
Recap: Mining association rules 
from large datasets



Recap

• Task 1: Methods for finding all frequent itemsets efficiently 

• Task 2: Methods for finding association rules efficiently



Recap

• Frequent itemsets (measure: support)

• Apriori principle 

• Apriori algorithm for finding frequent itemsets

– Prunes really well in practice

– Makes multiple passes over the dataset



Making a single pass over the data: the 
AprioriTid algorithm

• The database is not used  for counting support after 
the 1st pass!

• Instead information in data structure Ck’ is used for 
counting support in every step

• Ck’ is generated from Ck-1’

• For small values of k, storage requirements for data 
structures could be larger than the database!

• For large values of k, storage requirements can be very 
small



Lecture outline

• Task 1: Methods for finding all frequent itemsets efficiently 

• Task 2: Methods for finding association rules efficiently



Definition: Association Rule

Let D be database of transactions
– e.g.:

• Let I be the set of items that appear in the 
database, e.g., I={A,B,C,D,E,F}

• A rule is defined by X  Y, where XI, YI, 
and XY=
– e.g.: {B,C}  {A} is a rule

Transaction ID Items

2000 A, B, C

1000 A, C

4000 A, D

5000 B, E, F



Definition: Association Rule

Example:
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 Association Rule

 An implication expression of the 
form X  Y, where X and Y are 
non-overlapping itemsets

 Example:
{Milk, Diaper}  {Beer} 

 Rule Evaluation Metrics

 Support (s)

 Fraction of transactions that 
contain both X and Y

 Confidence (c)

 Measures how often items in Y
appear in transactions that
contain X

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 



TID date items_bought
100 10/10/99 {F,A,D,B}

200 15/10/99 {D,A,C,E,B}

300 19/10/99 {C,A,B,E}

400 20/10/99 {B,A,D}

Example

What is the support and confidence of the rule: {B,D}  {A}

 Support:

 percentage of tuples that contain {A,B,D} =

 Confidence:


D}{B,contain  that  tuplesofnumber 

D}B,{A,contain  that  tuplesofnumber 

75%

100%



Association-rule mining task

• Given a set of transactions D, the goal of 
association rule mining is to find all rules having 

– support ≥ minsup threshold

– confidence ≥ minconf threshold



Brute-force algorithm for 
association-rule mining 

• List all possible association rules

• Compute the support and confidence for each 
rule

• Prune rules that fail the minsup and minconf
thresholds

•  Computationally prohibitive!



How many association rules are there?

• Given d unique items in I:
– Total number of itemsets = 2d

– Total number of possible association rules: 
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Mining Association Rules

• Two-step approach: 
– Frequent Itemset Generation

– Generate all itemsets whose support  minsup

– Rule Generation
– Generate high confidence rules from each frequent 

itemset, where each rule is a binary partition of a frequent 
itemset



Rule Generation – Naive algorithm

• Given a frequent itemset X, find all non-empty 
subsets y X such that y X – y satisfies the 
minimum confidence requirement

– If {A,B,C,D} is a frequent itemset, candidate rules:
ABC D, ABD C, ACD B, BCD A, 
A BCD, B ACD, C ABD, D ABC
AB CD, AC  BD, AD  BC, BC AD, 
BD AC, CD AB,

• If |X| = k, then there are 2k – 2 candidate 
association rules (ignoring X  and  X)



Efficient rule generation

• How to efficiently generate rules from frequent 
itemsets?
– In general, confidence does not have an anti-monotone 

property
c(ABC D) can be larger or smaller than c(AB D)

– But confidence of rules generated from the same itemset
has an anti-monotone property

– Example: X = {A,B,C,D}:

c(ABC  D)  c(AB  CD)  c(A  BCD)
– Why?

Confidence is anti-monotone w.r.t. number of items on 
the RHS of the rule



Rule Generation for Apriori Algorithm

ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

Lattice of rules
ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

Pruned 

Rules

Low 

Confidence 

Rule



Apriori algorithm for rule generation

• Candidate rule is generated by merging two rules 
that share the same prefix
in the rule consequent

• join(CDAB,BD—>AC)
would produce the candidate
rule D ABC

• Prune rule DABC if there exists a
subset (e.g., ADBC) that does not have
high confidence

CDAB BDAC

DABC



Reducing the collection of itemsets: 
alternative representations and 

combinatorial problems



Too many frequent itemsets

• If {a1, …, a100} is a frequent itemset, then there 
are

1.27*1030 frequent sub-patterns!

• There should be some more condensed way to 
describe the data
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Frequent itemsets maybe too many to be 
helpful

• If there are many and large frequent itemsets
enumerating all of them is costly.

• We may be interested in finding the boundary
frequent patterns.

