Recap: Mining association rules from large datasets

Recap

- Task 1: Methods for finding all frequent itemsets efficiently
- Task 2: Methods for finding association rules efficiently

Recap

- Frequent itemsets (measure: support)
- Apriori principle
- Apriori algorithm for finding frequent itemsets
- Prunes really well in practice
- Makes multiple passes over the dataset

Making a single pass over the data: the AprioriTid algorithm

- The database is not used for counting support after the $1^{\text {st }}$ pass!
- Instead information in data structure $\mathrm{C}_{\mathrm{k}}{ }^{\prime}$ is used for counting support in every step
- $\mathrm{C}_{\mathrm{k}}{ }^{\prime}$ is generated from $\mathrm{C}_{\mathrm{k}-1}{ }^{1}$
- For small values of k, storage requirements for data structures could be larger than the database!
- For large values of k, storage requirements can be very small

Lecture outline

- Task 1: Methods for finding all frequent itemsets efficiently
- Task 2: Methods for finding association rules efficiently

Definition: Association Rule

Let D be database of transactions

- e.g.:	Transaction ID	Items
	2000	A, B, C
	1000	A, C
	4000	A, D
	5000	B, E, F

- Let / be the set of items that appear in the database, e.g., $I=\{A, B, C, D, E, F\}$
- A rule is defined by $X \rightarrow Y$, where $X \subset I, Y \subset I$, and $\mathrm{X} \cap \mathrm{Y}=\varnothing$
- e.g.: $\{B, C\} \rightarrow\{A\}$ is a rule

Definition: Association Rule

Association Rule

- An implication expression of the form $X \rightarrow Y$, where X and Y are non-overlapping itemsets
- Example:
$\{$ Milk, Diaper\} \rightarrow \{Beer $\}$

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Rule Evaluation Metrics

- Support (s)
- Fraction of transactions that contain both X and Y
- Confidence (c)
- Measures how often items in Y appear in transactions that contain X

Example:

\{Milk, Diaper $\} \rightarrow$ Beer

$$
s=\frac{\sigma(\text { Milk, Diaper, Beer })}{|\mathrm{T}|}=\frac{2}{5}=0.4
$$

$$
c=\frac{\sigma(\text { Milk, Diaper, Beer })}{\sigma(\text { Milk, Diaper })}=\frac{2}{3}=0.67
$$

Example

TID	date	items bought
100	$10 / 10 / 99$	$\{F, A, D, B\}$
200	$15 / 10 / 99$	$\{D, A, C, E, B\}$
300	$19 / 10 / 99$	$\{C, A, B, E\}$
400	$20 / 10 / 99$	$\{B, A, D\}$

What is the support and confidence of the rule: $\{\mathrm{B}, \mathrm{D}\} \rightarrow\{\mathrm{A}\}$

Support:

- percentage of tuples that contain $\{A, B, D\}=75 \%$
\square Confidence:

$$
\frac{\text { number of tuples that contain }\{\mathrm{A}, \mathrm{~B}, \mathrm{D}\}}{\text { number of tuples that contain }\{\mathrm{B}, \mathrm{D}\}}=100 \%
$$

Association-rule mining task

- Given a set of transactions D, the goal of association rule mining is to find all rules having
- support \geq minsup threshold
- confidence \geq minconf threshold

Brute-force algorithm for association-rule mining

- List all possible association rules
- Compute the support and confidence for each rule
- Prune rules that fail the minsup and minconf thresholds
- \Rightarrow Computationally prohibitive!

How many association rules are there?

- Given d unique items in /:
- Total number of itemsets $=2^{\mathrm{d}}$
- Total number of possible association rules:

$$
\begin{aligned}
& R=\sum_{k=1}^{d-1}\left[\binom{d}{k} \times \sum_{j=1}^{d-k}\binom{d-k}{j}\right] \\
&=3^{d}-2^{d+1}+1 \\
& \text { If } \mathrm{d}=6, \mathrm{R}=602 \text { rules }
\end{aligned}
$$

Mining Association Rules

- Two-step approach:
- Frequent Itemset Generation
- Generate all itemsets whose support \geq minsup
- Rule Generation
- Generate high confidence rules from each frequent itemset, where each rule is a binary partition of a frequent itemset

