Recap: Mining association rules
from large datasets

Recap

* Task 1: Methods for finding all frequent itemsets efficiently

* Task 2: Methods for finding association rules efficiently

Recap

* Frequent itemsets (measure: support)
e Apriori principle

e Apriori algorithm for finding frequent itemsets
— Prunes really well in practice
— Makes multiple passes over the dataset

Making a single pass over the data: the
AprioriTid algorithm

 The database is not used for counting support after
the 1%t pass!

* Instead information in data structure C,’ is used for
counting support in every step

* C/isgenerated fromC, '

* For small values of k, storage requirements for data
structures could be larger than the database!

* For large values of k, storage requirements can be very
small

Lecture outline

* Task 1: Methods for finding all frequent itemsets efficiently

* Task 2: Methods for finding association rules efficiently

Definition: Association Rule

Let D be database of transactions

SRRl 7vcocion D | ems

2000 A, B, C
1000 A C
4000 A D
5000 B,E F

* Let/be the set of items that appear in the
database, e.g., I={A,B,C,D,E,F}

* Aruleis defined by X =2 Y, where XcI, Y,
and XNY=J

—e.g.:{B,C} 2 {A}isarule

Definition: Association Rule

Association Rule

m An implication expression of the
form X — Y, where X and Y are
non-overlapping itemsets

m Example:
{Milk, Diaper} — {Beer}

Rule Evaluation Metrics
= Support (s)

o Fraction of transactions that
contain both X and Y

m Confidence (c)

o Measures how often itemsin Y
appear in transactions that
contain X

o o (Milk, Diaper,Beer) 2

co o (Milk, Diaper, Beer) 2

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke
Example:

{Milk, Diaper} — Beer

0.4
| T] >

: : =—=0.67
o (Milk, Diaper) 3

Example

TID date items bought
100 10/10/99 {F,A,D,B}

200 15/10/99 {D,A,C,E,B}

300 19/10/99 {C,A,B,E}

400 20/10/99 {B,A,D}

What is the support and confidence of the rule: {B,D} - {A}

Support:
= percentage of tuples that contain {A,B,D} = 75%

Confidence:
number of tuples that contain {A, B, D}

— o
number of tuples that contain {B, D} 1007

Association-rule mining task

* Given a set of transactions D, the goal of
association rule mining is to find all rules having

— support = minsup threshold
— confidence = minconf threshold

Brute-force algorithm for
association-rule mining

* List all possible association rules

 Compute the support and confidence for each
rule

* Prune rules that fail the minsup and minconf
thresholds

* = Computationally prohibitive!

Number of rules

[y
T

[n]

m
T

1=
T

L
T

-
T

]

How many association rules are there?

* Given d unique itemsin I:

w107

— Total number of itemsets = 24
— Total number of possible association rules:

R d—1 i d dz_lf d - k
= X
k=1 k j=1 J

3F-2"+1

If d=6, R =602 rules

[

Mining Association Rules

* Two-step approach:

— Frequent Itemset Generation
— Generate all itemsets whose support > minsup

— Rule Generation

— Generate high confidence rules from each frequent
itemset, where each rule is a binary partition of a frequent
itemset

Rule Generation — Naive algorithm

* Given a frequent itemset X, find all non-empty
subsets y— X such that y— X — y satisfies the
minimum confidence requirement

— If {A,B,C,D} is a frequent itemset, candidate rules:

ABC —D, ABD —C, ACD —B, BCD —A,
A —BCD, B —>ACD, C —>ABD, D —>ABC
AB —CD, AC — BD, AD — BC, BC —>AD,
BD —-AC, CD —AB,

* If |X| =k, then there are 2¢— 2 candidate
association rules (ighoring X — @ and @ — X)

Efficient rule generation

* How to efficiently generate rules from frequent
itemsets?

