Mining Association Rules in Large Databases

Association rules

- Given a set of transactions D, find rules that will predict the occurrence of an item (or a set of items) based on the occurrences of other items in the transaction

Market-Basket transactions

$T I D$	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Examples of association rules

\{Diaper\} \rightarrow \{Beer\}, \{Milk, Bread\} \rightarrow \{Diaper,Coke\}, \{Beer, Bread\} \rightarrow \{Milk\},

An even simpler concept: frequent itemsets

- Given a set of transactions D, find combination of items that occur frequently

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Examples of frequent itemsets
\{Diaper, Beer\},
\{Milk, Bread\}
\{Beer, Bread, Milk\},

Lecture outline

- Task 1: Methods for finding all frequent itemsets efficiently
- Task 2: Methods for finding association rules efficiently

Definition: Frequent Itemset

- Itemset
- A set of one or more items
- E.g.: \{Milk, Bread, Diaper\}
- k-itemset
- An itemset that contains k items
- Support count (σ)
- Frequency of occurrence of an itemset (number of transactions it appears)
- E.g. $\sigma(\{$ Milk, Bread,Diaper $\})=2$
- Support
- Fraction of the transactions in which an itemset appears
- E.g. s(\{Milk, Bread, Diaper\}) $=2 / 5$
- Frequent Itemset
- An itemset whose support is greater than or equal to a minsup threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Why do we want to find frequent itemsets?

- Find all combinations of items that occur together
- They might be interesting (e.g., in placement of items in a store ©)
- Frequent itemsets are only positive combinations (we do not report combinations that do not occur frequently together)
- Frequent itemsets aims at providing a summary for the data

Finding frequent sets

- Task: Given a transaction database \mathbf{D} and a minsup threshold find all frequent itemsets and the frequency of each set in this collection
- Stated differently: Count the number of times combinations of attributes occur in the data. If the count of a combination is above minsup report it.
- Recall: The input is a transaction database D where every transaction consists of a subset of items from some universe I

How many itemsets are there?

When is the task sensible and feasible?

- If minsup $=0$, then all subsets of I will be frequent and thus the size of the collection will be very large
- This summary is very large (maybe larger than the original input) and thus not interesting
- The task of finding all frequent sets is interesting typically only for relatively large values of minsup

A simple algorithm for finding all frequent itemsets ??

Brute-force algorithm for finding all frequent itemsets?

- Generate all possible itemsets (lattice of itemsets)
- Start with 1-itemsets, 2-itemsets,...,d-itemsets
- Compute the frequency of each itemset from the data
- Count in how many transactions each itemset occurs
- If the support of an itemset is above minsup report it as a frequent itemset

Brute-force approach for finding all frequent itemsets

- Complexity?
- Match every candidate against each transaction
- For \mathbf{M} candidates and N transactions, the complexity is ${ }^{\sim} \mathbf{O}(\mathbf{N M w})=>$ Expensive since $\mathrm{M}=2^{\mathrm{d}}$!!!

Speeding-up the brute-force algorithm

- Reduce the number of candidates (M)
- Complete search: $\mathrm{M}=2^{\mathrm{d}}$
- Use pruning techniques to reduce M
- Reduce the number of transactions (N)
- Reduce size of N as the size of itemset increases
- Use vertical-partitioning of the data to apply the mining algorithms
- Reduce the number of comparisons (NM)
- Use efficient data structures to store the candidates or transactions
- No need to match every candidate against every transaction

Reduce the number of candidates

- Apriori principle (Main observation):
- If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$
\forall X, Y:(X \subseteq Y) \Rightarrow s(X) \geq s(Y)
$$

- The support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

Example

$T I D$	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

$$
\begin{aligned}
& s(\text { Bread })>s(\text { Bread, Beer }) \\
& s(\text { Milk })>s(\text { Bread, Milk }) \\
& s(\text { Diaper, Beer })>s(\text { Diaper, Beer, Coke })
\end{aligned}
$$

Illustrating the Apriori principle

Found to be Infrequent

Illustrating the Apriori principle

Exploiting the Apriori principle

1. Find frequent 1-items and put them to $L_{k}(k=1)$
2. Use L_{k} to generate a collection of candidate itemsets $\mathrm{C}_{\mathrm{k}+1}$ with size ($\mathrm{k}+1$)
3. Scan the database to find which itemsets in $\mathrm{C}_{\mathrm{k}+1}$ are frequent and put them into L_{k+1}
4. If $\mathrm{L}_{\mathrm{k}+1}$ is not empty
> $k=k+1$
> Goto step 2
R. Agrawal, R. Srikant: "Fast Algorithms for Mining Association Rules",

Proc. of the 20th Int'l Conference on Very Large Databases, 1994.

