Recap: Mining association rules from large datasets
Recap

• **Task 1:** Methods for finding all frequent itemsets efficiently

• **Task 2:** Methods for finding association rules efficiently
Recap

• Frequent itemsets (measure: support)

• Apriori principle

• Apriori algorithm for finding frequent itemsets
 – Prunes really well in practice
 – Makes multiple passes over the dataset
Making a single pass over the data: the AprioriTid algorithm

- The database is **not** used for counting support after the 1st pass!

- Instead, information in data structure \(C_k' \) is used for counting support in every step

 - \(C_k' \) is generated from \(C_{k-1}' \)

- For small values of \(k \), storage requirements for data structures could be larger than the database!

- For large values of \(k \), storage requirements can be very small
Lecture outline

• **Task 1:** Methods for finding all frequent itemsets efficiently

• **Task 2:** Methods for finding association rules efficiently
Definition: Association Rule

Let D be database of transactions

- e.g.:

<table>
<thead>
<tr>
<th>Transaction ID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>A, B, C</td>
</tr>
<tr>
<td>1000</td>
<td>A, C</td>
</tr>
<tr>
<td>4000</td>
<td>A, D</td>
</tr>
<tr>
<td>5000</td>
<td>B, E, F</td>
</tr>
</tbody>
</table>

- Let I be the set of items that appear in the database, e.g., $I=\{A,B,C,D,E,F\}$
- A rule is defined by $X \rightarrow Y$, where $X \subseteq I$, $Y \subseteq I$, and $X \cap Y = \emptyset$
 - e.g.: $\{B,C\} \rightarrow \{A\}$ is a rule
Definition: Association Rule

- **Association Rule**
 - An implication expression of the form \(X \rightarrow Y \), where \(X \) and \(Y \) are non-overlapping itemsets
 - Example:
 \[\{\text{Milk, Diaper}\} \rightarrow \{\text{Beer}\} \]

- **Rule Evaluation Metrics**
 - **Support (\(s \))**
 - Fraction of transactions that contain both \(X \) and \(Y \)
 - **Confidence (\(c \))**
 - Measures how often items in \(Y \) appear in transactions that contain \(X \)

Example:

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Bread, Diaper, Beer, Eggs</td>
</tr>
<tr>
<td>3</td>
<td>Milk, Diaper, Beer, Coke</td>
</tr>
<tr>
<td>4</td>
<td>Bread, Milk, Diaper, Beer</td>
</tr>
<tr>
<td>5</td>
<td>Bread, Milk, Diaper, Coke</td>
</tr>
</tbody>
</table>

\[s = \frac{\sigma(\text{Milk, Diaper, Beer})}{|T|} = \frac{2}{5} = 0.4 \]

\[c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67 \]
Example

<table>
<thead>
<tr>
<th>TID</th>
<th>date</th>
<th>items bought</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>10/10/99</td>
<td>{F,A,D,B}</td>
</tr>
<tr>
<td>200</td>
<td>15/10/99</td>
<td>{D,A,C,E,B}</td>
</tr>
<tr>
<td>300</td>
<td>19/10/99</td>
<td>{C,A,B,E}</td>
</tr>
<tr>
<td>400</td>
<td>20/10/99</td>
<td>{B,A,D}</td>
</tr>
</tbody>
</table>

What is the **support** and **confidence** of the rule: \(\{B,D\} \rightarrow \{A\}\)

- **Support:**
 - percentage of tuples that contain \(\{A,B,D\}\) = 75%
- **Confidence:**
 \[
 \frac{\text{number of tuples that contain } \{A,B,D\}}{\text{number of tuples that contain } \{B,D\}} = 100\%
 \]
Association-rule mining task

• Given a set of transactions D, the goal of association rule mining is to find all rules having
 – support $\geq \text{minsup}$ threshold
 – confidence $\geq \text{minconf}$ threshold
Brute-force algorithm for association-rule mining

- List all possible association rules
- Compute the support and confidence for each rule
- Prune rules that fail the minsup and minconf thresholds

\implies Computationally prohibitive!
How many association rules are there?