— In general, confidence does not have an anti-monotone
property

c(ABC —D) can be larger or smaller than ¢c(AB —D)

— But confidence of rules generated from the same itemset
has an anti-monotone property

— Example: X = {A,B,C,D}:
c(ABC — D) > c(AB — CD) > c(A — BCD)
— Why?

Confidence is anti-monotone w.r.t. number of items on
the RHS of the rule

Rule Generation for Apriori Algorithm

Lattice of rules

ABCD=>{}
Low

Confide&’
Rule ;

Apriori algorithm for rule generation

* Candidate rule is generated by merging two rules
that share the same prefix
in the rule consequent

* join(CD>AB,BD—>AC)
would produce the candidate
rule D 2>ABC

* Prune rule D->ABC if there exists a
subset (e.g., AD—>BC) that does not have
high confidence

Reducing the collection of itemsets:
alternative representations and
combinatorial problems

Too many frequent itemsets

* If{a,, ..., 3,90 is @ frequent itemset, then there

are
100 100 100 100
+ +...+ =2 =1
1 2 100

1.27*103° frequent sub-patterns!

* There should be some more condensed way to
describe the data

Frequent itemsets maybe too many to be
helpful

* |f there are many and large frequent itemsets
enumerating all of them is costly.

* We may be interested in finding the boundary
frequent patterns.

* Question: Is there a good definition of such
boundary?

border

empty set

/\

Frequent

Itemsets

Non-frequent
Itemsets

all items

Borders of frequent itemsets

* Itemset X is more specific than itemset Y if X superset of Y
(notation: Y<X). Also, Y is more general than X (notation: X>Y)

* The Border: Let S be a collection of frequent itemsets and P
the lattice of itemsets. The border Bd(S) of S consists of all
itemsets X such that all more general itemsets than X are in S
and no pattern more specific than X is in S.

forallY e P withY < X thenY e P,
Bd(S)=<X eP

and forallW € P with X <W thenW ¢ S

Positive and negative border

 Border

Bd(S)=<X eP

forallY e P withY < X thenY €8S,
and forallW € P with X <W thenW ¢ S

* Positive border: Itemsets in the border that are also frequent
(belong in S)

Bd*(S) = {X eS|forall Y P with X <Y thenY ¢ |

* Negative border: Itemsets in the border that are not frequent
(do not belong in S)

Bd~(S) = {X eP\S[forall Y € P withY < X thenY € |

Examples with borders

* Consider a set of items from the alphabet:
{A,B,C,D,E} and the collection of frequent sets

S = {{AL{BL{CH{EL{A,BL{A,CL{AEL{CEL{A,CE}}
* The negative border of collection S is
Bd-(S) = {{p},{B,C},{B,E}}
* The positive border of collection S is
Bd*(S) = {{a,B},{A,c,E}}

Descriptive power of the borders

* Claim: A collection of frequent sets S can be
fully described using only the positive border
(Bd*(S)) or only the negative border (Bd-(S)).

Maximal patterns

Frequent patterns without proper frequent super
pattern

Maximal Frequent [temset

An itemset is maximal frequent if none of its immediate supersets is
frequent

Maximal
Itemsets

Infrequent
ltemsets <+—

Maximal patterns

* The set of maximal patterns is the same as the
positive border

* Descriptive power of maximal patterns:

— Knowing the set of all maximal patterns allows us to
reconstruct the set of all frequent itemsets!!

— We can only reconstruct the set not the actual
frequencies

MaxMiner: Mining Max-patterns

* |dea: generate the complete set-enumeration
tree one level at a time, while prune if

applicable.
M.

