Mining Association Rules in Large Databases
Association rules

- Given a set of transactions D, find rules that will predict the occurrence of an item (or a set of items) based on the occurrences of other items in the transaction.

Market-Basket transactions

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Bread, Diaper, Beer, Eggs</td>
</tr>
<tr>
<td>3</td>
<td>Milk, Diaper, Beer, Coke</td>
</tr>
<tr>
<td>4</td>
<td>Bread, Milk, Diaper, Beer</td>
</tr>
<tr>
<td>5</td>
<td>Bread, Milk, Diaper, Coke</td>
</tr>
</tbody>
</table>

Examples of association rules

- $\{\text{Diaper}\} \rightarrow \{\text{Beer}\}$,
- $\{\text{Milk, Bread}\} \rightarrow \{\text{Diaper, Coke}\}$,
- $\{\text{Beer, Bread}\} \rightarrow \{\text{Milk}\}$,
An even simpler concept: frequent itemsets

- Given a set of transactions D, find combination of items that occur frequently

Market-Basket transactions

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Bread, Diaper, Beer, Eggs</td>
</tr>
<tr>
<td>3</td>
<td>Milk, Diaper, Beer, Coke</td>
</tr>
<tr>
<td>4</td>
<td>Bread, Milk, Diaper, Beer</td>
</tr>
<tr>
<td>5</td>
<td>Bread, Milk, Diaper, Coke</td>
</tr>
</tbody>
</table>

Examples of frequent itemsets

- \{Diaper, Beer\},
- \{Milk, Bread\},
- \{Beer, Bread, Milk\},
Lecture outline

• **Task 1:** Methods for finding all frequent itemsets efficiently

• **Task 2:** Methods for finding association rules efficiently
Definition: Frequent Itemset

- **Itemset**
 - A set of one or more items
 - E.g.: \{Milk, Bread, Diaper\}
 - \(k\)-itemset
 - An itemset that contains \(k\) items

- **Support count (\(\sigma\))**
 - Frequency of occurrence of an itemset (number of transactions it appears)
 - E.g. \(\sigma(\{\text{Milk, Bread, Diaper}\}) = 2\)

- **Support**
 - Fraction of the transactions in which an itemset appears
 - E.g. \(s(\{\text{Milk, Bread, Diaper}\}) = 2/5\)

- **Frequent Itemset**
 - An itemset whose support is greater than or equal to a \textit{minsup} threshold

<table>
<thead>
<tr>
<th>(TID)</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Bread, Diaper, Beer, Eggs</td>
</tr>
<tr>
<td>3</td>
<td>Milk, Diaper, Beer, Coke</td>
</tr>
<tr>
<td>4</td>
<td>Bread, Milk, Diaper, Beer</td>
</tr>
<tr>
<td>5</td>
<td>Bread, Milk, Diaper, Coke</td>
</tr>
</tbody>
</table>
Why do we want to find frequent itemsets?

• Find all combinations of items that occur together

• They might be interesting (e.g., in placement of items in a store 😊)

• Frequent itemsets are only positive combinations (we do not report combinations that do not occur frequently together)

• Frequent itemsets aims at providing a summary for the data
Finding frequent sets

• **Task:** Given a transaction database D and a *minsup* threshold find all frequent itemsets and the frequency of each set in this collection

• **Stated differently:** Count the number of times combinations of attributes occur in the data. If the count of a combination is above *minsup* report it.

• **Recall:** The input is a transaction database D where every transaction consists of a subset of items from some universe I
How many itemsets are there?

Given d items, there are 2^d possible itemsets.
When is the task sensible and feasible?

- If $\text{minsup} = 0$, then all subsets of I will be frequent and thus the size of the collection will be very large.

- This summary is very large (maybe larger than the original input) and thus not interesting.

- The task of finding all frequent sets is interesting typically only for relatively large values of minsup.
A simple algorithm for finding all frequent itemsets
Brute-force algorithm for finding all frequent itemsets?

- Generate all possible itemsets (lattice of itemsets)
 - Start with 1-itemsets, 2-itemsets,...,d-itemsets

- Compute the frequency of each itemset from the data
 - Count in how many transactions each itemset occurs

- If the support of an itemset is above \texttt{minsup} report it as a frequent itemset
Brute-force approach for finding all frequent itemsets

• Complexity?

