Clustering

Lecture outline

- Distance/Similarity between data objects
- Data objects as geometric data points
- Clustering problems and algorithms
 - K-means
 - K-median
 - K-center

What is clustering?

 A grouping of data objects such that the objects within a group are similar (or related) to one another and different from (or unrelated to) the objects in other groups

Outliers

 Outliers are objects that do not belong to any cluster or form clusters of very small cardinality

 In some applications we are interested in discovering outliers, not clusters (outlier analysis)

Why do we cluster?

- Clustering: given a collection of data objects group them so that
 - Similar to one another within the same cluster
 - Dissimilar to the objects in other clusters
- Clustering results are used:
 - As a stand-alone tool to get insight into data distribution
 - Visualization of clusters may unveil important information
 - As a preprocessing step for other algorithms
 - Efficient indexing or compression often relies on clustering

Applications of clustering?

- Image Processing
 - cluster images based on their visual content
- Web
 - Cluster groups of users based on their access patterns on webpages
 - Cluster webpages based on their content
- Bioinformatics
 - Cluster similar proteins together (similarity wrt chemical structure and/or functionality etc)
- Many more...

The clustering task

 Group observations into groups so that the observations belonging in the same group are similar, whereas observations in different groups are different

Basic questions:

- What does "similar" mean
- What is a good partition of the objects? I.e., how is the quality of a solution measured
- How to find a good partition of the observations

Observations to cluster

- Real-value attributes/variables
 - e.g., salary, height
- <u>Binary attributes</u>
 - e.g., gender (M/F), has_cancer(T/F)
- Nominal (categorical) attributes
 - e.g., religion (Christian, Muslim, Buddhist, Hindu, etc.)
- Ordinal/Ranked attributes
 - e.g., military rank (soldier, sergeant, lutenant, captain, etc.)
- Variables of mixed types
 - multiple attributes with various types

Observations to cluster

- Usually data objects consist of a set of attributes (also known as dimensions)
- J. Smith, 20, 200K
- If all d dimensions are real-valued then we can visualize each data point as points in a d-dimensional space
- If all d dimensions are binary then we can think of each data point as a binary vector

Distance functions

The distance d(x, y) between two objects xand y is a metric if

```
    d(i, j)≥0 (non-negativity)
    d(i, i)=0 (isolation)
    d(i, j)= d(j, i) (symmetry)
    d(i, j) ≤ d(i, h)+d(h, j) (triangular inequality) [Why do we need it?]
```

- The definitions of distance functions are usually different for real, boolean, categorical, and ordinal variables.
- Weights may be associated with different variables based on applications and data semantics.

Data Structures

data matrix

• *Distance* matrix

attributes/dimensions

Distance functions for binary vectors

- Jaccard similarity between binary vectors **X** and **Y** $JSim(X,Y) = \frac{X \cap Y}{X \cup Y}$
- Jaccard distance between binary vectors X and Y
 Jdist(X,Y) = 1- JSim(X,Y)

- Example:
 - JSim = 1/6
 - Jdist = 5/6

	Q1	Q2	Q3	Q4	Q5	Q6
Χ	1	0	0	1	1	1
Υ	0	1	1	0	1	0

Distance functions for real-valued vectors

• L_n norms or *Minkowski distance*:

$$L_{p}(x,y) = \left(|x_{1} - y_{1}|^{p} + |x_{2} - y_{2}|^{p} + \dots + |x_{d} - x_{d}|^{p}\right)^{1/p} = \left(\sum_{i=1}^{d} (x_{i} - y_{i})\right)^{1/p}$$

where *p* is a positive integer

• If p = 1, L_1 is the *Manhattan (or city block)* distance:

$$L_1(x,y) = |x_1 - y_1| + |x_2 - y_2| + \dots + |x_d - y_d| = \sum_{i=1}^{d} |x_i - y_i|$$

Distance functions for real-valued vectors

• If p = 2, L₂ is the Euclidean distance:

$$d(x,y) = \sqrt{(|x_1 - y_1|^2 + |x_2 - y_2|^2 + ... + |x_d - y_d|^2)}$$

Also one can use weighted distance:

$$d(x,y) = \sqrt{(w_1|x_1 - x_1|^2 + w_2|x_2 - x_2|^2 + \dots + w_d|x_d - y_d|^2)}$$

$$d(x,y) = w_1 \begin{vmatrix} x_1 - y_1 \end{vmatrix} + w_2 \begin{vmatrix} x_2 - y_2 \end{vmatrix} + \dots + w_d \begin{vmatrix} x_d - y_d \end{vmatrix}$$

Very often L_p^p is used instead of L_p (why?)