• Question: Is there a good definition of such 
boundary?



all items

empty set

Frequent 
itemsets

Non-frequent 
itemsets

border



Borders of frequent itemsets

• Itemset X is more specific than itemset Y if X superset of Y 
(notation: Y<X). Also, Y is more general than X (notation: X>Y)

• The Border: Let S be a collection of frequent itemsets and P
the lattice of itemsets. The border Bd(S) of S consists of all 
itemsets X such that all more general itemsets than X are in S
and no pattern more specific than X is in S.
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Positive and negative border

• Border

• Positive border: Itemsets in the border that are also frequent 
(belong in S)

• Negative border: Itemsets in the border that are not frequent 
(do not belong in S)
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Examples with borders

• Consider a set of items from the alphabet: 
{A,B,C,D,E} and the collection of frequent sets 

S = {{A},{B},{C},{E},{A,B},{A,C},{A,E},{C,E},{A,C,E}}

• The negative border of collection S is

Bd-(S) = {{D},{B,C},{B,E}}

• The positive border of collection S is

Bd+(S) = {{A,B},{A,C,E}}



Descriptive power of the borders

• Claim: A collection of frequent sets S can be 
fully described using only the positive border 
(Bd+(S)) or only the negative border (Bd-(S)).



Maximal patterns

Frequent patterns without proper frequent super 
pattern



Maximal Frequent Itemset

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCD

E

Border

Infrequent 

Itemsets

Maximal 

Itemsets

An itemset is maximal frequent if none of its immediate supersets is 

frequent



Maximal patterns

• The set of maximal patterns is the same as the 
positive border

• Descriptive power of maximal patterns:

– Knowing the set of all maximal patterns allows us to 
reconstruct the set of all frequent itemsets!!

– We can only reconstruct the set not the actual 
frequencies 



MaxMiner: Mining Max-patterns

• Idea: generate the complete set-enumeration 
tree one level at a time, while prune if 
applicable.

 (ABCD)

A (BCD) B (CD) C (D) D ()

AB (CD) AC (D) AD () BC (D) BD () CD ()

ABC (C)

ABCD ()

ABD () ACD () BCD ()



Local Pruning Techniques (e.g. at node A)

Check the frequency of ABCD and AB, AC, AD.

• If ABCD is frequent, prune the whole sub-tree.

• If AC is NOT frequent, remove C from the parenthesis before 
expanding.  

 (ABCD)

A (BCD) B (CD) C (D) D ()

AB (CD) AC (D) AD () BC (D) BD () CD ()

ABC (C)

ABCD ()

ABD () ACD () BCD ()



Algorithm MaxMiner

• Initially, generate one node N= , where 
h(N)= and t(N)={A,B,C,D}.

• Consider expanding N, 

– If h(N)t(N) is frequent, do not expand N.

– If for some it(N), h(N){i} is NOT frequent, 
remove i from t(N) before expanding N.

• Apply global pruning techniques…

 (ABCD)



Global Pruning Technique (across sub-trees)

• When a max pattern is identified (e.g. ABCD), prune all nodes 
(e.g. B, C and D) where h(N)t(N) is a sub-set of it (e.g. ABCD).

 (ABCD)

A (BCD) B (CD) C (D) D ()

AB (CD) AC (D) AD () BC (D) BD () CD ()

ABC (C)

ABCD ()

ABD () ACD () BCD ()



Closed patterns

• An itemset is closed if none of its immediate supersets has the 
same support as the itemset

TID Items

1 {A,B}

2 {B,C,D}

3 {A,B,C,D}

4 {A,B,D}

5 {A,B,C,D}

Itemset Support

{A} 4

{B} 5

{C} 3

{D} 4

{A,B} 4

{A,C} 2

{A,D} 3

{B,C} 3

{B,D} 4

{C,D} 3

Itemset Support

{A,B,C} 2

{A,B,D} 3

{A,C,D} 2

{B,C,D} 3

{A,B,C,D} 2



Maximal vs Closed Itemsets

TID Items

1 ABC

2 ABCD

3 BCE

4 ACDE

5 DE

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

124 123 1234 245 345

12 124 24 4 123 2 3 24 34 45

12 2 24 4 4 2 3 4

2 4

Transaction Ids

Not supported by 

any transactions



Maximal vs Closed Frequent Itemsets
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

124 123 1234 245 345

12 124 24 4 123 2 3 24 34 45

12 2 24 4 4 2 3 4

2 4

Minimum support = 2

# Closed = 9

# Maximal = 4

Closed and 

maximal

Closed but 

not maximal



Why are closed patterns interesting?

• s({A,B}) = s(A), i.e., conf({A}{B}) = 1

• We can infer that for every itemset X , 
s(A U {X}) =  s({A,B} U X)

• No need to count the frequencies of sets X U {A,B} from the 
database!

• If there are lots of rules with confidence 1, then a significant 
amount of work can be saved

– Very useful if there are strong correlations between the items and 
when the transactions in the database are similar



Why closed patterns are interesting?