 – Match every candidate against each transaction

 – For M candidates and N transactions, the complexity is~ $O(NMw)$ => Expensive since $M = 2^d$!!!
Speeding-up the brute-force algorithm

• Reduce the **number of candidates** \((M)\)

 – Complete search: \(M=2^d\)

 – Use pruning techniques to reduce \(M\)

• Reduce the **number of transactions** \((N)\)

 – Reduce size of \(N\) as the size of itemset increases

 – Use vertical-partitioning of the data to apply the mining algorithms

• Reduce the **number of comparisons** \((NM)\)

 – Use efficient data structures to store the candidates or transactions

 – No need to match every candidate against every transaction
Reduce the number of candidates

• Apriori principle (Main observation):
 – If an itemset is frequent, then all of its subsets must also be frequent

• Apriori principle holds due to the following property of the support measure:

\[\forall X, Y : (X \subseteq Y) \implies s(X) \geq s(Y) \]

 – The support of an itemset never exceeds the support of its subsets
 – This is known as the anti-monotone property of support
Example

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Bread, Diaper, Beer, Eggs</td>
</tr>
<tr>
<td>3</td>
<td>Milk, Diaper, Beer, Coke</td>
</tr>
<tr>
<td>4</td>
<td>Bread, Milk, Diaper, Beer</td>
</tr>
<tr>
<td>5</td>
<td>Bread, Milk, Diaper, Coke</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\text{s(Bread)} & > \text{s(Bread, Beer)} \\
\text{s(Milk)} & > \text{s(Bread, Milk)} \\
\text{s(Diaper, Beer)} & > \text{s(Diaper, Beer, Coke)}
\end{align*}
\]
Illustrating the Apriori principle

Found to be Infrequent

Pruned supersets
Illustrating the Apriori principle

<table>
<thead>
<tr>
<th>Item</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bread</td>
<td>4</td>
</tr>
<tr>
<td>Coke</td>
<td>2</td>
</tr>
<tr>
<td>Milk</td>
<td>4</td>
</tr>
<tr>
<td>Beer</td>
<td>3</td>
</tr>
<tr>
<td>Diaper</td>
<td>4</td>
</tr>
<tr>
<td>Eggs</td>
<td>1</td>
</tr>
</tbody>
</table>

Items (1-itemsets)

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{Bread, Milk}</td>
<td>3</td>
</tr>
<tr>
<td>{Bread, Beer}</td>
<td>2</td>
</tr>
<tr>
<td>{Bread, Diaper}</td>
<td>3</td>
</tr>
<tr>
<td>{Milk, Beer}</td>
<td>2</td>
</tr>
<tr>
<td>{Milk, Diaper}</td>
<td>3</td>
</tr>
<tr>
<td>{Beer, Diaper}</td>
<td>3</td>
</tr>
</tbody>
</table>

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{Bread, Milk, Diaper}</td>
<td>3</td>
</tr>
</tbody>
</table>

Triplets (3-itemsets)

If every subset is considered, $6^C_1 + 6^C_2 + 6^C_3 = 41$
With support-based pruning, $6 + 6 + 1 = 13$

\[
\text{minsup} = \frac{3}{5}
\]
Exploiting the Apriori principle

1. Find frequent 1-items and put them to L_k ($k=1$)
2. Use L_k to generate a collection of candidate itemsets C_{k+1} with size $(k+1)$
3. Scan the database to find which itemsets in C_{k+1} are frequent and put them into L_{k+1}
4. If L_{k+1} is not empty
 - $k=k+1$
 - Goto step 2

The Apriori algorithm

\(C_k \): Candidate itemsets of size \(k \)

\(L_k \): frequent itemsets of size \(k \)

\(L_1 = \{ \text{frequent 1-itemsets} \} \);

\textbf{for} \((k = 2; \ L_k \neq \emptyset; \ k++) \)

\(C_{k+1} = \text{GenerateCandidates}(L_k) \)

\textbf{for} each transaction \(t \) in database \textbf{do}

\hspace{1cm} \text{increment count of candidates in } C_{k+1} \text{ that are contained in } t