• Given d unique items in I:
 – Total number of itemsets = 2^d
 – Total number of possible association rules:

$$R = \sum_{k=1}^{d-1} \binom{d}{k} \times \sum_{j=1}^{d-k} \binom{d-k}{j}$$

$$R = 3^d - 2^{d+1} + 1$$

If $d=6$, $R = 602$ rules
Mining Association Rules

- Two-step approach:
 - Frequent Itemset Generation
 - Generate all itemsets whose support \geq minsup
 - Rule Generation
 - Generate high confidence rules from each frequent itemset, where each rule is a binary partition of a frequent itemset
Rule Generation – Naive algorithm

• Given a frequent itemset X, find all non-empty subsets $y \subset X$ such that $y \rightarrow X - y$ satisfies the minimum confidence requirement

 – If $\{A, B, C, D\}$ is a frequent itemset, candidate rules:

 $\begin{align*}
 ABC & \rightarrow D, & ABD & \rightarrow C, & ACD & \rightarrow B, & BCD & \rightarrow A, \\
 A & \rightarrow BCD, & B & \rightarrow ACD, & C & \rightarrow ABD, & D & \rightarrow ABC \\
 AB & \rightarrow CD, & AC & \rightarrow BD, & AD & \rightarrow BC, & BC & \rightarrow AD, \\
 BD & \rightarrow AC, & CD & \rightarrow AB, & & & & \\
 \end{align*}$

• If $|X| = k$, then there are $2^k - 2$ candidate association rules (ignoring $X \rightarrow \emptyset$ and $\emptyset \rightarrow X$)
Efficient rule generation

• How to efficiently generate rules from frequent itemsets?
 – In general, confidence does not have an anti-monotone property
 \[c(ABC \rightarrow D) \text{ can be larger or smaller than } c(AB \rightarrow D) \]
 – But confidence of rules generated from the same itemset has an anti-monotone property
 – Example: \(X = \{A,B,C,D\} \):
 \[c(ABC \rightarrow D) \geq c(AB \rightarrow CD) \geq c(A \rightarrow BCD) \]
 – Why?

Confidence is anti-monotone w.r.t. number of items on the RHS of the rule
Rule Generation for Apriori Algorithm

Lattice of rules

Low Confidence Rule

Pruned Rules
Apriori algorithm for rule generation

• Candidate rule is generated by merging two rules that share the same prefix in the rule consequent

• $\text{join}(CD \rightarrow AB, BD \rightarrow AC)$ would produce the candidate rule $D \rightarrow ABC$

• **Prune** rule $D \rightarrow ABC$ if there exists a subset (e.g., $AD \rightarrow BC$) that does not have high confidence
Reducing the collection of itemsets: alternative representations and combinatorial problems
Too many frequent itemsets

• If \{a_1, ..., a_{100}\} is a frequent itemset, then there are

\[
\binom{100}{1} + \binom{100}{2} + \cdots + \binom{100}{100} = 2^{100} - 1
\]

1.27*10^{30} frequent sub-patterns!

• There should be some more **condensed** way to describe the data
Frequent itemsets maybe too many to be helpful

- If there are many and large frequent itemsets enumerating all of them is costly.

- We may be interested in finding the boundary frequent patterns.

- **Question:** Is there a good definition of such boundary?
Borders of frequent itemsets

- Itemset X is more **specific** than itemset Y if X superset of Y (notation: $Y < X$). Also, Y is more **general** than X (notation: $X > Y$).

