Clustering
Lecture outline

• Distance/Similarity between data objects
• Data objects as geometric data points
• Clustering problems and algorithms
 – K-means
 – K-median
 – K-center
What is clustering?

• A **grouping** of data objects such that the objects **within a group are similar** (or related) to one another and **different from** (or unrelated to) the objects in other groups

Intra-cluster distances are minimized

Inter-cluster distances are maximized
Outliers

- Outliers are objects that do not belong to any cluster or form clusters of very small cardinality.

- In some applications we are interested in discovering outliers, not clusters (outlier analysis).
Why do we cluster?

• Clustering: given a collection of data objects group them so that
 – Similar to one another within the same cluster
 – Dissimilar to the objects in other clusters

• Clustering results are used:
 – As a stand-alone tool to get insight into data distribution
 • Visualization of clusters may unveil important information
 – As a preprocessing step for other algorithms
 • Efficient indexing or compression often relies on clustering
Applications of clustering?

• Image Processing
 – cluster images based on their visual content

• Web
 – Cluster groups of users based on their access patterns on webpages
 – Cluster webpages based on their content

• Bioinformatics
 – Cluster similar proteins together (similarity with regard to chemical structure and/or functionality etc)

• Many more...
The clustering task

• Group observations into groups so that the observations belonging in the same group are similar, whereas observations in different groups are different

• Basic questions:
 – What does “similar” mean
 – What is a good partition of the objects? I.e., how is the quality of a solution measured
 – How to find a good partition of the observations
Observations to cluster

- **Real-value attributes/variables**
 - e.g., salary, height

- **Binary attributes**
 - e.g., gender (M/F), has_cancer(T/F)

- **Nominal (categorical) attributes**
 - e.g., religion (Christian, Muslim, Buddhist, Hindu, etc.)

- **Ordinal/Ranked attributes**
 - e.g., military rank (soldier, sergeant, lutenant, captain, etc.)

- **Variables of mixed types**
 - multiple attributes with various types
Observations to cluster

• Usually data objects consist of a set of attributes (also known as dimensions)

• J. Smith, 20, 200K

• If all d dimensions are real-valued then we can visualize each data point as points in a d-dimensional space

• If all d dimensions are binary then we can think of each data point as a binary vector
Distance functions

• The distance $d(x, y)$ between two objects x and y is a metric if

 - $d(i, j) \geq 0$ (non-negativity)
 - $d(i, i) = 0$ (isolation)
 - $d(i, j) = d(j, i)$ (symmetry)
 - $d(i, j) \leq d(i, h) + d(h, j)$ (triangular inequality) [Why do we need it?]

• The definitions of distance functions are usually different for real, boolean, categorical, and ordinal variables.

• Weights may be associated with different variables based on applications and data semantics.
Data Structures

• **data** matrix

\[
\begin{bmatrix}
x_{11} & \cdots & x_{1\ell} & \cdots & x_{1d} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
x_{i1} & \cdots & x_{i\ell} & \cdots & x_{id} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
x_{n1} & \cdots & x_{n\ell} & \cdots & x_{nd}
\end{bmatrix}
\]

- **tuples/objects**
- **attributes/dimensions**

• **Distance** matrix

\[
\begin{bmatrix}
0 & d(2,1) & 0 \\
d(3,1) & d(3,2) & 0 \\
\vdots & \vdots & \vdots \\
d(n,1) & d(n,2) & \cdots & \cdots & 0
\end{bmatrix}
\]

- **objects**
Distance functions for binary vectors

- **Jaccard similarity** between binary vectors X and Y

 $JSim(X, Y) = \frac{X \cap Y}{X \cup Y}$

- **Jaccard distance** between binary vectors X and Y

 $Jdist(X,Y) = 1 - JSim(X,Y)$

- Example:
 - $JSim = 1/6$
 - $Jdist = 5/6$
Distance functions for real-valued vectors