\textbf{endfor}

\(L_{k+1} = \text{candidates in } C_{k+1} \text{ with support } \geq \text{min_sup} \)

\textbf{endfor}

\textbf{return} \(\bigcup_k L_k \);
GenerateCandidates

• Assume the items in L_k are listed in an order (e.g., alphabetical)

• **Step 1: self-joining L_k (IN SQL)**

 insert into C_{k+1}

 select $p.item_1$, $p.item_2$, ..., $p.item_k$, $q.item_k$

 from $L_k \ p$, $L_k \ q$

 where $p.item_1$=$q.item_1$, ..., $p.item_{k-1}$=$q.item_{k-1}$, $p.item_k$ < $q.item_k$
Example of Candidates Generation

- $L_3 = \{abc, abd, acd, ace, bcd\}$

- **Self-joining**: $L_3 \times L_3$

 - $abcd$ from abc and abd

 - $acde$ from acd and ace
GenerateCandidates

• Assume the items in L_k are listed in an order (e.g., alphabetical)

• **Step 1: self-joining L_k (IN SQL)**

  ```sql
  insert into $C_{k+1}$
  select $p.item_1$, $p.item_2$, ..., $p.item_k$, $q.item_k$
  from $L_k \ p$, $L_k \ q$
  where $p.item_1=q.item_1$, ..., $p.item_{k-1}=q.item_{k-1}$, $p.item_k < q.item_k$
  ```

• **Step 2: pruning**

  ```plaintext
  forall itemsets $c$ in $C_{k+1}$ do
    forall $k$-subsets $s$ of $c$ do
      if ($s$ is not in $L_k$) then delete $c$ from $C_{k+1}$
  ```
Example of Candidates Generation

- $L_3=\{abc, abd, acd, ace, bcd\}$

- **Self-joining**: $L_3 \times L_3$
 - $abcd$ from abc and abd
 - $acde$ from acd and ace

- **Pruning**:
 - $acde$ is removed because ade is not in L_3

- $C_4=\{abcd\}$
The Apriori algorithm

\(C_k \): Candidate itemsets of size \(k \)
\(L_k \): frequent itemsets of size \(k \)

\(L_1 = \{ \text{frequent items} \}; \)

for \((k = 1; L_k \neq \emptyset; k++\))

\[C_{k+1} = \text{GenerateCandidates}(L_k) \]

for each transaction \(t \) in database do

increment count of candidates in \(C_{k+1} \) that are contained in \(t \)

endfor

\(L_{k+1} = \text{candidates in } C_{k+1} \text{ with support } \geq \text{min_sup} \)

endfor

return \(\bigcup_k L_k \);
How to Count Supports of Candidates?

- Naive algorithm?

 - Method:
 - Candidate itemsets are stored in a hash-tree
 - *Leaf node* of hash-tree contains a list of itemsets and counts
 - *Interior node* contains a hash table
 - *Subset function*: finds all the candidates contained in a transaction
Example of the hash-tree for C_3

Hash function: mod 3

Hash on 1st item

Hash on 2nd item

Hash on 3rd item
Example of the hash-tree for C_3

Hash function: mod 3

12345 look for 1XX

2345 look for 2XX

345 look for 3XX

Hash on 1st item

Hash on 2nd item

Hash on 3rd item
Example of the hash-tree for C_3

Hash function: mod 3

The subset function finds all the candidates contained in a transaction:
• At the root level it hashes on all items in the transaction
• At level i it hashes on all items in the transaction that come after item the i-th item
Discussion of the Apriori algorithm

• Much faster than the Brute-force algorithm
 – It avoids checking all elements in the lattice

• The running time is in the worst case $O(2^d)$
 – Pruning really prunes in practice

• It makes multiple passes over the dataset
 – One pass for every level k

• Multiple passes over the dataset is inefficient when we have thousands of candidates and millions of transactions
Making a single pass over the data: the AprioriTid algorithm

• The database is **not** used for counting support after the 1st pass!

