition (S,S’) is the cut
associated with e in G

Gomory-Hu tree

• Tree T is said to be the Gomory-Hu tree for G
if

– For each pair of vertices u,v in V, the weight of a
minimum u-v cut in G is the same as that in T

– For each edge e in T, w’(e) is the weight of the cut
associated with e in G

Min-cuts again

• What does it mean that a set of nodes are well or sparsely
interconnected?

• min-cut: the min number of edges such that when removed
cause the graph to become disconnected
– small min-cut implies sparse connectivity

–

U V-U

Ui UVj
U

ji,AUVU,E min

Measuring connectivity

• What does it mean that a set of nodes are well
interconnected?

• min-cut: the min number of edges such that when removed
cause the graph to become disconnected
– not always a good idea!

U UV-U V-U

Graph expansion

• Normalize the cut by the size of the smallest
component

• Cut ratio:

• Graph expansion:

• We will now see how the graph expansion relates to
the eigenvalue of the adjacency matrix A

UV,Umin

U-VU,E
minGα

U

UV,Umin

U-VU,E
α

Spectral analysis

• The Laplacian matrix L = D – A where

– A = the adjacency matrix

– D = diag(d1,d2,…,dn)

• di = degree of node i

• Therefore

– L(i,i) = di

– L(i,j) = -1, if there is an edge (i,j)

Laplacian Matrix properties

• The matrix L is symmetric and positive semi-
definite

– all eigenvalues of L are positive

• The matrix L has 0 as an eigenvalue, and
corresponding eigenvector w1 = (1,1,…,1)

– λ1 = 0 is the smallest eigenvalue

The second smallest eigenvalue

• The second smallest eigenvalue (also known
as Fielder value) λ2 satisfies

• The vector that minimizes λ2 is called the
Fielder vector. It minimizes

Lxxminλ T

1x,wx
2

1

i

2
i

Ej)(i,

2

ji

0x
2

x

xx

minλ where
i i 0x

Spectral ordering

• The values of x minimize

• For weighted matrices

• The ordering according to the xi values will group similar
(connected) nodes together

• Physical interpretation: The stable state of springs placed on
the edges of the graph

i

2
i

Ej)(i,

2

ji

0x x

xx

min

i

2
i

j)(i,

2

ji

0x x

xxji,A

min

i i 0x

i i 0x

Spectral partition

• Partition the nodes according to the ordering
induced by the Fielder vector

• If u = (u1,u2,…,un) is the Fielder vector, then split
nodes according to a value s

– bisection: s is the median value in u

– ratio cut: s is the value that minimizes α

– sign: separate positive and negative values (s=0)

– gap: separate according to the largest gap in the values of
u

• This works well (provably for special cases)

Fielder Value

• The value λ2 is a good approximation of the graph expansion

• For the minimum ratio cut of the Fielder vector we have that

• If the max degree d is bounded we obtain a good approximation of the
minimum expansion cut

α(G)λ
2d

α(G)
2

2

2

22
2 λ2dλα(G)

2

λ

d = maximum degree

α(G)λ
2d

α
2

2

2

Conductance

• The expansion does not capture the inter-
cluster similarity well

– The nodes with high degree are more important

• Graph Conductance

– weighted degrees of nodes in U

UVd,Udmin

U-VU,E
minG

U

Ui Uj

ji,A d(U)

Conductance and random walks

• Consider the normalized stochastic matrix M = D-1A
• The conductance of the Markov Chain M is

– the probability that the random walk escapes set U

• The conductance of the graph is the same as that of the
Markov Chain, φ(A) = φ(M)

• Conductance φ is related to the second eigenvalue of the
matrix M

UVπ,Uπmin

j]π(i)M[i,

minM
Ui Uj

U

2

2

μ1
8

Interpretation of conductance

• Low conductance means that there is some
bottleneck in the graph

– a subset of nodes not well connected with the rest
of the graph.

• High conductance means that the graph is
well connected

Clustering Conductance

• The conductance of a clustering is defined as
the minimum conductance over all clusters in
the clustering.

• Maximizing conductance of clustering seems
like a natural choice

A spectral algorithm

• Create matrix M = D-1A

• Find the second largest eigenvector v

• Find the best ratio-cut (minimum conductance
cut) with respect to v

• Recurse on the pieces induced by the cut.

• The algorithm has provable guarantees

A divide and merge methodology

• Divide phase:

– Recursively partition the input into two pieces
until singletons are produced

– output: a tree hierarchy

• Merge phase:

– use dynamic programming to merge the leafs in
order to produce a tree-respecting flat clustering

Merge phase or dynamic-progamming
on trees

• The merge phase finds the optimal clustering
in the tree T produced by the divide phase

• k-means objective with cluster centers c1,…,ck:

i Cu

ik

i

cudCCF 2

1),(}),...,({

Dynamic programming on trees

• OPT(C,i): optimal clustering for C using i
clusters

• Cl, Cr the left and the right children of node C

• Dynamic-programming recurrence

otherwise)),,(),((minarg

1 i when ,
),(

1 jiCOPTjCOPTF

C
iCOPT

rlij

