## Mining Association Rules in Large Databases

### Association rules

 Given a set of transactions D, find rules that will predict the occurrence of an item (or a set of items) based on the occurrences of other items in the transaction

#### **Market-Basket transactions**

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

#### **Examples of association rules**

 $\{Diaper\} \rightarrow \{Beer\},\$  $\{Milk, Bread\} \rightarrow \{Diaper, Coke\},\$  $\{Beer, Bread\} \rightarrow \{Milk\},\$ 

# An even simpler concept: frequent itemsets

 Given a set of transactions D, find combination of items that occur frequently

#### **Market-Basket transactions**

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

#### **Examples of frequent itemsets**

{Diaper, Beer}, {Milk, Bread} {Beer, Bread, Milk},

#### Lecture outline

• Task 1: Methods for finding all frequent itemsets efficiently

• Task 2: Methods for finding association rules efficiently

## **Definition: Frequent Itemset**

#### • Itemset

- A set of one or more items
  - E.g.: {Milk, Bread, Diaper}
- k-itemset
  - An itemset that contains k items
- Support count (σ)
  - Frequency of occurrence of an itemset (number of transactions it appears)
  - E.g. σ({Milk, Bread, Diaper}) = 2
- Support
  - Fraction of the transactions in which an itemset appears
  - E.g. s({Milk, Bread, Diaper}) = 2/5
- Frequent Itemset
  - An itemset whose support is greater than or equal to a *minsup* threshold

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

## Why do we want to find frequent itemsets?

- Find all combinations of items that occur together
- They might be interesting (e.g., in placement of items in a store ③)
- Frequent itemsets are only positive combinations (we do not report combinations that do not occur frequently together)
- Frequent itemsets aims at providing a summary for the data

## Finding frequent sets

- Task: Given a transaction database D and a minsup threshold find all frequent itemsets and the frequency of each set in this collection
- Stated differently: Count the number of times combinations of attributes occur in the data. If the count of a combination is above minsup report it.

 Recall: The input is a transaction database D where every transaction consists of a subset of items from some universe I

#### How many itemsets are there?



### When is the task sensible and feasible?

- If minsup = 0, then all subsets of I will be frequent and thus the size of the collection will be very large
- This summary is very large (maybe larger than the original input) and thus not interesting
- The task of finding all frequent sets is interesting typically only for relatively large values of minsup

# A simple algorithm for finding all frequent itemsets ??



# Brute-force algorithm for finding all frequent itemsets?

- Generate all possible itemsets (lattice of itemsets)
  - Start with 1-itemsets, 2-itemsets,...,d-itemsets
- Compute the frequency of each itemset from the data
   Count in how many transactions each itemset occurs
- If the support of an itemset is above minsup report it as a frequent itemset

# Brute-force approach for finding all frequent itemsets

• Complexity?

- Match every candidate against each transaction
- For M candidates and N transactions, the complexity is~ O(NMw) => Expensive since M = 2<sup>d</sup> !!!

## Speeding-up the brute-force algorithm

- Reduce the number of candidates (M)
  - Complete search: M=2<sup>d</sup>
  - Use pruning techniques to reduce M
- Reduce the number of transactions (N)
  - Reduce size of N as the size of itemset increases
  - Use vertical-partitioning of the data to apply the mining algorithms
- Reduce the number of comparisons (NM)
  - Use efficient data structures to store the candidates or transactions
  - No need to match every candidate against every transaction

## Reduce the number of candidates

- Apriori principle (Main observation):
  - If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Longrightarrow s(X) \ge s(Y)$$

- The support of an itemset *never exceeds* the support of its subsets
- This is known as the *anti-monotone* property of support

## Example

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

s(Bread) > s(Bread, Beer)
s(Milk) > s(Bread, Milk)
s(Diaper, Beer) > s(Diaper, Beer, Coke)

#### Illustrating the Apriori principle



## Illustrating the Apriori principle



## Exploiting the Apriori principle

- <sup>1.</sup> Find frequent 1-items and put them to  $L_k$  (k=1)
- Use L<sub>k</sub> to generate a collection of *candidate* itemsets C<sub>k+1</sub> with size (k+1)
- 3. Scan the database to find which itemsets in  $C_{k+1}$  are frequent and put them into  $L_{k+1}$
- 4. If L<sub>k+1</sub> is not empty
  - ▶ k=k+1
  - Goto step 2

R. Agrawal, R. Srikant: "Fast Algorithms for Mining Association Rules", *Proc. of the 20th Int'l Conference on Very Large Databases*, 1994.