/A % /B(CD) C(D) D ()
AB (CD) AC (D) AD () BC (D) BD () CD 0
ABC (C) ABD () ACD () BCD 0

ABCD ()

Local Pruning Techniques (e.g. at node A)

Check the frequency of ABCD and AB, AC, AD.
 If ABCD is frequent, prune the whole sub-tree.
 |f ACis NOT frequent, remove C from the parenthesis before

expanding.
ABCD)

/A % /B(CD) C(D) D ()
AB (CD) AC (D) AD () BC (D) BD () CD 0
ABC (C) ABD () ACD () BCD 0

ABCD ()

Algorithm MaxMiner

* |nitially, generate one node N=® (ABCD)| where
h(N)=® and t(N)={A,B,C,D}.
* Consider expanding N,
— If h(N)Ut(N) is frequent, do not expand N.
— If for some iet(N), h(N)U{i} is NOT frequent,
remove i from t(N) before expanding N.

* Apply global pruning techniques...

Global Pruning Technique (across sub-trees)

When a max pattern is identified (e.g. ABCD), prune all nodes
(e.g. B, Cand D) where h(N)Ut(N) is a sub-set of it (e.g. ABCD).

M.

/LQ&EQ::\\\\\$ ‘/B(CD) C(D) D ()
AB (CD) AC (D) AD () BC (D) BD () CD 0
ABC (C) ABD () ACD () BCD 0

ABCD ()

Closed patterns

 Anitemsetis closed if none of its immediate supersets has the
same support as the itemset

ltemset | Support

TID ltems Egi g
1 {A,B} {(C} 3
2 {B,C,D} (D} 4
3 {A,B,C,D} {A.B} 4
4 {A,B,D} { A’ C) 5
5 {A,B,C,D} {A:D} 3
{B,C} 3

{B,D} 4

{C,D} 3

ltemset |Support
{A,B,C} 2
{A,B,D} 3
{A,C,D} 2
{B,C,D} 3
{A,B,C,D} 2

Maximal vs Closed Itemsets

Transaction lds

N

3

/

>
<

qC

2

O

W

<>

>

>
>

S

&,
R

D

X

AN

<’

/>

</

2\

<

S

W,

</

%

X

7
S

<

<=
>

2

RN

7> \‘
N

T

<

"@ e

</

>

N>

A

—/

N

%

N

D ¢

<>

<

TR

<
[>

-

A

<>

gy,

2

.

<
(8

"

T\

N

N\

7

N

75
A

<Z

<>

/=

</
sec) Caap

1

ltems

Not supported by .-~~~
any transactions -

TID

Maximal vs Closed Frequent Itemsets

not maximal

Closed but

Minimum support =2

©
[
mm
o E
3%
O E

Closed =9

Maximal = 4

Why are closed patterns interesting?

s({A,B}) = s(A), i.e., conf({A}>{B}) =1

We can infer that for every itemset X,
s(A U {X}) = s({A,B} U X)

No need to count the frequencies of sets X U {A,B} from the
database!

If there are lots of rules with confidence 1, then a significant
amount of work can be saved

— Very useful if there are strong correlations between the items and
when the transactions in the database are similar

Why closed patterns are interesting?

* Closed patterns and their frequencies alone
are sufficient representation for all the
frequencies of all frequent patterns

* Proof: Assume a frequent itemset X:

— X is closed =2 s(X) is known

— Xis not closed =2
s(X) = max {s(Y) | Y is closed and X subset of Y}

Maximal vs Closed sets

* Knowing all maximal
patterns (and their
frequencies) allows us to
reconstruct the set of
frequent patterns

Frequent
ltemsets

Closed
Frequent
[temsets

* Knowing all closed
patterns and their
frequencies allows us to
reconstruct the set of all
frequent patterns and
their frequencies

Maximal
Frequent
ltemsets

A more algorithmic approach to
reducing the collection of frequent
itemsets

Prototype problems: Covering
problems

* Setting:
— Universe of N elements U = {U_,...,U}
— AsetofnsetsS=1{s,...,s,}

— Find a collection C of setsin S (C subset of S) such that
U_.cccontains many elements from U

 Example:
— U: set of documents in a collection
— s.: set of documents that contain term t.