Rule Generation - Naive algorithm

- Given a frequent itemset X, find all non-empty subsets $y \subset X$ such that $y \rightarrow X-y$ satisfies the minimum confidence requirement
- If $\{A, B, C, D\}$ is a frequent itemset, candidate rules:

$$
\begin{array}{llll}
\mathrm{ABC} \rightarrow \mathrm{D}, & \mathrm{ABD} \rightarrow \mathrm{C}, & \mathrm{ACD} \rightarrow \mathrm{~B}, & \mathrm{BCD} \rightarrow \mathrm{~A}, \\
\mathrm{~A} \rightarrow \mathrm{BCD}, & \mathrm{~B} \rightarrow \mathrm{ACD}, & \mathrm{C} \rightarrow \mathrm{ABD}, & \mathrm{D} \rightarrow \mathrm{ABC} \\
\mathrm{AB} \rightarrow \mathrm{CD}, & \mathrm{AC} \rightarrow \mathrm{BD}, & \mathrm{AD} \rightarrow \mathrm{BC}, & \mathrm{BC} \rightarrow \mathrm{AD}, \\
\mathrm{BD} \rightarrow \mathrm{AC}, & \mathrm{CD} \rightarrow \mathrm{AB}, & &
\end{array}
$$

- If $|\mathrm{X}|=\mathrm{k}$, then there are $2^{\mathrm{k}}-2$ candidate association rules (ignoring $X \rightarrow \varnothing$ and $\varnothing \rightarrow X$)

Efficient rule generation

- How to efficiently generate rules from frequent itemsets?
- In general, confidence does not have an anti-monotone property
$c(A B C \rightarrow D)$ can be larger or smaller than $c(A B \rightarrow D)$
- But confidence of rules generated from the same itemset has an anti-monotone property
- Example: $X=\{A, B, C, D\}$:

$$
c(A B C \rightarrow D) \geq c(A B \rightarrow C D) \geq c(A \rightarrow B C D)
$$

- Why?

Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

Rule Generation for Apriori Algorithm

Lattice of rules

Apriori algorithm for rule generation

- Candidate rule is generated by merging two rules that share the same prefix in the rule consequent
- join($C D \rightarrow A B, B D \rightarrow A C$) would produce the candidate rule $D \rightarrow A B C$
- Prune rule $D \rightarrow A B C$ if there exists a subset (e.g., $A D \rightarrow B C$) that does not have high confidence

Reducing the collection of itemsets: alternative representations and combinatorial problems

Too many frequent itemsets

- If $\left\{a_{1}, \ldots, a_{100}\right\}$ is a frequent itemset, then there are

$$
\binom{100}{1}+\binom{100}{2}+\ldots+\binom{100}{100}=2^{100}-1
$$

$1.27 * 10^{30}$ frequent sub-patterns!

- There should be some more condensed way to describe the data

Frequent itemsets maybe too many to be helpful

- If there are many and large frequent itemsets enumerating all of them is costly.
- We may be interested in finding the boundary frequent patterns.
- Question: Is there a good definition of such boundary?

all items

Borders of frequent itemsets

- Itemset X is more specific than itemset Y if X superset of Y (notation: $\mathrm{Y}<\mathrm{X}$). Also, Y is more general than X (notation: $\mathrm{X}>\mathrm{Y}$)
- The Border: Let S be a collection of frequent itemsets and P the lattice of itemsets. The border $\mathrm{Bd}(\mathrm{S})$ of S consists of all itemsets X such that all more general itemsets than X are in S and no pattern more specific than X is in S.

$$
B d(S)=\left\{X \in P \left\lvert\, \begin{array}{l}
\text { for all } Y \in P \text { with } Y \prec X \text { then } Y \in P \\
\text { and for all } W \in P \text { with } X \prec W \text { then } W \notin S
\end{array}\right.\right\}
$$

Positive and negative border

- Border
$B d(S)=\left\{X \in P \left\lvert\, \begin{array}{l}\text { for all } Y \in P \text { with } Y \prec X \text { then } Y \in S, \\ \text { and for all } W \in P \text { with } X \prec W \text { then } W \notin S\end{array}\right.\right\}$
- Positive border: Itemsets in the border that are also frequent (belong in S)

$$
B d^{+}(S)=\{X \in S \mid \text { for all } Y \in P \text { with } X \prec Y \text { then } Y \notin S\}
$$

- Negative border: Itemsets in the border that are not frequent (do not belong in S)
$B d^{-}(S)=\{X \in P \backslash S \mid$ for all $Y \in P$ with $Y \prec X$ then $Y \in S\}$

Examples with borders

- Consider a set of items from the alphabet: $\{A, B, C, D, E\}$ and the collection of frequent sets

$$
S=\{\{A\},\{B\},\{C\},\{E\},\{A, B\},\{A, C\},\{A, E\},\{C, E\},\{A, C, E\}\}
$$

- The negative border of collection S is

$$
\mathrm{Bd}^{-}(\mathrm{S})=\{\{\mathrm{D}\},\{\mathrm{B}, \mathrm{C}\},\{\mathrm{B}, \mathrm{E}\}\}
$$

- The positive border of collection S is

$$
B d^{+}(S)=\{\{A, B\},\{A, C, E\}\}
$$

Descriptive power of the borders

- Claim: A collection of frequent sets S can be fully described using only the positive border $\left(\mathrm{Bd}^{+}(\mathrm{S})\right.$) or only the negative border ($\mathrm{Bd}^{-}(\mathrm{S})$).