• Closed patterns and their frequencies alone 
are sufficient representation for all the 
frequencies of all frequent patterns

• Proof: Assume a frequent itemset X:

– X is closed  s(X) is known 

– X is not closed 

s(X) = max {s(Y) | Y is closed and X subset of Y}



Maximal vs Closed sets

• Knowing all maximal 
patterns (and their 
frequencies) allows us to 
reconstruct the set of 
frequent patterns

• Knowing all closed 
patterns and their 
frequencies allows us to 
reconstruct the set of all 
frequent patterns and 
their frequencies

Frequent

Itemsets

Closed

Frequent

Itemsets

Maximal

Frequent

Itemsets



A more algorithmic approach to 
reducing the collection of frequent 

itemsets



Prototype problems: Covering 
problems

• Setting: 
– Universe of N elements U = {U1,…,UN}

– A set of n sets S = {s1,…,sn}

– Find a collection C of sets in S (C subset of S) such that
UcєCc contains many elements from U

• Example:
– U: set of documents in a collection

– si: set of documents that contain term ti

– Find a collection of terms that cover most of the 
documents 



Prototype covering problems

• Set cover problem: Find a small collection C of sets from S
such that all elements in the universe U are covered by 
some set in C

• Best collection problem: find a collection C of k sets from S
such that the collection covers as many elements from the 
universe U as possible

• Both problems are NP-hard

• Simple approximation algorithms with provable properties 
are available and very useful in practice



Set-cover problem

• Universe of N elements U = {U1,…,UN}
• A set of n sets S = {s1,…,sn} such that Uisi =U

• Question: Find the smallest number of sets from 
S to form collection C (C subset of S) such that
UcєCc=U

• The set-cover problem is NP-hard (what does this 
mean?)



Trivial algorithm

• Try all subcollections of S

• Select the smallest one that covers all the 
elements in U

• The running time of the trivial algorithm is 
O(2|S||U|)

• This is way too slow



Greedy algorithm for set cover

• Select first the largest-cardinality set s from S

• Remove the elements from s from U

• Recompute the sizes of the remaining sets in S

• Go back to the first step



As an algorithm

• X = U

• C = {}

• while X is not empty do

– For all sєS let as=|s intersection X|

– Let s be such that as is maximal

– C = C U {s}

– X = X\ s



How can this go wrong?

• No global consideration of how good or bad a 
selected set is going to be



How good is the greedy algorithm?

• Consider a minimization problem
– In our case we want to minimize the cardinality of set C

• Consider an instance I, and cost  a*(I) of the optimal solution
– a*(I): is the minimum number of sets in C that cover all elements in U

• Let a(I) be the cost of the approximate solution
– a(I): is the number of sets in C that are picked by the greedy algorithm

• An algorithm for a minimization problem has approximation factor F if for 
all instances I we have that 

a(I)≤F x a*(I)

• Can we prove any approximation bounds for the greedy algorithm for set 
cover ?



How good is the greedy algorithm for 
set cover?

• (Trivial?) Observation: The greedy algorithm 
for set cover has approximation factor F = smax, 
where smax is the set in S with the largest 
cardinality 

• Proof:

– a*(I)≥N/|smax| or N ≤ |smax|a*(I)

– a(I) ≤ N ≤ |smax|a*(I)



How good is the greedy algorithm for 
set cover? A tighter bound

• The greedy algorithm for set cover has 
approximation factor F = O(log |smax|)

• Proof: (From CLR “Introduction to 
Algorithms”)



Best-collection problem

• Universe of N elements U = {U1,…,UN}
• A set of n sets S = {s1,…,sn} such that Uisi =U

• Question: Find the a collection C consisting of k sets 
from S such that f (C) = |UcєCc| is maximized

• The best-colection problem is NP-hard 

• Simple approximation algorithm has approximation 
factor F = (e-1)/e



Greedy approximation algorithm for 
the best-collection problem

• C = {}

• for every set s in S and not in C compute the 
gain of s: 

g(s) = f(C U {s}) – f(C)

• Select the set s with the maximum gain

• C = C U {s}

• Repeat until C has k elements



Basic theorem

• The greedy algorithm for the best-collection 
problem has approximation factor F = (e-1)/e

• C* : optimal collection of cardinality k

• C : collection output by the greedy algorithm

• f(C ) ≥ (e-1)/e x f(C*)



Submodular functions and the greedy 
algorithm

• A function f (defined on sets of some universe)  is 
submodular if 
– for all sets S, T such that S is subset of T and x any

element in the universe

– f(S U {x}) – f(S ) ≥ f(T U {x} ) – f(T)

• Theorem: For all maximization problems where 
the optimization function is submodular, the 
greedy algorithm has approximation factor 

F = (e-1)/e



Again: Can you think of a more 
algorithmic approach to reducing the 

collection of frequent itemsets



Approximating a collection of frequent 
patterns

• Assume a collection of frequent patterns S

• Each pattern X є S is described by the patterns 
that covers

• Cov(X) = { Y | Y є S and Y subset of X}

• Problem: Find k patterns from S to form set C
such that 

|UXєC Cov(X)| 
is maximized 



all items

empty set

Frequent 
itemsets

Non-frequent 
itemsets

border