— Find a collection of terms that cover most of the
documents

Prototype covering problems

Set cover problem: Find a small collection C of sets from S
such that all elements in the universe U are covered by
some setinC

Best collection problem: find a collection C of k sets from S
such that the collection covers as many elements from the
universe U as possible

Both problems are NP-hard

Simple approximation algorithms with provable properties
are available and very useful in practice

Set-cover problem

Universe of N elements U = {U,,...,U}
A set of nsets S = {s,,...,s.} such that Uss. =U

Question: Find the smallest number of sets from
S to form collection C (C subset of S) such that

U _c=U

The set-cover problem is NP-hard (what does this
mean?)

Trivial algorithm

Try all subcollections of S

Select the smallest one that covers all the
elements in U

The running time of the trivial algorithm is
o(213]|ul)

This is way too slow

Greedy algorithm for set cover

Select first the largest-cardinality set s from S
Remove the elements from s from U
Recompute the sizes of the remaining setsin S

Go back to the first step

As an algorithm

e X=U
* C={}
* while X is not empty do
— For all seS let a_=|s intersection X|
— Let s be such that a_ is maximal
— C=CU{s}
— X=X\s

How can this go wrong?

* No global consideration of how good or bad a
selected set is going to be

How good is the greedy algorithm?

Consider a minimization problem
— In our case we want to minimize the cardinality of set C

Consider an instance |, and cost a“(l) of the optimal solution
— a'(1): is the minimum number of sets in C that cover all elements in U

Let a(l) be the cost of the approximate solution
— a(l): is the number of sets in C that are picked by the greedy algorithm

An algorithm for a minimization problem has approximation factor F if for
all instances | we have that

a(l)sF x a*(l)

Can we prove any approximation bounds for the greedy algorithm for set
cover ?

How good is the greedy algorithm for
set cover?

* (Trivial?) Observation: The greedy algorithm
for set cover has approximation factor F=s__,
where s__ is the setin S with the largest
cardinality

* Proof:
—a'()2N/|s.. orN< |s... [a™(l)
—a(l) SN < [sp,la’(l)

How good is the greedy algorithm for
set cover? A tighter bound

* The greedy algorithm for set cover has
approximation factor F = O(log |s

maxl)

* Proof: (From CLR “Introduction to
Algorithms”)

Best-collection problem

Universe of N elements U = {U,...,U}
A set of nsets S ={s,,...,s,.} such that Us,=U

Question: Find the a collection C consisting of k sets
from S such that f (C) = |U__c| is maximized

The best-colection problem is NP-hard

Simple approximation algorithm has approximation
factor F = (e-1)/e

Greedy approximation algorithm for
the best-collection problem
C={}

for every set sin S and not in C compute the
gain of s:

g(s) = f(C U {s}) - f(C)
Select the set s with the maximum gain
C=CU{s}
Repeat until C has k elements

Basic theorem

The greedy algorithm for the best-collection
problem has approximation factor F = (e-1)/e

C” : optimal collection of cardinality k

C : collection output by the greedy algorithm
f(C) 2 (e-1)/e x f(C")

Submodular functions and the greedy
algorithm

* A function f (defined on sets of some universe) is
submodular if

— for all sets S, T such that S is subset of T and x any
element in the universe

—f(SU{x})—f(S)=2f(TU{x})-FT)

* Theorem: For all maximization problems where
the optimization function is submodular, the
greedy algorithm has approximation factor

F=(e-1)/e

Again: Can you think of a more
algorithmic approach to reducing the
collection of frequent itemsets

Approximating a collection of frequent
patterns

* Assume a collection of frequent patterns S

 Each pattern X € S is described by the patterns
that covers

* Cov(X)={Y | YeSandY subset of X}

* Problem: Find k patterns from S to form set C
such that

| Uy .c Cov(X)]
IS maximized

border

empty set

/\

Frequent

Itemsets

Non-frequent
Itemsets

all items