- **The Border**: Let S be a collection of frequent itemsets and P the lattice of itemsets. The **border** $\text{Bd}(S)$ of S consists of all itemsets X such that *all more general itemsets* than X are in S and *no pattern more specific* than X is in S.

\[
\text{Bd}(S) = \left\{ X \in P \middle| \begin{array}{l}
\text{for all } Y \in P \text{ with } Y \prec X \text{ then } Y \in P, \\
\text{and for all } W \in P \text{ with } X \prec W \text{ then } W \not\in S
\end{array} \right\}
\]
Positive and negative border

- **Border**

\[
Bd(S) = \left\{ X \in P \left| \begin{array}{l}
\text{for all } Y \in P \text{ with } Y \prec X \text{ then } Y \in S, \\
\text{and for all } W \in P \text{ with } X \prec W \text{ then } W \notin S
\end{array} \right. \right\}
\]

- **Positive border**: Itemsets in the border that are also frequent (belong in \(S \))

\[
Bd^+(S) = \{ X \in S \left| \text{for all } Y \in P \text{ with } X \prec Y \text{ then } Y \notin S \right. \}
\]

- **Negative border**: Itemsets in the border that are not frequent (do not belong in \(S \))

\[
Bd^-(S) = \{ X \in P \setminus S \left| \text{for all } Y \in P \text{ with } Y \prec X \text{ then } Y \in S \right. \}
\]
Examples with borders

• Consider a set of items from the alphabet: \{A,B,C,D,E\} and the collection of frequent sets
 \[S = \{\{A\},\{B\},\{C\},\{E\},\{A,B\},\{A,C\},\{A,E\},\{C,E\},\{A,C,E\}\} \]

• The negative border of collection \(S \) is
 \[\text{Bd}^-(S) = \{\{D\},\{B,C\},\{B,E\}\} \]

• The positive border of collection \(S \) is
 \[\text{Bd}^+(S) = \{\{A,B\},\{A,C,E\}\} \]
Descriptive power of the borders

• **Claim:** A collection of frequent sets \(S \) can be *fully described* using only the positive border \((Bd^+(S))\) or only the negative border \((Bd^-(S))\).
Maximal patterns

Frequent patterns without proper frequent super pattern
Maximal Frequent Itemset

An itemset is maximal frequent if none of its immediate supersets is frequent.
Maximal patterns

• The set of maximal patterns is the same as the positive border

• Descriptive power of maximal patterns:
 – Knowing the set of all maximal patterns allows us to reconstruct the set of all frequent itemsets!!

 – We can only reconstruct the set not the actual frequencies
MaxMiner: Mining Max-patterns

- **Idea:** generate the complete set-enumeration tree one level at a time, while prune if applicable.
Local Pruning Techniques (e.g. at node A)

Check the frequency of **ABCD** and **AB, AC, AD**.
- If **ABCD** is frequent, prune the whole sub-tree.
- If **AC** is NOT frequent, remove **C** from the parenthesis before expanding.
Algorithm MaxMiner

• Initially, generate one node $N = \Phi (ABCD)$, where $h(N) = \Phi$ and $t(N) = \{A, B, C, D\}$.

• Consider expanding N,
 – If $h(N) \cup t(N)$ is frequent, do not expand N.
 – If for some $i \in t(N)$, $h(N) \cup \{i\}$ is NOT frequent, remove i from $t(N)$ before expanding N.

• Apply global pruning techniques...
Global Pruning Technique (across sub-trees)

- When a max pattern is identified (e.g. ABCD), prune all nodes (e.g. B, C and D) where $h(N) \cup t(N)$ is a sub-set of it (e.g. ABCD).
Closed patterns

• An itemset is closed if none of its immediate supersets has the same support as the itemset

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
<th>Itemset Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{A,B}</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>{B,C,D}</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>{A,B,C,D}</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>{A,B,D}</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>{A,B,C,D}</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A}</td>
<td>4</td>
</tr>
<tr>
<td>{B}</td>
<td>5</td>
</tr>
<tr>
<td>{C}</td>
<td>3</td>
</tr>
<tr>
<td>{D}</td>
<td>4</td>
</tr>
<tr>
<td>{A,B}</td>
<td>4</td>
</tr>
<tr>
<td>{A,C}</td>
<td>2</td>
</tr>
<tr>
<td>{A,D}</td>
<td>3</td>
</tr>
<tr>
<td>{B,C}</td>
<td>3</td>
</tr>
<tr>
<td>{B,D}</td>
<td>4</td>
</tr>
<tr>
<td>{C,D}</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A,B,C}</td>
<td>2</td>
</tr>
<tr>
<td>{A,B,D}</td>
<td>3</td>
</tr>
<tr>
<td>{A,C,D}</td>
<td>2</td>
</tr>
<tr>
<td>{B,C,D}</td>
<td>3</td>
</tr>
<tr>
<td>{A,B,C,D}</td>
<td>2</td>
</tr>
</tbody>
</table>
Maximal vs Closed Itemsets