- \textbf{L}_p \text{ norms or } \textit{Minkowski distance}:

\[
L_p(x, y) = \left(|x_1 - y_1|^p + |x_2 - y_2|^p + \ldots + |x_d - y_d|^p \right)^{1/p} = \left(\sum_{i=1}^{d} (x_i - y_i)^p \right)^{1/p}
\]

where \(p \) is a positive integer

- If \(p = 1 \), \(\textbf{L}_1 \) is the \textit{Manhattan (or city block)} distance:

\[
L_1(x, y) = |x_1 - y_1| + |x_2 - y_2| + \ldots + |x_d - y_d| = \sum_{i=1}^{d} |x_i - y_i|
\]
Distance functions for real-valued vectors

• If $p = 2$, L_2 is the **Euclidean distance**:

$$d(x, y) = \sqrt{(|x_1 - y_1|^2 + |x_2 - y_2|^2 + \ldots + |x_d - y_d|^2)}$$

• Also one can use **weighted distance**:

$$d(x, y) = \sqrt{(w_1 |x_1 - y_1|^2 + w_2 |x_2 - y_2|^2 + \ldots + w_d |x_d - y_d|^2)}$$

$$d(x, y) = w_1 |x_1 - y_1| + w_2 |x_2 - y_2| + \ldots + w_d |x_d - y_d|$$

• Very often L_p^p is used instead of L_p (why?)
Partitioning algorithms: basic concept

• Construct a partition of a set of \(n \) objects into a set of \(k \) clusters
 – Each object belongs to exactly one cluster
 – The number of clusters \(k \) is given in advance
The k-means problem

• Given a set X of n points in a d-dimensional space and an integer k

• **Task:** choose a set of k points $\{c_1, c_2, ..., c_k\}$ in the d-dimensional space to form clusters $\{C_1, C_2, ..., C_k\}$ such that

\[Cost(C) = \sum_{i=1}^{k} \sum_{x \in C_i} L_2^2 \left(x - c_i \right) \]

is minimized

• Some special cases: $k = 1$, $k = n$
Algorithmic properties of the k-means problem

- NP-hard if the dimensionality of the data is at least 2 ($d \geq 2$)

- Finding the best solution in polynomial time is infeasible

- For $d=1$ the problem is solvable in polynomial time (how?)

- A simple iterative algorithm works quite well in practice
The k-means algorithm

• One way of solving the k-means problem

• Randomly pick k cluster centers $\{c_1, \ldots, c_k\}$

• For each i, set the cluster C_i to be the set of points in X that are closer to c_i than they are to c_j for all $i \neq j$

• For each i let c_i be the center of cluster C_i (mean of the vectors in C_i)

• Repeat until convergence
Properties of the k-means algorithm

• Finds a local optimum

• Converges often quickly (but not always)

• The choice of initial points can have large influence in the result
Two different K-means Clusterings

Original Points

Optimal Clustering

Sub-optimal Clustering
Discussion k-means algorithm

• Finds a local optimum
• Converges often quickly (but not always)
• The choice of initial points can have large influence
 – Clusters of different densities
 – Clusters of different sizes
• Outliers can also cause a problem (Example?)
Some alternatives to random initialization of the central points

• Multiple runs
 – Helps, but probability is not on your side

• Select original set of points by methods other than random. E.g., pick the most distant (from each other) points as cluster centers (kmeans++ algorithm)
The k-median problem

• Given a set X of n points in a d-dimensional space and an integer k

• Task: choose a set of k points $\{c_1, c_2, \ldots, c_k\}$ from X and form clusters $\{C_1, C_2, \ldots, C_k\}$ such that

$$\text{Cost}(C) = \sum_{i=1}^{k} \sum_{x \in C_i} L_1(x, c_i)$$

is minimized
The *k-medoids* algorithm

• *Or ... PAM* (Partitioning Around Medoids, 1987)