• Instead information in data structure C_k' is used for counting support in every step

 – $C_k' = \{<TID, \{X_k\}> \mid X_k$ is a potentially frequent k-itemset in transaction with id=TID$\}$

 – C_1': corresponds to the original database (every item i is replaced by itemset $\{i\}$)

 – The member C_k' corresponding to transaction t is $<t.TID, \{c \in C_k \mid c$ is contained in $t\}>$
The AprioriTID algorithm

- \(L_1 = \{\text{frequent 1-itemsets}\} \)
- \(C_1' = \text{database } D \)
- \textbf{for} (k=2, \(L_{k-1}' \neq \text{empty}; k++\)
 \[C_k = \text{GenerateCandidates}(L_{k-1}) \]
 \[C_k' = \{\} \]
 \textbf{for} all entries \(t \in C_{k-1}' \)
 \[C_t = \{c \in C_k | t[c-c[k]] = 1 \text{ and } t[c-c[k-1]] = 1 \} \]
 \textbf{for} all \(c \in C_t \) \{c.count++\}
 \textbf{if} (C_t \neq \{\})
 \[\text{append } C_t \text{ to } C_k' \]
 \textbf{endif}
 \textbf{endfor}
 \[L_k = \{c \in C_k | c.c\text{.count} \geq \text{minsup}\} \]
 \textbf{endfor}
- \textbf{return} \(\bigcup_{k=1}^{n} L_k \)
AprioriTid Example (minsup=2)

Database D

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1 3 4</td>
</tr>
<tr>
<td>200</td>
<td>2 3 5</td>
</tr>
<tr>
<td>300</td>
<td>1 2 3 5</td>
</tr>
<tr>
<td>400</td>
<td>2 5</td>
</tr>
</tbody>
</table>

\[C_1'\]

<table>
<thead>
<tr>
<th>TID</th>
<th>Sets of itemsets</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>{{1},{3},{4}}</td>
</tr>
<tr>
<td>200</td>
<td>{{2},{3},{5}}</td>
</tr>
<tr>
<td>300</td>
<td>{{1},{2},{3},{5}}</td>
</tr>
<tr>
<td>400</td>
<td>{{2},{5}}</td>
</tr>
</tbody>
</table>

\[L_1\]

<table>
<thead>
<tr>
<th>itemset</th>
<th>sup.</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1}</td>
<td>2</td>
</tr>
<tr>
<td>{2}</td>
<td>3</td>
</tr>
<tr>
<td>{3}</td>
<td>3</td>
</tr>
<tr>
<td>{5}</td>
<td>3</td>
</tr>
</tbody>
</table>

\[C_2'\]

<table>
<thead>
<tr>
<th>TID</th>
<th>Sets of itemsets</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>{{1 3}}</td>
</tr>
<tr>
<td>200</td>
<td>{{2 3},{2 5},{3 5}}</td>
</tr>
<tr>
<td>300</td>
<td>{{1 2},{1 3},{1 5}, {2 3},{2 5},{3 5}}</td>
</tr>
<tr>
<td>400</td>
<td>{{2 5}}</td>
</tr>
</tbody>
</table>

\[L_2\]

<table>
<thead>
<tr>
<th>itemset</th>
<th>sup.</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1 3}</td>
<td>2</td>
</tr>
<tr>
<td>{2 3}</td>
<td>2</td>
</tr>
<tr>
<td>{2 5}</td>
<td>3</td>
</tr>
<tr>
<td>{3 5}</td>
<td>2</td>
</tr>
</tbody>
</table>

\[C_3'\]

<table>
<thead>
<tr>
<th>TID</th>
<th>Sets of itemsets</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>{{2 3 5}}</td>
</tr>
<tr>
<td>300</td>
<td>{{2 3 5}}</td>
</tr>
</tbody>
</table>

\[L_3\]

<table>
<thead>
<tr>
<th>itemset</th>
<th>sup.</th>
</tr>
</thead>
<tbody>
<tr>
<td>{2 3 5}</td>
<td>2</td>
</tr>
</tbody>
</table>
Discussion on the AprioriTID algorithm