The Apriori algorithm

C_{k} : Candidate itemsets of size k
L_{k} : frequent itemsets of size k
$L_{1}=\{$ frequent 1-itemsets $\} ;$
for ($k=2 ; L_{k}!=\varnothing ; k++$)
$C_{k+1}=$ GenerateCandidates $\left(L_{k}\right)$
for each transaction t in database do increment count of candidates in C_{k+1} that are contained in t endfor
$L_{k+1}=$ candidates in C_{k+1} with support $\geq m i n _$sup endfor
return $\cup_{k} L_{k}$;

GenerateCandidates

- Assume the items in L_{k} are listed in an order (e.g., alphabetical)
- Step 1: self-joining L_{k} (IN SQL)
insert into $\boldsymbol{C}_{\boldsymbol{k}+1}$
select p.item ${ }_{1}$, p.item $_{2^{\prime}}, \ldots$, p.item $_{k}$, q.item ${ }_{k}$
from $L_{k} p, L_{k} q$
where p.item $_{1}=q$. item $_{1}, \ldots$, p.item $_{k-1}=q$. item $_{k-1}$ p.item ${ }_{k}<$ q.item ${ }_{k}$

Example of Candidates Generation

- $L_{3}=\{a b c, a b d, a c d, a c e, b c d\}$
- Self-joining: $L_{3}{ }^{*} L_{3}$
- abcd from abc and abd
- acde from acd and ace

Generatecandidates

- Assume the items in L_{k} are listed in an order (e.g., alphabetical)
- Step 1: self-joining L_{k} (IN SQL)
insert into $\boldsymbol{C}_{\boldsymbol{k + 1}}$
select p.item $_{1}$, p.item $_{2}, \ldots$, p.item $_{k}$ q. $_{\text {q.item }}^{k}$
from $L_{k} p, L_{k} q$
where p. item $_{1}=q$. item $_{1}, \ldots$, p.item $_{k-1}=q$. item $_{k-1}, p$. item $_{k}<q$. item $_{k}$
- Step 2: pruning
forall itemsets \boldsymbol{c} in C_{k+1} do
forall \boldsymbol{k}-subsets s of c do
if (s is not in L_{k}) then delete c from C_{k+1}

Example of Candidates Generation

- $L_{3}=\{a b c, a b d, a c d, a c e, b c d\}$
- Self-joining: $L_{3}{ }^{*} L_{3}$
- abcd from abc and abd

- Pruning:
- acde is removed because ade is not in L_{3}
- $C_{4}=\{a b c d\}$

The Apriori algorithm

C_{k} : Candidate itemsets of size k
L_{k} : frequent itemsets of size k
$L_{1}=\{$ frequent items $\} ;$
for ($k=1 ; L_{k}!=\varnothing ; k++$)
$C_{k+1}=$ GenerateCandidates $\left(L_{k}\right)$
for each transaction t in database do increment count of candidates in C_{k+1} that are contained in t endfor
$L_{k+1}=$ candidates in C_{k+1} with support $\geq m i n _$sup endfor
return $\cup_{k} L_{k}$;

How to Count Supports of Candidates?