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ABC</td>
</tr>
<tr>
<td>2</td>
<td>ABCD</td>
</tr>
<tr>
<td>3</td>
<td>BCE</td>
</tr>
<tr>
<td>4</td>
<td>ACDE</td>
</tr>
<tr>
<td>5</td>
<td>DE</td>
</tr>
</tbody>
</table>

Transaction Ids

Not supported by any transactions
Maximal vs Closed Frequent Itemsets

Minimum support = 2

Closed and maximal

Closed but not maximal

Closed = 9
Maximal = 4
Why are closed patterns interesting?

- \(s(\{A,B\}) = s(A) \), i.e., \(\text{conf}(\{A\} \rightarrow \{B\}) = 1 \)

- We can infer that for every itemset \(X \),
 \[s(A \cup \{X\}) = s(\{A,B\} \cup X) \]

- **No need to count the frequencies of sets** \(X \cup \{A,B\} \) **from the database**!

- If there are lots of rules with confidence 1, then a significant amount of work can be saved

 - Very useful if there are strong correlations between the items and when the transactions in the database are similar
Why closed patterns are interesting?

• Closed patterns and their frequencies alone are sufficient representation for all the frequencies of all frequent patterns

• **Proof:** Assume a frequent itemset \(X \):

 – \(X \) is closed \(\rightarrow \) \(s(X) \) is known

 – \(X \) is not closed \(\rightarrow \)

 \(s(X) = \max \{ s(Y) \mid Y \) is closed and \(X \) subset of \(Y \} \)
Maximal vs Closed sets

- Knowing all maximal patterns (and their frequencies) allows us to reconstruct the set of frequent patterns.

- Knowing all closed patterns and their frequencies allows us to reconstruct the set of all frequent patterns and their frequencies.
A more algorithmic approach to reducing the collection of frequent itemsets
Prototype problems: Covering problems

• Setting:
 – Universe of \(N \) elements \(U = \{U_1, ..., U_N\} \)
 – A set of \(n \) sets \(S = \{s_1, ..., s_n\} \)
 – Find a collection \(C \) of sets in \(S \) (\(C \subset S \)) such that \(U_{c\in C} \) contains many elements from \(U \)

• Example:
 – \(U \): set of documents in a collection
 – \(s_i \): set of documents that contain term \(t_i \)
 – Find a collection of terms that cover most of the documents
Prototype covering problems

- **Set cover problem:** Find a small collection C of sets from S such that all elements in the universe U are covered by some set in C

- **Best collection problem:** find a collection C of k sets from S such that the collection covers as many elements from the universe U as possible

- Both problems are NP-hard

- Simple approximation algorithms with provable properties are available and very useful in practice
Set-cover problem

- Universe of N elements $U = \{U_1, \ldots, U_N\}$
- A set of n sets $S = \{s_1, \ldots, s_n\}$ such that $U_i s_i = U$

Question: Find the smallest number of sets from S to form collection C (C subset of S) such that $\bigcup_{c \in C} c = U$

- The set-cover problem is **NP-hard** (what does this mean?)
Trivial algorithm

• Try all subcollections of S

• Select the smallest one that covers all the elements in U

• The running time of the trivial algorithm is $O(2^{|S| \cdot |U|})$

• This is way too slow
Greedy algorithm for set cover

- Select first the largest-cardinality set s from S

- Remove the elements from s from U

- Recompute the sizes of the remaining sets in S

- Go back to the first step
As an algorithm

- \(X = U \)
- \(C = {} \)
- while \(X \) is not empty do
 - For all \(s \in S \) let \(a_s = |s \text{ intersection } X| \)
 - Let \(s \) be such that \(a_s \) is maximal
 - \(C = C \cup \{s\} \)
 - \(X = X \setminus s \)
How can this go wrong?