Partitioning algorithms: basic concept

- Construct a partition of a set of n objects into a set of k clusters
 - Each object belongs to exactly one cluster
 - The number of clusters k is given in advance

The k-means problem

- Given a set X of n points in a d-dimensional space and an integer k
- Task: choose a set of k points {c₁, c₂,...,c_k} in the d-dimensional space to form clusters {C₁, C₂,...,C_k} such that

$$Cost(C) = \sum_{i=1}^{\kappa} \sum_{x \in C_i} L_2^2(x - c_i)$$

is minimized

• Some special cases: k = 1, k = n

Algorithmic properties of the k-means problem

- NP-hard if the dimensionality of the data is at least 2 (d>=2)
- Finding the best solution in polynomial time is infeasible
- For d=1 the problem is solvable in polynomial time (how?)
- A simple iterative algorithm works quite well in practice

The k-means algorithm

- One way of solving the k-means problem
- Randomly pick k cluster centers {c₁,...,c_k}
- For each i, set the cluster C_i to be the set of points in X that are closer to c_i than they are to c_i for all i≠j
- For each i let c_i be the center of cluster C_i (mean of the vectors in C_i)
- Repeat until convergence

Properties of the k-means algorithm

Finds a local optimum

Converges often quickly (but not always)

 The choice of initial points can have large influence in the result

Two different K-means Clusterings

Sub-optimal Clustering

Discussion k-means algorithm

- Finds a local optimum
- Converges often quickly (but not always)
- The choice of initial points can have large influence
 - Clusters of different densities
 - Clusters of different sizes

Outliers can also cause a problem (Example?)

Some alternatives to random initialization of the central points

- Multiple runs
 - Helps, but probability is not on your side
- Select original set of points by methods other than random . E.g., pick the most distant (from each other) points as cluster centers (kmeans++ algorithm)

The k-median problem

 Given a set X of n points in a d-dimensional space and an integer k

Task: choose a set of k points {c₁,c₂,...,c_k} from X and form clusters {C₁,C₂,...,C_k} such that

$$Cost(C) = \sum_{i=1}^{\kappa} \sum_{x \in C_i} L_1(x, c_i)$$

is minimized

The k-medoids algorithm

• Or ... PAM (Partitioning Around Medoids, 1987)

Choose randomly k medoids from the original dataset

 Assign each of the n-k remaining points in X to their closest medoid

 iteratively replace one of the medoids by one of the non-medoids if it improves the total clustering cost

Discussion of PAM algorithm

The algorithm is very similar to the k-means algorithm

It has the same advantages and disadvantages

How about efficiency?

CLARA (Clustering Large Applications)

- It draws *multiple samples* of the data set, applies *PAM* on each sample, and gives the best clustering as the output
- Strength: deals with larger data sets than PAM

Weakness:

- Efficiency depends on the sample size
- A good clustering based on samples will not necessarily represent a good clustering of the whole data set if the sample is biased

The k-center problem

- Given a set X of n points in a d-dimensional space and an integer k
- Task: choose a set of k points from X as cluster centers {c₁,c₂,...,c_k} such that for clusters {C₁,C₂,...,C_k}

$$R(C) = \max_{j} \max_{x \in C_j} d(x, c_j)$$

is minimized

Algorithmic properties of the k-centers problem

- NP-hard if the dimensionality of the data is at least 2 (d>=2)
- Finding the best solution in polynomial time is infeasible
- For d=1 the problem is solvable in polynomial time (how?)
- A simple combinatorial algorithm works well in practice

The farthest-first traversal algorithm

- Pick any data point and label it as point 1
- For i=2,3,...,n
 - Find the unlabelled point furthest from {1,2,...,i-1}
 and label it as i.

```
//Use d(x,S) = min_{y \in S} d(x,y) to identify the distance //of a point from a set
```

- $-\pi(i) = \operatorname{argmin}_{j < i} d(i,j)$
- $-R_i=d(i,\pi(i))$

The farthest-first traversal is a 2-approximation algorithm

• Claim1: $R_1 \ge R_2 \ge ... \ge R_n$

Proof:

```
-R_{j}=d(j,\pi(j)) = d(j,\{1,2,...,j-1\})
\leq d(j,\{1,2,...,i-1\}) //j > i
\leq d(i,\{1,2,...,i-1\}) = R_{i}
```

The farthest-first traversal is a 2-approximation algorithm

• Claim 2: If C is the clustering reported by the farthest algorithm, then $R(C)=R_{k+1}$

Proof:

— For all i > k we have that

$$d(i, \{1,2,...,k\}) \le d(k+1,\{1,2,...,k\}) = R_{k+1}$$

The farthest-first traversal is a 2-approximation algorithm

 Theorem: If C is the clustering reported by the farthest algorithm, and C*is the optimal clustering, then then R(C)≤2xR(C*)

Proof:

- Let C_1^* , C_2^* , C_k^* be the clusters of the optimal k-clustering.
- If these clusters contain points {1,...,k} then R(C)≤ 2R(C*) (triangle inequality)
- Otherwise suppose that one of these clusters contains two or more of the points in {1,...,k}. These points are at distance at least R_k from each other. Thus clusters must have radius

$$\frac{1}{2} R_{k} \ge \frac{1}{2} R_{k+1} = \frac{1}{2} R(C)$$

What is the right number of clusters?

- ...or who sets the value of k?
- For n points to be clustered consider the case where k=n. What is the value of the error function
- What happens when k = 1?
- Since we want to minimize the error why don't we select always k = n?

Occam's razor and the minimum description length principle

- Clustering provides a description of the data
- For a description to be good it has to be:
 - Not too general
 - Not too specific
- Penalize for every extra parameter that one has to pay
- Penalize the number of bits you need to describe the extra parameter
- So for a clustering C, extend the cost function as follows:
- NewCost(C) = Cost(C) + |C| x logn