- Naive algorithm?
- Method:
- Candidate itemsets are stored in a hash-tree
- Leaf node of hash-tree contains a list of itemsets and counts
- Interior node contains a hash table
- Subset function: finds all the candidates contained in a transaction

Example of the hash-tree for C_{3}

Hash function: mod 3

Example of the hash-tree for C_{3}

Example of the hash-tree for C_{3}

The subset function finds all the candidates contained in a transaction:

- At the root level it hashes on all items in the transaction
- At level i it hashes on all items in the transaction that come after item the i-th item

Discussion of the Apriori algorithm

- Much faster than the Brute-force algorithm
- It avoids checking all elements in the lattice
- The running time is in the worst case $\mathbf{O}\left(2^{\mathrm{d}}\right)$
- Pruning really prunes in practice
- It makes multiple passes over the dataset
- One pass for every level \mathbf{k}
- Multiple passes over the dataset is inefficient when we have thousands of candidates and millions of transactions

Making a single pass over the data: the AprioriTid algorithm

- The database is not used for counting support after the $1^{\text {st }}$ pass!
- Instead information in data structure $\mathrm{C}_{\mathrm{k}}{ }^{\prime}$ is used for counting support in every step
$-C_{k}{ }^{\prime}=\left\{<T I D,\left\{X_{k}\right\}>\mid X_{k}\right.$ is a potentially frequent k-itemset in transaction with id=TID\}
$-\mathrm{C}_{1}$ ': corresponds to the original database (every item i is replaced by itemset \{i\})
- The member $\mathrm{C}_{\mathrm{k}}{ }^{\prime}$ corresponding to transaction t is $<$ t.TID, $\{\mathbf{c} \boldsymbol{\epsilon}$ $C_{k} \mid c$ is contained in t\}>

The AprioriTID algorithm

- $\mathrm{L}_{1}=\{$ frequent 1-itemsets $\}$
- $\mathrm{C}_{1}{ }^{\prime}=$ database D
- \quad for ($k=2, L_{k-1}$ ㄱ empty; $k++$)
$\mathrm{C}_{\mathrm{k}}=$ GenerateCandidates $\left(L_{k-1}\right)$
$\mathrm{C}_{\mathrm{k}}{ }^{\prime}=\{ \}$
for all entries $t \in C_{k-1}{ }^{\prime}$
$\mathrm{C}_{\mathrm{t}}=\left\{\mathrm{c} \in \mathrm{C}_{\mathrm{k}} \mid \mathrm{t}[\mathrm{c}-\mathrm{c}[\mathrm{k}]]=1\right.$ and $\mathrm{t}[\mathrm{c}-\mathrm{c}[\mathrm{k}-1]]=1$ for all $c \in C_{t}$ \{c.count++\}
if $\left(C_{t} \neq\{ \}\right)$
append C_{t} to $\mathrm{C}_{\mathrm{k}}{ }^{\prime}$
endif

$$
\begin{aligned}
& \text { endfor } \\
& L_{k}=\left\{c \in C_{k} \mid c . \text { count }>=\text { minsup }\right\}
\end{aligned}
$$

endfor

- return $\boldsymbol{U}_{k} L_{k}$

AprioriTid Example (minsup=2)

Database D		$\mathrm{C}_{1}{ }^{\prime}$		L_{1}	
TID	Items	TID	Sets of itemsets	itemse	sup.
10	134	100	\{ 11$\},\{3\},\{4\}\}$	\{1\}	2
200	235	200	\{ $\{2\},\{3\},\{5\}\}$	\{2\}	3
300	1235	00	\{ $\{13,\{2\},\{3\},\{5\}\}$	\{3\}	3
400		00	\{ $\{2\},\{5\}\}$	\{5\}	3

Discussion on the AprioriTID algorithm

- $\mathrm{L}_{1}=\{$ frequent 1-itemsets $\}$
- $\mathrm{C}_{1}{ }^{\prime}=$ database D
- for ($k=2, L_{k-1}$ ㄱ \quad empty; $k++$)
$\mathrm{C}_{\mathrm{k}}=$ GenerateCandidates $\left(L_{k-1}\right)$
$\mathrm{C}_{\mathrm{k}}^{\prime}=\{ \}$
for all entries $\mathrm{t} \in \mathrm{C}_{\mathrm{k}-1}$,

endfor
$\mathrm{L}_{\mathrm{k}}=\left\{c \in \mathrm{C}_{\mathrm{k}} \mid\right.$ c.count $>=$ minsup $\}$
endfor
- return $\mathrm{U}_{\mathrm{k}} \mathrm{L}_{\mathrm{k}}$
- One single pass over the data
- $\mathrm{C}_{\mathrm{k}}{ }^{\prime}$ is generated from $\mathrm{C}_{\mathrm{k}-1}{ }^{\prime}$
- For small values of $k, C_{k}{ }^{\prime}$ could be larger than the database!
- For large values of $\mathrm{k}, \mathrm{C}_{\mathrm{k}}{ }^{\prime}$ can be very small