- No global consideration of how good or bad a selected set is going to be
How good is the greedy algorithm?

• Consider a minimization problem
 – In our case we want to minimize the **cardinality** of set \(C \)

• Consider an instance \(I \), and cost \(a^*(I) \) of the optimal solution
 – \(a^*(I) \): is the minimum number of sets in \(C \) that cover all elements in \(U \)

• Let \(a(I) \) be the cost of the approximate solution
 – \(a(I) \): is the number of sets in \(C \) that are picked by the greedy algorithm

• An algorithm for a minimization problem has approximation factor \(F \) if for all instances \(I \) we have that

\[
a(I) \leq F \times a^*(I)
\]

• *Can we prove any approximation bounds for the greedy algorithm for set cover?*
How good is the greedy algorithm for set cover?

• *(Trivial?)* **Observation**: The greedy algorithm for set cover has approximation factor \(F = s_{\text{max}} \), where \(s_{\text{max}} \) is the set in \(S \) with the largest cardinality.

• **Proof**:

 \[a^*(I) \geq \frac{N}{|s_{\text{max}}|} \text{ or } N \leq |s_{\text{max}}| a^*(I) \]

 \[a(I) \leq N \leq |s_{\text{max}}| a^*(I) \]
How good is the greedy algorithm for set cover? A tighter bound

• The greedy algorithm for set cover has approximation factor $F = O(\log |s_{\text{max}}|)$

• **Proof**: (From CLR “Introduction to Algorithms”)

Best-collection problem

• Universe of \(N \) elements \(U = \{U_1, \ldots, U_N\} \)
• A set of \(n \) sets \(S = \{s_1, \ldots, s_n\} \) such that \(U_i s_i = U \)

• **Question:** Find the a collection \(C \) consisting of \(k \) sets from \(S \) such that \(f(C) = \lvert U_{c \in C} c \rvert \) is **maximized**

• The best-collection problem is NP-hard

• Simple approximation algorithm has approximation factor \(F = (e-1)/e \)
Greedy approximation algorithm for the best-collection problem

- \(C = \{\} \)
- **for every** set \(s \) in \(S \) and **not** in \(C \) compute the gain of \(s \):
 \[
g(s) = f(C \cup \{s\}) - f(C)
 \]
- Select the set \(s \) with the **maximum** gain
- \(C = C \cup \{s\} \)
- **Repeat until** \(C \) has \(k \) elements
Basic theorem

• The *greedy* algorithm for the best-collection problem has approximation factor $F = (e-1)/e$

• C^*: optimal collection of cardinality k
• C: collection output by the *greedy* algorithm
• $f(C) \geq (e-1)/e \times f(C^*)$
Submodular functions and the greedy algorithm

• A function f (defined on sets of some universe) is **submodular** if
 – for all sets S, T such that S is **subset** of T and x any element in the universe
 – $f(S \cup \{x\}) - f(S) \geq f(T \cup \{x\}) - f(T)$

• **Theorem:** For all maximization problems where the optimization function is **submodular**, the **greedy** algorithm has approximation factor
 \[F = \frac{e-1}{e} \]
Again: Can you think of a more algorithmic approach to reducing the collection of frequent itemsets
Approximating a collection of frequent patterns

• Assume a collection of frequent patterns S

• Each pattern $X \in S$ is described by the patterns that covers

• $\text{Cov}(X) = \{ Y \mid Y \in S \text{ and } Y \text{ subset of } X \}$

• Problem: Find k patterns from S to form set C such that

$$| \bigcup_{X \in C} \text{Cov}(X) |$$

is maximized
empty set

Frequent itemsets

Non-frequent itemsets

all items

border