# The Apriori algorithm

**C**<sub>k</sub>: Candidate itemsets of size k

*L<sub>k</sub>* : frequent itemsets of size k

L1 = {frequent 1-itemsets};

**for** (k = 2;  $L_k != \emptyset$ ; k++)

**C**<sub>k+1</sub> = GenerateCandidates(**L**<sub>k</sub>)

for each transaction t in database do

increment count of candidates in  $C_{k+1}$  that are contained in t

endfor

 $L_{k+1}$  = candidates in  $C_{k+1}$  with support  $\geq min_sup$ endfor

return  $\cup_k L_k$ ;

## GenerateCandidates

- Assume the items in L<sub>k</sub> are listed in an order (e.g., alphabetical)
- **Step 1:** *self-joining* L<sub>k</sub> (*IN SQL*)

```
insert into C_{k+1}
select p.item<sub>1</sub>, p.item<sub>2</sub>, ..., p.item<sub>k</sub>, q.item<sub>k</sub>
from L_k p, L_k q
where p.item<sub>1</sub>=q.item<sub>1</sub>, ..., p.item<sub>k-1</sub>=q.item<sub>k-1</sub>, p.item<sub>k</sub> < q.item<sub>k</sub>
```

## **Example of Candidates Generation**

- *L*<sub>3</sub>={*abc, abd, acd, ace, bcd*}
- Self-joining: L<sub>3</sub>\*L<sub>3</sub>
  - abcd from abc and abd
  - acde from acd and ace



## GenerateCandidates

- Assume the items in L<sub>k</sub> are listed in an order (e.g., alphabetical)
- **Step 1:** *self-joining* L<sub>k</sub> (*IN SQL*)

```
insert into C_{k+1}
select p.item<sub>1</sub>, p.item<sub>2</sub>, ..., p.item<sub>k</sub>, q.item<sub>k</sub>
from L_k p, L_k q
where p.item<sub>1</sub>=q.item<sub>1</sub>, ..., p.item<sub>k-1</sub>=q.item<sub>k-1</sub>, p.item<sub>k</sub> < q.item<sub>k</sub>
```

• Step 2: pruning

forall *itemsets c in C<sub>k+1</sub>* do forall *k-subsets s of c* do if (s is not in L<sub>k</sub>) then delete c from C<sub>k+1</sub>

## **Example of Candidates Generation**

- *L*<sub>3</sub>={*abc, abd, acd, ace, bcd*}
- Self-joining: L<sub>3</sub>\*L<sub>3</sub>
  - abcd from abc and abd
  - acde from acd and ace
- Pruning:
  - acde is removed because ade is not in L<sub>3</sub>
- *C*<sub>4</sub>={*abcd*}



# The Apriori algorithm

**C**<sub>k</sub>: Candidate itemsets of size k

*L<sub>k</sub>* : frequent itemsets of size k

L1 = {frequent items};

**for** (k = 1;  $L_k != \emptyset$ ; k++)

C<sub>k+1</sub> = GenerateCandidates(L<sub>k</sub>)

for each transaction t in database do

increment count of candidates in  $C_{k+1}$  that are contained in t

endfor

 $L_{k+1}$  = candidates in  $C_{k+1}$  with support  $\geq min_sup$ endfor

return  $\cup_k L_k$ ;

## How to Count Supports of Candidates?

• Naive algorithm?

- Method:
  - Candidate itemsets are stored in a hash-tree
  - Leaf node of hash-tree contains a list of itemsets and counts
  - Interior node contains a hash table
  - Subset function: finds all the candidates contained in a transaction

#### Example of the hash-tree for C<sub>3</sub>



#### Example of the hash-tree for $C_3$



#### Example of the hash-tree for C<sub>3</sub>



The subset function finds all the candidates contained in a transaction:

- At the root level it hashes on all items in the transaction
- At level i it hashes on all items in the transaction that come after item the i-th item

#### Discussion of the Apriori algorithm

- Much faster than the Brute-force algorithm
  - It avoids checking all elements in the lattice
- The running time is in the worst case O(2<sup>d</sup>)
  - Pruning really prunes in practice
- It makes multiple passes over the dataset
  - One pass for every level k
- Multiple passes over the dataset is inefficient when we have thousands of candidates and millions of transactions