Apriori vs. AprioriTID

- Apriori makes multiple passes over the data while AprioriTID makes a single pass over the data
- AprioriTID needs to store additional data structures that may require more space than Apriori
- Both algorithms need to check all candidates' frequencies in every step

Implementations

- Lots of them around
- See, for example, the web page of Bart Goethals: http://www.adrem.ua.ac.be/~goethals/software/
- Typical input format: each row lists the items (using item id's) that appear in every row

Lecture outline

- Task 1: Methods for finding all frequent itemsets efficiently
- Task 2: Methods for finding association rules efficiently

Definition: Association Rule

Let \mathbf{D} be database of transactions

- e.g.:	Transaction ID	Items
2000	A, B, C	
	1000	A, C
	4000	A, D
	5000	B, E, F

- Let / be the set of items that appear in the database, e.g., $I=\{A, B, C, D, E, F\}$
- A rule is defined by $X \rightarrow Y$, where $X \subset I, Y \subset I$, and $\mathrm{X} \cap \mathrm{Y}=\varnothing$
- e.g.: $\{B, C\} \rightarrow\{A\}$ is a rule

Definition: Association Rule

Association Rule

- An implication expression of the form $\mathbf{X} \rightarrow \mathbf{Y}$, where \mathbf{X} and \mathbf{Y} are non-overlapping itemsets
- Example:
$\{$ Milk, Diaper $\} \rightarrow\{$ Beer $\}$

TID	Items
$\mathbf{1}$	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
$\mathbf{5}$	Bread, Milk, Diaper, Coke

Rule Evaluation Metrics

- Support (s)
- Fraction of transactions that contain both \mathbf{X} and \mathbf{Y}
- Confidence (c)
- Measures how often items in \mathbf{Y} appear in transactions that contain \mathbf{X}

Example:

\{Milk, Diaper $\} \rightarrow$ Beer

$$
s=\frac{\sigma(\text { Milk, Diaper, Beer })}{|\mathrm{T}|}=\frac{2}{5}=0.4
$$

$$
c=\frac{\sigma(\text { Milk, Diaper, Beer })}{\sigma(\text { Milk, Diaper })}=\frac{2}{3}=0.67
$$

Rule Measures: Support and Confidence

Find all the rules $X \rightarrow Y$ with minimum confidence and support

- support, s, probability that a transaction contains $\{\mathrm{X} \cup \mathrm{Y}\}$
- confidence, c, conditional probability that a transaction having X also contains Y

TID	Items
100	A, B, C
200	A, C
300	A, D
400	B, E, F

Let minimum support 50\%, and minimum confidence 50%, we have

- $A \rightarrow C$ (50\%, 66.6\%)
- $C \rightarrow A(50 \%, 100 \%)$

Example

TID	date	items bought
100	$10 / 10 / 99$	$\{F, A, D, B\}$
200	$15 / 10 / 99$	$\{D, A, C, E, B\}$
300	$19 / 10 / 99$	$\{C, A, B, E\}$
400	$20 / 10 / 99$	$\{B, A, D\}$

What is the support and confidence of the rule: $\{B, D\} \rightarrow\{A\}$
Support:

- percentage of tuples that contain $\{A, B, D\}=75 \%$
\square Confidence:

$$
\frac{\text { number of tuples that contain }\{\mathrm{A}, \mathrm{~B}, \mathrm{D}\}}{\text { number of tuples that contain }\{\mathrm{B}, \mathrm{D}\}}=100 \%
$$

Association-rule mining task

- Given a set of transactions D, the goal of association rule mining is to find all rules having
- support \geq minsup threshold
- confidence \geq minconf threshold

Brute-force algorithm for association-rule mining

- List all possible association rules
- Compute the support and confidence for each rule
- Prune rules that fail the minsup and minconf thresholds
- \Rightarrow Computationally prohibitive!