Maximal patterns

Frequent patterns without proper frequent super pattern

Maximal Frequent Itemset

An itemset is maximal frequent if none of its immediate supersets is frequent

Maximal patterns

- The set of maximal patterns is the same as the positive border
- Descriptive power of maximal patterns:
- Knowing the set of all maximal patterns allows us to reconstruct the set of all frequent itemsets!!
- We can only reconstruct the set not the actual frequencies

MaxMiner: Mining Max-patterns

- Idea: generate the complete set-enumeration tree one level at a time, while prune if applicable.

Local Pruning Techniques (e.g. at node A)

Check the frequency of $A B C D$ and $A B, A C, A D$.

- If $A B C D$ is frequent, prune the whole sub-tree.
- If AC is NOT frequent, remove C from the parenthesis before expanding.

Algorithm MaxMiner

- Initially, generate one node $N \neq \Phi$ (ABCD), where $h(N)=\Phi$ and $t(N)=\{A, B, C, D\}$.
- Consider expanding N ,
- If $\mathrm{h}(\mathrm{N}) \cup \mathrm{t}(\mathrm{N})$ is frequent, do not expand N .
- If for some $i \in t(\mathbb{N}), \mathrm{h}(\mathrm{N}) \cup\{i\}$ is NOT frequent, remove ifrom $\mathrm{t}(\mathrm{N})$ before expanding N .
- Apply global pruning techniques...

Global Pruning Technique (across sub-trees)

- When a max pattern is identified (e.g. ABCD), prune all nodes (e.g. B, C and D) where $h(N) \cup t(N)$ is a sub-set of it (e.g. ABCD).

Closed patterns

- An itemset is closed if none of its immediate supersets has the same support as the itemset

TID	Items
1	$\{A, B\}$
2	$\{B, C, D\}$
3	$\{A, B, C, D\}$
4	$\{A, B, D\}$
5	$\{A, B, C, D\}$

Itemset	Support
$\{A\}$	4
$\{B\}$	5
$\{C\}$	3
$\{D\}$	4
$\{A, B\}$	4
$\{A, C\}$	2
$\{A, D\}$	3
$\{B, C\}$	3
$\{B, D\}$	4
$\{C, D\}$	3

Itemset	Support
$\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$	2
$\{\mathrm{~A}, \mathrm{~B}, \mathrm{D}\}$	3
$\{\mathrm{~A}, \mathrm{C}, \mathrm{D}\}$	2
$\{\mathrm{~B}, \mathrm{C}, \mathrm{D}\}$	2
$\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}\}$	2

Maximal vs Closed Itemsets

Maximal vs Closed Frequent Itemsets

Why are closed patterns interesting?

- $s(\{A, B\})=s(A)$, i.e., $\operatorname{conf}(\{A\} \rightarrow\{B\})=1$
- We can infer that for every itemset X, $s(A \cup\{X\})=s(\{A, B\} \cup X)$
- No need to count the frequencies of sets $X u\{A, B\}$ from the database!
- If there are lots of rules with confidence 1 , then a significant amount of work can be saved
- Very useful if there are strong correlations between the items and when the transactions in the database are similar

Why closed patterns are interesting?

- Closed patterns and their frequencies alone are sufficient representation for all the frequencies of all frequent patterns
- Proof: Assume a frequent itemset X :
$-X$ is closed $\rightarrow s(X)$ is known
$-X$ is not closed \rightarrow
$s(X)=\max \{s(Y) \mid Y$ is closed and X subset of $Y\}$

Maximal vs Closed sets

- Knowing all maximal patterns (and their frequencies) allows us to reconstruct the set of frequent patterns
- Knowing all closed patterns and their frequencies allows us to reconstruct the set of all frequent patterns and their frequencies

A more algorithmic approach to reducing the collection of frequent itemsets

Prototype problems: Covering problems

- Setting:
- Universe of N elements $\mathrm{U}=\left\{\mathrm{U}_{1}, \ldots, \mathrm{U}_{\mathrm{N}}\right\}$
- A set of n sets $S=\left\{s_{1}, \ldots, s_{n}\right\}$
- Find a collection C of sets in S (C subset of S) such that $U_{c \in C} C$ contains many elements from U
- Example:
- U: set of documents in a collection
- s_{i} : set of documents that contain term t_{i}
- Find a collection of terms that cover most of the documents

Prototype covering problems

- Set cover problem: Find a small collection C of sets from S such that all elements in the universe U are covered by some set in C
- Best collection problem: find a collection C of k sets from S such that the collection covers as many elements from the universe U as possible
- Both problems are NP-hard
- Simple approximation algorithms with provable properties are available and very useful in practice

Set-cover problem

- Universe of N elements $U=\left\{U_{1}, \ldots, U_{N}\right\}$
- A set of n sets $S=\left\{s_{1}, \ldots, S_{n}\right\}$ such that $U_{i} s_{i}=U$
- Question: Find the smallest number of sets from S to form collection C (C subset of S) such that $\mathrm{U}_{\mathrm{c} \mathrm{\epsilon C}} \mathrm{C}=\mathrm{U}$
- The set-cover problem is NP-hard (what does this mean?)