 – Choose randomly *k* medoids from the original dataset *X*

 – Assign each of the *n*-*k* remaining points in *X* to their closest medoid

 – iteratively replace one of the medoids by one of the non-medoids if it improves the total clustering cost
Discussion of PAM algorithm

- The algorithm is very similar to the k-means algorithm

- It has the same advantages and disadvantages

- How about efficiency?
CLARA (Clustering Large Applications)

- It draws *multiple samples* of the data set, applies *PAM* on each sample, and gives the best clustering as the output.
- **Strength**: deals with larger data sets than *PAM*.
- **Weakness:**
 - Efficiency depends on the sample size.
 - A good clustering based on samples will not necessarily represent a good clustering of the whole data set if the sample is biased.
The k-center problem

- Given a set X of n points in a d-dimensional space and an integer k

- **Task**: choose a set of k points from X as cluster centers $\{c_1,c_2,\ldots,c_k\}$ such that for clusters $\{C_1,C_2,\ldots,C_k\}$

$$R(C) = \max_j \max_{x \in C_j} d(x, c_j)$$

is minimized
Algorithmic properties of the k-centers problem

- NP-hard if the dimensionality of the data is at least 2 \((d>=2)\)

- Finding the best solution in polynomial time is infeasible

- For \(d=1\) the problem is solvable in polynomial time (how?)

- A simple combinatorial algorithm works well in practice
The farthest-first traversal algorithm

• Pick any data point and label it as point 1
• For \(i=2,3,\ldots,n \)
 – Find the unlabelled point furthest from \(\{1,2,\ldots,i-1\} \) and label it as \(i \).

 //Use \(d(x,S) = \min_{y \in S} d(x,y) \) to identify the distance of a point from a set

 – \(\pi(i) = \arg\min_{j<i} d(i,j) \)

 – \(R_i = d(i,\pi(i)) \)
The farthest-first traversal is a 2-approximation algorithm

• **Claim1:** $R_1 \geq R_2 \geq \ldots \geq R_n$

• **Proof:**
 - $R_j = d(j, \pi(j)) = d(j, \{1, 2, \ldots, j-1\})$
 $\leq d(j, \{1, 2, \ldots, i-1\})$ // $j > i$
 $\leq d(i, \{1, 2, \ldots, i-1\}) = R_i$
The farthest-first traversal is a 2-approximation algorithm

• **Claim 2:** If C is the clustering reported by the farthest algorithm, then $R(C) = R_{k+1}$

• **Proof:**
 – For all $i > k$ we have that
 \[
 d(i, \{1,2,...,k\}) \leq d(k+1,\{1,2,...,k\}) = R_{k+1}
 \]
The farthest-first traversal is a 2-approximation algorithm

- **Theorem:** If C is the clustering reported by the farthest algorithm, and C^* is the optimal clustering, then $R(C) \leq 2R(C^*)$

- **Proof:**
 - Let $C^*_1, C^*_2, \ldots, C^*_k$ be the clusters of the optimal k-clustering.
 - If these clusters contain points $\{1, \ldots, k\}$ then $R(C) \leq 2R(C^*)$ (triangle inequality)
 - Otherwise suppose that one of these clusters contains two or more of the points in $\{1, \ldots, k\}$. These points are at distance at least R_k from each other. Thus clusters must have radius $\frac{1}{2} R_k \geq \frac{1}{2} R_{k+1} = \frac{1}{2} R(C)$
What is the right number of clusters?

• ...or who sets the value of k?

• For n points to be clustered consider the case where $k=n$. What is the value of the error function?

• What happens when $k = 1$?

• Since we want to minimize the error why don’t we select always $k = n$?
Occam’s razor and the minimum description length principle

• Clustering provides a description of the data
• For a description to be good it has to be:
 – Not too general
 – Not too specific

• Penalize for every extra parameter that one has to pay

• Penalize the number of bits you need to describe the extra parameter

• So for a clustering C, extend the cost function as follows:
 • $\text{NewCost}(C) = \text{Cost}(C) + |C| \times \log n$