### Making a single pass over the data: the AprioriTid algorithm

- The database is **not** used for counting support after the 1<sup>st</sup> pass!
- Instead information in data structure C<sub>k</sub>' is used for counting support in every step
  - C<sub>k</sub>' = {<TID, {X<sub>k</sub>}> | X<sub>k</sub> is a potentially frequent k-itemset in transaction with id=TID}
  - C<sub>1</sub>': corresponds to the original database (every item i is replaced by itemset {i})
  - The member C<sub>k</sub>' corresponding to transaction t is <t.TID, {c ε</li>
     C<sub>k</sub> | c is contained in t}>

# The AprioriTID algorithm

- L<sub>1</sub> = {frequent 1-itemsets}
- C<sub>1</sub>' = database D

```
• for (k=2, L_{k-1}' \neq empty; k++)

C_k = GenerateCandidates(L_{k-1})

C_k' = \{\}

for all entries t \in C_{k-1}'

C_t = \{c \in C_k | t[c-c[k]] = 1 \text{ and } t[c-c[k-1]] = 1

for all c \in C_t \{c.count++\}

if (C_t \neq \{\})

append C_t to C_k'

endif

endfor
```

```
L_k = \{c \in C_k | c.count >= minsup\}
```

endfor

• return  $\mathbf{U}_{k} L_{k}$ 

#### AprioriTid Example (minsup=2)



# Discussion on the AprioriTID algorithm

- L<sub>1</sub> = {frequent 1-itemsets}
- C<sub>1</sub>' = database D
- for (k=2, L<sub>k-1</sub>'≠ empty; k++)
   C<sub>k</sub> = GenerateCandidates(L<sub>k-1</sub>)
   C<sub>k</sub>' = {}
   for all entries t ∈ C<sub>k-1</sub>'
   C<sub>t</sub> = {c∈ C<sub>k</sub> |t[c-c[k]]=1
   and t[c-c[k-1]]=1
   for all c∈ C<sub>t</sub> {c.count++}

if (C<sub>t</sub>≠ {}) append C<sub>t</sub> to C<sub>k</sub>'

endif

endfor

```
L<sub>k</sub>= {ce C<sub>k</sub>|c.count >= minsup}
```

endfor

• return U<sub>k</sub> L<sub>k</sub>

- One single pass over the data
- $C_k'$  is generated from  $C_{k-1}'$
- For small values of k, C<sub>k</sub>' could be larger than the database!
- For large values of k, C<sup>'</sup><sub>k</sub> can be very small

## Apriori vs. AprioriTID

- *Apriori* makes multiple passes over the data while *AprioriTID* makes a single pass over the data
- *AprioriTID* needs to store additional data structures that may require more space than *Apriori*
- Both algorithms need to check all candidates' frequencies in every step

### Implementations

• Lots of them around

• See, for example, the web page of Bart Goethals: http://www.adrem.ua.ac.be/~goethals/software/

• Typical input format: each row lists the items (using item id's) that appear in every row

#### Lecture outline

• Task 1: Methods for finding all frequent itemsets efficiently

• Task 2: Methods for finding association rules efficiently

## **Definition: Association Rule**

#### Let **D** be database of transactions

 Transaction ID
 Items

 2000
 A, B, C

 1000
 A, C

 4000
 A, D

 5000
 B, E, F

- Let I be the set of items that appear in the database, e.g., I={A,B,C,D,E,F}
- A rule is defined by  $X \rightarrow Y$ , where  $X \subset I$ ,  $Y \subset I$ , and  $X \cap Y = \emptyset$

 $-e.g.: \{B,C\} \rightarrow \{A\}$  is a rule

### **Definition: Association Rule**

#### Association Rule

- An implication expression of the form X → Y, where X and Y are non-overlapping itemsets
- Example: {Milk, Diaper} → {Beer}

#### Rule Evaluation Metrics

- Support (s)
  - Fraction of transactions that contain both X and Y
- Confidence (c)
  - Measures how often items in Y appear in transactions that contain X

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

#### Example:

 $\{\text{Milk}, \text{Diaper}\} \rightarrow \text{Beer}$ 

$$s = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{|\mathsf{T}|} = \frac{2}{5} = 0.4$$
$$c = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{\sigma(\text{Milk}, \text{Diaper})} = \frac{2}{3} = 0.67$$

# Rule Measures: Support and Confidence



| Find all the rules $X \rightarrow Y$ with minimum |
|---------------------------------------------------|
| confidence and support                            |

