
Recap: Mining association rules
from large datasets

Recap

• Task 1: Methods for finding all frequent itemsets efficiently

• Task 2: Methods for finding association rules efficiently

Recap

• Frequent itemsets (measure: support)

• Apriori principle

• Apriori algorithm for finding frequent itemsets

– Prunes really well in practice

– Makes multiple passes over the dataset

Making a single pass over the data: the
AprioriTid algorithm

• The database is not used for counting support after
the 1st pass!

• Instead information in data structure Ck’ is used for
counting support in every step

• Ck’ is generated from Ck-1’

• For small values of k, storage requirements for data
structures could be larger than the database!

• For large values of k, storage requirements can be very
small

Lecture outline

• Task 1: Methods for finding all frequent itemsets efficiently

• Task 2: Methods for finding association rules efficiently

Definition: Association Rule

Let D be database of transactions
– e.g.:

• Let I be the set of items that appear in the
database, e.g., I={A,B,C,D,E,F}

• A rule is defined by X  Y, where XI, YI,
and XY=
– e.g.: {B,C}  {A} is a rule

Transaction ID Items

2000 A, B, C

1000 A, C

4000 A, D

5000 B, E, F

Definition: Association Rule

Example:

Beer}Diaper,Milk{ 

4.0
5

2

|T|

)BeerDiaper,,Milk(



s

67.0
3

2

)Diaper,Milk(

)BeerDiaper,Milk,(





c

 Association Rule

 An implication expression of the
form X  Y, where X and Y are
non-overlapping itemsets

 Example:
{Milk, Diaper}  {Beer}

 Rule Evaluation Metrics

 Support (s)

 Fraction of transactions that
contain both X and Y

 Confidence (c)

 Measures how often items in Y
appear in transactions that
contain X

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

TID date items_bought
100 10/10/99 {F,A,D,B}

200 15/10/99 {D,A,C,E,B}

300 19/10/99 {C,A,B,E}

400 20/10/99 {B,A,D}

Example

What is the support and confidence of the rule: {B,D}  {A}

 Support:

 percentage of tuples that contain {A,B,D} =

 Confidence:


D}{B,contain that tuplesofnumber

D}B,{A,contain that tuplesofnumber

75%

100%

Association-rule mining task

• Given a set of transactions D, the goal of
association rule mining is to find all rules having

– support ≥ minsup threshold

– confidence ≥ minconf threshold

Brute-force algorithm for
association-rule mining

• List all possible association rules

• Compute the support and confidence for each
rule

• Prune rules that fail the minsup and minconf
thresholds

•  Computationally prohibitive!

How many association rules are there?

• Given d unique items in I:
– Total number of itemsets = 2d

– Total number of possible association rules:

123 1

1

1 1


















 




















 

dd

d

k

kd

j j

kd

k

d
R

If d=6, R = 602 rules

Mining Association Rules

• Two-step approach:
– Frequent Itemset Generation

– Generate all itemsets whose support  minsup

– Rule Generation
– Generate high confidence rules from each frequent

itemset, where each rule is a binary partition of a frequent
itemset

Rule Generation – Naive algorithm

• Given a frequent itemset X, find all non-empty
subsets y X such that y X – y satisfies the
minimum confidence requirement

– If {A,B,C,D} is a frequent itemset, candidate rules:
ABC D, ABD C, ACD B, BCD A,
A BCD, B ACD, C ABD, D ABC
AB CD, AC  BD, AD  BC, BC AD,
BD AC, CD AB,

• If |X| = k, then there are 2k – 2 candidate
association rules (ignoring X  and  X)

Efficient rule generation

• How to efficiently generate rules from frequent
itemsets?
– In general, confidence does not have an anti-monotone

property
c(ABC D) can be larger or smaller than c(AB D)

– But confidence of rules generated from the same itemset
has an anti-monotone property

– Example: X = {A,B,C,D}:

c(ABC  D)  c(AB  CD)  c(A  BCD)
– Why?

Confidence is anti-monotone w.r.t. number of items on
the RHS of the rule

Rule Generation for Apriori Algorithm

ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

Lattice of rules
ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

Pruned

Rules

Low

Confidence

Rule

Apriori algorithm for rule generation

• Candidate rule is generated by merging two rules
that share the same prefix
in the rule consequent

• join(CDAB,BD—>AC)
would produce the candidate
rule D ABC

• Prune rule DABC if there exists a
subset (e.g., ADBC) that does not have
high confidence

CDAB BDAC

DABC

Reducing the collection of itemsets:
alternative representations and

combinatorial problems

Too many frequent itemsets

• If {a1, …, a100} is a frequent itemset, then there
are

1.27*1030 frequent sub-patterns!

• There should be some more condensed way to
describe the data

12
100

100

2

100

1

100
100 



























Frequent itemsets maybe too many to be
helpful

• If there are many and large frequent itemsets
enumerating all of them is costly.

• We may be interested in finding the boundary
frequent patterns.