- \(L_1 = \{ \text{frequent 1-itemsets} \} \)
- \(C_1' = \text{database } D \)
- for \((k=2, L_{k-1}' \neq \text{empty}; k++) \)
 \[
 C_k = \text{GenerateCandidates}(L_{k-1})
 \]
 \[
 C_k' = \{ \}
 \]
 for all entries \(t \in C_{k-1}' \)
 \[
 C_t = \{ c \in C_k | t[c-c[k]]=1 \}
 \]
 and \(t[c-c[k-1]]=1 \)
 for all \(c \in C_t \{ c\text{.count}++ \} \)
 if \((C_t \neq \{ \}) \)
 append \(C_t \) to \(C_k' \)
endif
endfor

\[
L_k = \{ c \in C_k | c\text{.count} >= \text{minsup} \}
\]
endfor

- return \(U_k L_k \)

- One single pass over the data

- \(C_k' \) is generated from \(C_{k-1}' \)

- For small values of \(k \), \(C_k' \) could be larger than the database!

- For large values of \(k \), \(C_k' \) can be very small
Apriori vs. AprioriTID

- *Apriori* makes multiple passes over the data while *AprioriTID* makes a single pass over the data.

- *AprioriTID* needs to store additional data structures that may require more space than *Apriori*.

- Both algorithms need to check all candidates’ frequencies in every step.
Implementations

• Lots of them around

• See, for example, the web page of Bart Goethals: http://www.adrem.ua.ac.be/~goethals/software/

• Typical input format: each row lists the items (using item id's) that appear in every row
Lecture outline

• Task 1: Methods for finding all frequent itemsets efficiently

• Task 2: Methods for finding association rules efficiently
Definition: Association Rule

Let D be database of transactions

- e.g.:

<table>
<thead>
<tr>
<th>Transaction ID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>A, B, C</td>
</tr>
<tr>
<td>1000</td>
<td>A, C</td>
</tr>
<tr>
<td>4000</td>
<td>A, D</td>
</tr>
<tr>
<td>5000</td>
<td>B, E, F</td>
</tr>
</tbody>
</table>

• Let I be the set of items that appear in the database, e.g., $I=\{A, B, C, D, E, F\}$

• A rule is defined by $X \rightarrow Y$, where $X \subseteq I$, $Y \subseteq I$, and $X \cap Y = \emptyset$

 - e.g.: $\{B, C\} \rightarrow \{A\}$ is a rule
Definition: Association Rule

- **Association Rule**
 - An implication expression of the form \(X \rightarrow Y \), where \(X \) and \(Y \) are non-overlapping itemsets
 - Example:
 \[\{\text{Milk, Diaper}\} \rightarrow \{\text{Beer}\} \]

- **Rule Evaluation Metrics**
 - **Support (s)**
 - Fraction of transactions that contain both \(X \) and \(Y \)
 - **Confidence (c)**
 - Measures how often items in \(Y \) appear in transactions that contain \(X \)

Example:

\[\{\text{Milk, Diaper}\} \rightarrow \text{Beer} \]

\[
\begin{align*}
 s &= \frac{\sigma(\text{Milk, Diaper, Beer})}{|T|} = \frac{2}{5} = 0.4 \\
 c &= \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67
\end{align*}
\]
Rule Measures: Support and Confidence

Find all the rules \(X \rightarrow Y \) with minimum confidence and support

- **support**, \(s \), probability that a transaction contains \(\{X \cup Y\} \)
- **confidence**, \(c \), *conditional probability* that a transaction having \(X \) also contains \(Y \)

Let minimum support 50\%, and minimum confidence 50\%, we have

- \(A \rightarrow C \) (50\%, 66.6\%)
- \(C \rightarrow A \) (50\%, 100\%)
Example

<table>
<thead>
<tr>
<th>TID</th>
<th>date</th>
<th>items bought</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>10/10/99</td>
<td>{F,A,D,B}</td>
</tr>
<tr>
<td>200</td>
<td>15/10/99</td>
<td>{D,A,C,E,B}</td>
</tr>
<tr>
<td>300</td>
<td>19/10/99</td>
<td>{C,A,B,E}</td>
</tr>
<tr>
<td>400</td>
<td>20/10/99</td>
<td>{B,A,D}</td>
</tr>
</tbody>
</table>

What is the **support** and **confidence** of the rule: \(\{B,D\} \rightarrow \{A\} \)?