Trivial algorithm

- Try all subcollections of S
- Select the smallest one that covers all the elements in U
- The running time of the trivial algorithm is O(2 ${ }^{|S||U|) ~}$
- This is way too slow

Greedy algorithm for set cover

- Select first the largest-cardinality set s from S
- Remove the elements from s from U
- Recompute the sizes of the remaining sets in S
- Go back to the first step

As an algorithm

- $\mathrm{X}=\mathrm{U}$
- $C=\{ \}$
- while X is not empty do
- For all $s \in S$ let $\mathrm{a}_{\mathrm{s}}=\mid \mathrm{s}$ intersection $X \mid$
- Let s be such that a_{s} is maximal
$-\mathrm{C}=\mathrm{CU}$ \{s\}
$-X=X \backslash s$

How can this go wrong?

- No global consideration of how good or bad a selected set is going to be

How good is the greedy algorithm?

- Consider a minimization problem
- In our case we want to minimize the cardinality of set C
- Consider an instance II, and cost $a^{*}(I)$ of the optimal solution
- $a^{*}(I)$: is the minimum number of sets in C that cover all elements in U
- Let $\mathrm{a}(\mathrm{I})$ be the cost of the approximate solution
- $a(I)$: is the number of sets in C that are picked by the greedy algorithm
- An algorithm for a minimization problem has approximation factor F if for all instances I we have that

$$
a(I) \leq F \times a^{*}(I)
$$

- Can we prove any approximation bounds for the greedy algorithm for set cover?

How good is the greedy algorithm for set cover?

- (Trivial?) Observation: The greedy algorithm for set cover has approximation factor $F=s_{\text {max }}$, where $\mathrm{s}_{\text {max }}$ is the set in S with the largest cardinality
- Proof:

$$
\begin{aligned}
& -a^{*}(I) \geq N /\left|s_{\max }\right| \text { or } N \leq\left|s_{\text {max }}\right| a^{*}(I) \\
& -a(I) \leq N \leq\left|s_{\text {max }}\right| a^{*}(I)
\end{aligned}
$$

How good is the greedy algorithm for set cover? A tighter bound

- The greedy algorithm for set cover has approximation factor $\mathrm{F}=\mathrm{O}\left(\log \left|\mathrm{s}_{\max }\right|\right)$
- Proof: (From CLR "Introduction to Algorithms")

Best-collection problem

- Universe of N elements $U=\left\{\mathrm{U}_{1}, \ldots, \mathrm{U}_{\mathrm{N}}\right\}$
- A set of n sets $S=\left\{s_{1}, \ldots, s_{n}\right\}$ such that $U_{i} s_{i}=U$
- Question: Find the a collection C consisting of k sets from S such that $f(C)=\| U_{c \in C} C \mid$ is maximized
- The best-colection problem is NP-hard
- Simple approximation algorithm has approximation factor $F=(e-1) / e$

Greedy approximation algorithm for the best-collection problem

- $\mathrm{C}=\{ \}$
- for every set s in S and not in C compute the gain of s :

$$
g(s)=f(C U\{s\})-f(C)
$$

- Select the set s with the maximum gain
- C = C U \{s\}
- Repeat until C has k elements

Basic theorem

- The greedy algorithm for the best-collection problem has approximation factor $\mathrm{F}=(\mathrm{e}-1) / \mathrm{e}$
- C* : optimal collection of cardinality \mathbf{k}
- C : collection output by the greedy algorithm
- $f(C) \geq(e-1) / e \times f\left(C^{*}\right)$

Submodular functions and the greedy algorithm

- A function f (defined on sets of some universe) is submodular if
- for all sets S, T such that S is subset of T and x any element in the universe
$-f(S \cup\{x\})-f(S) \geq f(T \cup\{x\})-f(T)$
- Theorem: For all maximization problems where the optimization function is submodular, the greedy algorithm has approximation factor

$$
F=(e-1) / e
$$

Again: Can you think of a more algorithmic approach to reducing the collection of frequent itemsets

Approximating a collection of frequent patterns

- Assume a collection of frequent patterns S
- Each pattern $X \in S$ is described by the patterns that covers
- $\operatorname{Cov}(X)=\{Y \mid Y \in S$ and Y subset of $X\}$
- Problem: Find k patterns from S to form set C such that

$$
\left|U_{X \in C} \operatorname{Cov}(X)\right|
$$

is maximized

all items