• Question: Is there a good definition of such
boundary?

all items

empty set

Frequent
itemsets

Non-frequent
itemsets

border

Borders of frequent itemsets

• Itemset X is more specific than itemset Y if X superset of Y
(notation: Y<X). Also, Y is more general than X (notation: X>Y)

• The Border: Let S be a collection of frequent itemsets and P
the lattice of itemsets. The border Bd(S) of S consists of all
itemsets X such that all more general itemsets than X are in S
and no pattern more specific than X is in S.














 then with allfor and

 , then with allfor
)(

SWWXPW

PYXYPY
PXSBd





Positive and negative border

• Border

• Positive border: Itemsets in the border that are also frequent
(belong in S)

• Negative border: Itemsets in the border that are not frequent
(do not belong in S)














 then with allfor and

 , then with allfor
)(

SWWXPW

SYXYPY
PXSBd





  then with allfor)(SYYXPYSXSBd  

  then with allfor \)(SYXYPYSPXSBd  

Examples with borders

• Consider a set of items from the alphabet:
{A,B,C,D,E} and the collection of frequent sets

S = {{A},{B},{C},{E},{A,B},{A,C},{A,E},{C,E},{A,C,E}}

• The negative border of collection S is

Bd-(S) = {{D},{B,C},{B,E}}

• The positive border of collection S is

Bd+(S) = {{A,B},{A,C,E}}

Descriptive power of the borders

• Claim: A collection of frequent sets S can be
fully described using only the positive border
(Bd+(S)) or only the negative border (Bd-(S)).

Maximal patterns

Frequent patterns without proper frequent super
pattern

Maximal Frequent Itemset

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCD

E

Border

Infrequent

Itemsets

Maximal

Itemsets

An itemset is maximal frequent if none of its immediate supersets is

frequent

Maximal patterns

• The set of maximal patterns is the same as the
positive border

• Descriptive power of maximal patterns:

– Knowing the set of all maximal patterns allows us to
reconstruct the set of all frequent itemsets!!

– We can only reconstruct the set not the actual
frequencies

MaxMiner: Mining Max-patterns

• Idea: generate the complete set-enumeration
tree one level at a time, while prune if
applicable.

 (ABCD)

A (BCD) B (CD) C (D) D ()

AB (CD) AC (D) AD () BC (D) BD () CD ()

ABC (C)

ABCD ()

ABD () ACD () BCD ()

Local Pruning Techniques (e.g. at node A)

Check the frequency of ABCD and AB, AC, AD.

• If ABCD is frequent, prune the whole sub-tree.

• If AC is NOT frequent, remove C from the parenthesis before
expanding.

 (ABCD)

A (BCD) B (CD) C (D) D ()

AB (CD) AC (D) AD () BC (D) BD () CD ()

ABC (C)

ABCD ()

ABD () ACD () BCD ()

Algorithm MaxMiner

• Initially, generate one node N= , where
h(N)= and t(N)={A,B,C,D}.

• Consider expanding N,

– If h(N)t(N) is frequent, do not expand N.

– If for some it(N), h(N){i} is NOT frequent,
remove i from t(N) before expanding N.

• Apply global pruning techniques…

 (ABCD)

Global Pruning Technique (across sub-trees)

• When a max pattern is identified (e.g. ABCD), prune all nodes
(e.g. B, C and D) where h(N)t(N) is a sub-set of it (e.g. ABCD).

 (ABCD)

A (BCD) B (CD) C (D) D ()

AB (CD) AC (D) AD () BC (D) BD () CD ()

ABC (C)

ABCD ()

ABD () ACD () BCD ()

Closed patterns

• An itemset is closed if none of its immediate supersets has the
same support as the itemset

TID Items

1 {A,B}

2 {B,C,D}

3 {A,B,C,D}

4 {A,B,D}

5 {A,B,C,D}

Itemset Support

{A} 4

{B} 5

{C} 3

{D} 4

{A,B} 4

{A,C} 2

{A,D} 3

{B,C} 3

{B,D} 4

{C,D} 3

Itemset Support

{A,B,C} 2

{A,B,D} 3

{A,C,D} 2

{B,C,D} 3

{A,B,C,D} 2

Maximal vs Closed Itemsets

TID Items

1 ABC

2 ABCD

3 BCE

4 ACDE

5 DE

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

124 123 1234 245 345

12 124 24 4 123 2 3 24 34 45

12 2 24 4 4 2 3 4

2 4

Transaction Ids

Not supported by

any transactions

Maximal vs Closed Frequent Itemsets
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

124 123 1234 245 345

12 124 24 4 123 2 3 24 34 45

12 2 24 4 4 2 3 4

2 4

Minimum support = 2

Closed = 9

Maximal = 4

Closed and

maximal

Closed but

not maximal

Why are closed patterns interesting?

• s({A,B}) = s(A), i.e., conf({A}{B}) = 1

• We can infer that for every itemset X ,
s(A U {X}) = s({A,B} U X)

• No need to count the frequencies of sets X U {A,B} from the
database!

• If there are lots of rules with confidence 1, then a significant
amount of work can be saved

– Very useful if there are strong correlations between the items and
when the transactions in the database are similar

Why closed patterns are interesting?