- **Support:**
 - percentage of tuples that contain \(\{A,B,D\} \) = 75%

- **Confidence:**

 \[
 \text{number of tuples that contain } \{A,B,D\} \over \text{number of tuples that contain } \{B,D\} = 100\% \]
Association-rule mining task

- Given a set of transactions \(D \), the goal of association rule mining is to find all rules having
 - support \(\geq \text{minsup} \) threshold
 - confidence \(\geq \text{minconf} \) threshold
Brute-force algorithm for association-rule mining

• List all possible association rules
• Compute the support and confidence for each rule
• Prune rules that fail the \textit{minsup} and \textit{minconf} thresholds

• \implies Computationally prohibitive!
Computational Complexity

• Given d unique items in I:
 – Total number of itemsets $= 2^d$
 – Total number of possible association rules:

$$R = \sum_{k=1}^{d-1} \binom{d}{k} \times \sum_{j=1}^{d-k} \binom{d-k}{j}$$

$$= 3^d - 2^{d+1} + 1$$
Mining Association Rules

Example of Rules:

- \{\text{Milk, Diaper}\} \rightarrow \{\text{Beer}\} (s=0.4, c=0.67)
- \{\text{Milk, Beer}\} \rightarrow \{\text{Diaper}\} (s=0.4, c=1.0)
- \{\text{Diaper, Beer}\} \rightarrow \{\text{Milk}\} (s=0.4, c=0.67)
- \{\text{Beer}\} \rightarrow \{\text{Milk, Diaper}\} (s=0.4, c=0.67)
- \{\text{Diaper}\} \rightarrow \{\text{Milk, Beer}\} (s=0.4, c=0.5)
- \{\text{Milk}\} \rightarrow \{\text{Diaper, Beer}\} (s=0.4, c=0.5)

Observations:

- All the above rules are binary partitions of the same itemset: \{\text{Milk, Diaper, Beer}\}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements
Mining Association Rules

- Two-step approach:
 - **Frequent Itemset Generation**
 - Generate all itemsets whose support \geq minsup
 - **Rule Generation**
 - Generate high confidence rules from each frequent itemset, where each rule is a binary partition of a frequent itemset
Rule Generation – Naive algorithm

• Given a frequent itemset \(X \), find all non-empty subsets \(y \subset X \) such that \(y \rightarrow X - y \) satisfies the minimum confidence requirement

 – If \(\{A,B,C,D\} \) is a frequent itemset, candidate rules:

 \[
 \begin{align*}
 ABC & \rightarrow D, & ABD & \rightarrow C, & ACD & \rightarrow B, & BCD & \rightarrow A, \\
 A & \rightarrow BCD, & B & \rightarrow ACD, & C & \rightarrow ABD, & D & \rightarrow ABC \\
 AB & \rightarrow CD, & AC & \rightarrow BD, & AD & \rightarrow BC, & BC & \rightarrow AD, \\
 BD & \rightarrow AC, & CD & \rightarrow AB, & & & & \\
 \end{align*}
 \]

• If \(|X| = k \), then there are \(2^k - 2 \) candidate association rules (ignoring \(L \rightarrow \emptyset \) and \(\emptyset \rightarrow L \))
Efficient rule generation

• How to efficiently generate rules from frequent itemsets?
 – In general, confidence does not have an anti-monotone property
 \[c(ABC \rightarrow D) \] can be larger or smaller than \[c(AB \rightarrow D) \]
 – But confidence of rules generated from the same itemset has an anti-monotone property
 – Example: \(X = \{A,B,C,D\} \):
 \[c(ABC \rightarrow D) \geq c(AB \rightarrow CD) \geq c(A \rightarrow BCD) \]
 – Why?

Confidence is anti-monotone w.r.t. number of items on the RHS of the rule
Rule Generation for Apriori Algorithm

Lattice of rules

Low Confidence Rule

Pruned Rules
Apriori algorithm for rule generation

• Candidate rule is generated by merging two rules that share the same prefix in the rule consequent

• \textbf{join}(CD \rightarrow AB, BD \rightarrow AC) would produce the candidate rule D \rightarrow ABC

• \textbf{Prune} rule D \rightarrow ABC if there exists a subset (e.g., AD \rightarrow BC) that does not have high confidence