- support, s, probability that a transaction contains {X ∪ Y}
- confidence, c, conditional probability

that a transaction having X also contains Y

| TID | Items |
|-----|-------|
| 100 | A,B,C |
| 200 | A,C   |
| 300 | A,D   |
| 400 | B,E,F |

Let minimum support 50%, and minimum confidence 50%, we have

- $A \rightarrow C$  (50%, 66.6%)
- $C \rightarrow A$  (50%, 100%)

## Example

| date     | items bought                                                |
|----------|-------------------------------------------------------------|
| 10/10/99 | {F,A,D,B}                                                   |
| 15/10/99 | {D,A,C,E,B}                                                 |
| 19/10/99 | {C,A,B,E}                                                   |
| 20/10/99 | {B,A,D}                                                     |
|          | <u>date</u><br>10/10/99<br>15/10/99<br>19/10/99<br>20/10/99 |

What is the *support* and *confidence* of the rule:  $\{B,D\} \rightarrow \{A\}$ 

#### Support:

percentage of tuples that contain {A,B,D} = 75%

#### Confidence:

 $\frac{\text{number of tuples that contain } \{A, B, D\}}{\text{number of tuples that contain } \{B, D\}} = 100\%$ 

## Association-rule mining task

- Given a set of transactions D, the goal of association rule mining is to find all rules having
  - support ≥ *minsup* threshold
  - confidence ≥ *minconf* threshold

Brute-force algorithm for association-rule mining

- List all possible association rules
- Compute the support and confidence for each rule
- Prune rules that fail the *minsup* and *minconf* thresholds

• ⇒ Computationally prohibitive!

## **Computational Complexity**

- Given **d** unique items in *l*:
  - Total number of itemsets = 2<sup>d</sup>
  - Total number of possible association rules:



# Mining Association Rules

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

#### Example of Rules:

 $\{ Milk, Diaper \} \rightarrow \{ Beer \} (s=0.4, c=0.67) \\ \{ Milk, Beer \} \rightarrow \{ Diaper \} (s=0.4, c=1.0) \\ \{ Diaper, Beer \} \rightarrow \{ Milk \} (s=0.4, c=0.67) \\ \{ Beer \} \rightarrow \{ Milk, Diaper \} (s=0.4, c=0.67) \\ \{ Diaper \} \rightarrow \{ Milk, Beer \} (s=0.4, c=0.5) \\ \{ Milk \} \rightarrow \{ Diaper, Beer \} (s=0.4, c=0.5)$ 

#### **Observations:**

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

# Mining Association Rules

- Two-step approach:
  - Frequent Itemset Generation
    - Generate all itemsets whose support  $\geq$  minsup
  - Rule Generation
    - Generate high confidence rules from each frequent itemset, where each rule is a binary partition of a frequent itemset

## Rule Generation – Naive algorithm

- Given a frequent itemset X, find all non-empty subsets y⊂ X such that y→ X − y satisfies the minimum confidence requirement
  - If {A,B,C,D} is a frequent itemset, candidate rules:

| $ABC \rightarrow D$ , | $ABD \rightarrow C$ , | $ACD \rightarrow B$ , | $BCD \rightarrow A,$  |
|-----------------------|-----------------------|-----------------------|-----------------------|
| $A \rightarrow BCD$ , | $B \rightarrow ACD$ , | $C \rightarrow ABD$ , | $D \rightarrow ABC$   |
| $AB \rightarrow CD$ , | $AC \rightarrow BD$ , | $AD \rightarrow BC$ , | $BC \rightarrow AD$ , |
| $BD \to AC$ ,         | $CD \rightarrow AB$ , |                       |                       |

• If |X| = k, then there are  $2^k - 2$  candidate association rules (ignoring  $L \rightarrow \emptyset$  and  $\emptyset \rightarrow L$ )

## Efficient rule generation

- How to efficiently generate rules from frequent itemsets?
  - In general, confidence does not have an anti-monotone property
     c(ABC →D) can be larger or smaller than c(AB →D)
  - But confidence of rules generated from the same itemset has an anti-monotone property
  - Example:  $X = \{A, B, C, D\}$ :

 $c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$ 

- Why?

# Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

## Rule Generation for Apriori Algorithm



## Apriori algorithm for rule generation

- Candidate rule is generated by merging two rules that share the same prefix in the rule consequent
- join(CD→AB,BD—>AC) would produce the candidate rule D→ABC



Prune rule D→ABC if there exists a subset (e.g., AD→BC) that does not have high confidence