• Closed patterns and their frequencies alone
are sufficient representation for all the
frequencies of all frequent patterns

• Proof: Assume a frequent itemset X:

– X is closed  s(X) is known

– X is not closed 

s(X) = max {s(Y) | Y is closed and X subset of Y}

Maximal vs Closed sets

• Knowing all maximal
patterns (and their
frequencies) allows us to
reconstruct the set of
frequent patterns

• Knowing all closed
patterns and their
frequencies allows us to
reconstruct the set of all
frequent patterns and
their frequencies

Frequent

Itemsets

Closed

Frequent

Itemsets

Maximal

Frequent

Itemsets

A more algorithmic approach to
reducing the collection of frequent

itemsets

Prototype problems: Covering
problems

• Setting:
– Universe of N elements U = {U1,…,UN}

– A set of n sets S = {s1,…,sn}

– Find a collection C of sets in S (C subset of S) such that
UcєCc contains many elements from U

• Example:
– U: set of documents in a collection

– si: set of documents that contain term ti

– Find a collection of terms that cover most of the
documents

Prototype covering problems

• Set cover problem: Find a small collection C of sets from S
such that all elements in the universe U are covered by
some set in C

• Best collection problem: find a collection C of k sets from S
such that the collection covers as many elements from the
universe U as possible

• Both problems are NP-hard

• Simple approximation algorithms with provable properties
are available and very useful in practice

Set-cover problem

• Universe of N elements U = {U1,…,UN}
• A set of n sets S = {s1,…,sn} such that Uisi =U

• Question: Find the smallest number of sets from
S to form collection C (C subset of S) such that
UcєCc=U

• The set-cover problem is NP-hard (what does this
mean?)

Trivial algorithm

• Try all subcollections of S

• Select the smallest one that covers all the
elements in U

• The running time of the trivial algorithm is
O(2|S||U|)

• This is way too slow

Greedy algorithm for set cover

• Select first the largest-cardinality set s from S

• Remove the elements from s from U

• Recompute the sizes of the remaining sets in S

• Go back to the first step

As an algorithm

• X = U

• C = {}

• while X is not empty do

– For all sєS let as=|s intersection X|

– Let s be such that as is maximal

– C = C U {s}

– X = X\ s

How can this go wrong?

• No global consideration of how good or bad a
selected set is going to be

How good is the greedy algorithm?

• Consider a minimization problem
– In our case we want to minimize the cardinality of set C

• Consider an instance I, and cost a*(I) of the optimal solution
– a*(I): is the minimum number of sets in C that cover all elements in U

• Let a(I) be the cost of the approximate solution
– a(I): is the number of sets in C that are picked by the greedy algorithm

• An algorithm for a minimization problem has approximation factor F if for
all instances I we have that

a(I)≤F x a*(I)

• Can we prove any approximation bounds for the greedy algorithm for set
cover ?

How good is the greedy algorithm for
set cover?

• (Trivial?) Observation: The greedy algorithm
for set cover has approximation factor F = smax,
where smax is the set in S with the largest
cardinality

• Proof:

– a*(I)≥N/|smax| or N ≤ |smax|a*(I)

– a(I) ≤ N ≤ |smax|a*(I)

How good is the greedy algorithm for
set cover? A tighter bound

• The greedy algorithm for set cover has
approximation factor F = O(log |smax|)

• Proof: (From CLR “Introduction to
Algorithms”)

Best-collection problem

• Universe of N elements U = {U1,…,UN}
• A set of n sets S = {s1,…,sn} such that Uisi =U

• Question: Find the a collection C consisting of k sets
from S such that f (C) = |UcєCc| is maximized

• The best-colection problem is NP-hard

• Simple approximation algorithm has approximation
factor F = (e-1)/e

Greedy approximation algorithm for
the best-collection problem

• C = {}

• for every set s in S and not in C compute the
gain of s:

g(s) = f(C U {s}) – f(C)

• Select the set s with the maximum gain

• C = C U {s}

• Repeat until C has k elements

Basic theorem

• The greedy algorithm for the best-collection
problem has approximation factor F = (e-1)/e

• C* : optimal collection of cardinality k

• C : collection output by the greedy algorithm

• f(C) ≥ (e-1)/e x f(C*)

Submodular functions and the greedy
algorithm

• A function f (defined on sets of some universe) is
submodular if
– for all sets S, T such that S is subset of T and x any

element in the universe

– f(S U {x}) – f(S) ≥ f(T U {x}) – f(T)

• Theorem: For all maximization problems where
the optimization function is submodular, the
greedy algorithm has approximation factor

F = (e-1)/e

Again: Can you think of a more
algorithmic approach to reducing the

collection of frequent itemsets

Approximating a collection of frequent
patterns

• Assume a collection of frequent patterns S

• Each pattern X є S is described by the patterns
that covers

• Cov(X) = { Y | Y є S and Y subset of X}

• Problem: Find k patterns from S to form set C
such that

|UXєC Cov(X)|
is maximized

all items

empty set

Frequent
itemsets

Non-frequent
itemsets

border