Computational Complexity

- Given d unique items in I:
- Total number of itemsets $=2^{\text {d }}$
- Total number of possible association rules:

Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

\{Milk,Diaper\} \rightarrow \{Beer\} (s=0.4, c=0.67)
\{Milk,Beer\} \rightarrow \{Diaper\} (s=0.4, c=1.0)
$\{$ Diaper,Beer $\} \rightarrow\{$ Milk\} ($\mathrm{s}=0.4, \mathrm{c}=0.67$)
$\{$ Beer $\}$ \{Milk,Diaper\} (s=0.4, c=0.67)
$\{$ Diaper\} \rightarrow \{Milk,Beer\} (s=0.4, c=0.5)
$\{$ Milk $\}$ \{Diaper,Beer\} (s=0.4, c=0.5)
Observations:

- All the above rules are binary partitions of the same itemset:
\{Milk, Diaper, Beer\}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Mining Association Rules

- Two-step approach:
- Frequent Itemset Generation
- Generate all itemsets whose support \geq minsup
- Rule Generation
- Generate high confidence rules from each frequent itemset, where each rule is a binary partition of a frequent itemset

Rule Generation - Naive algorithm

- Given a frequent itemset \mathbf{X}, find all non-empty subsets $\mathrm{y} \subset \mathrm{X}$ such that $\mathrm{y} \rightarrow \mathrm{X}-\mathrm{y}$ satisfies the minimum confidence requirement
- If $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$ is a frequent itemset, candidate rules:

$$
\begin{array}{llll}
\mathrm{ABC} \rightarrow \mathrm{D}, & \mathrm{ABD} \rightarrow \mathrm{C}, & \mathrm{ACD} \rightarrow \mathrm{~B}, & \mathrm{BCD} \rightarrow \mathrm{~A}, \\
\mathrm{~A} \rightarrow \mathrm{BCD}, & \mathrm{~B} \rightarrow \mathrm{ACD}, & \mathrm{C} \rightarrow \mathrm{ABD}, & \mathrm{D} \rightarrow \mathrm{ABC} \\
\mathrm{AB} \rightarrow \mathrm{CD}, & \mathrm{AC} \rightarrow \mathrm{BD}, & \mathrm{AD} \rightarrow \mathrm{BC}, & \mathrm{BC} \rightarrow \mathrm{AD}, \\
\mathrm{BD} \rightarrow \mathrm{AC}, & \mathrm{CD} \rightarrow \mathrm{AB}, &
\end{array}
$$

- If $|\mathrm{X}|=\mathrm{k}$, then there are $\mathbf{2}^{\mathrm{k}}-\mathbf{2}$ candidate association rules (ignoring $\mathrm{L} \rightarrow \varnothing$ and $\varnothing \rightarrow \mathrm{L}$)

Efficient rule generation

- How to efficiently generate rules from frequent itemsets?
- In general, confidence does not have an anti-monotone property $c(A B C \rightarrow D)$ can be larger or smaller than $c(A B \rightarrow D)$
- But confidence of rules generated from the same itemset has an anti-monotone property
- Example: $X=\{A, B, C, D\}$:

$$
\mathrm{c}(\mathrm{ABC} \rightarrow \mathrm{D}) \geq \mathrm{c}(\mathrm{AB} \rightarrow \mathrm{CD}) \geq \mathrm{c}(\mathrm{~A} \rightarrow \mathrm{BCD})
$$

- Why?

Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

Rule Generation for Apriori Algorithm

Lattice of rules

Apriori algorithm for rule generation

- Candidate rule is generated by merging two rules that share the same prefix in the rule consequent
- join(CD $\rightarrow A B, B D \rightarrow A C)$ would produce the candidate rule $D \rightarrow$ ABC
- Prune rule $D \rightarrow A B C$ if there exists a subset (e.g., $A D \rightarrow B C$) that does not have high confidence

