
Clustering II



Hierarchical Clustering 

• Produces a set of nested clusters organized as 
a hierarchical tree

• Can be visualized as a dendrogram

– A tree-like diagram that records the sequences of 
merges or splits
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Strengths of Hierarchical Clustering

• No assumptions on the number of clusters
– Any desired number of clusters can be obtained 

by ‘cutting’ the dendogram at the proper level

• Hierarchical clusterings may correspond to 
meaningful taxonomies
– Example in biological sciences (e.g., phylogeny 

reconstruction, etc), web (e.g., product catalogs) 
etc



Hierarchical Clustering

• Two main types of hierarchical clustering
– Agglomerative:  

• Start with the points as individual clusters

• At each step, merge the closest pair of clusters until only one cluster (or k
clusters) left

– Divisive:  
• Start with one, all-inclusive cluster 

• At each step, split a cluster until each cluster contains a point (or there are 
k clusters)

• Traditional hierarchical algorithms use a similarity or distance 
matrix
– Merge or split one cluster at a time



Complexity of hierarchical clustering

• Distance matrix is used for deciding which 
clusters to merge/split

• At least quadratic in the number of data 
points

• Not usable for large datasets



Agglomerative clustering algorithm

• Most popular hierarchical clustering technique

• Basic algorithm
1. Compute the distance matrix between the input data points

2. Let each data point be a cluster

3. Repeat

4. Merge the two closest clusters

5. Update the distance matrix

6. Until only a single cluster remains

• Key operation is the computation of the distance between 
two clusters
– Different definitions of the distance between clusters lead to  

different algorithms



Input/ Initial setting

• Start with clusters of individual points and a 
distance/proximity matrix
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Intermediate State

• After some merging steps, we have some clusters 
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Intermediate State

• Merge the two closest clusters (C2 and C5)  and update the distance 
matrix. 
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After Merging

• “How do we update the distance matrix?” 
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Distance between two clusters

• Each cluster is a set of points

• How do we define distance between two sets 
of points

– Lots of alternatives

– Not an easy task



Distance between two clusters

• Single-link distance between clusters Ci and Cj

is the minimum distance between any object 
in Ci and any object in Cj

• The distance is defined by the two most 
similar objects
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Single-link clustering: example 

• Determined by one pair of points, i.e., by one 
link in the proximity graph.

I1 I2 I3 I4 I5

I1 1.00 0.90 0.10 0.65 0.20

I2 0.90 1.00 0.70 0.60 0.50

I3 0.10 0.70 1.00 0.40 0.30

I4 0.65 0.60 0.40 1.00 0.80

I5 0.20 0.50 0.30 0.80 1.00 1 2 3 4 5



Single-link clustering: example

Nested Clusters Dendrogram
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Strengths of single-link clustering

Original Points Two Clusters

• Can handle non-elliptical shapes



Limitations of single-link clustering

Original Points Two Clusters

• Sensitive to noise and outliers

• It produces long, elongated clusters



Distance between two clusters

• Complete-link distance between clusters Ci

and Cj is the maximum distance between any 
object in Ci and any object in Cj

• The distance is defined by the two most 
dissimilar objects

jiyxjicl CyCxyxdCCD ,),(max, ,



Complete-link clustering: example

• Distance between clusters is determined by 
the two most distant points in the different 
clusters

I1 I2 I3 I4 I5

I1 1.00 0.90 0.10 0.65 0.20

I2 0.90 1.00 0.70 0.60 0.50

I3 0.10 0.70 1.00 0.40 0.30

I4 0.65 0.60 0.40 1.00 0.80

I5 0.20 0.50 0.30 0.80 1.00 1 2 3 4 5



Complete-link clustering: example

Nested Clusters Dendrogram
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Strengths of complete-link clustering

Original Points Two Clusters

• More balanced clusters (with equal diameter)

• Less susceptible to noise



Limitations of complete-link clustering

Original Points Two Clusters

• Tends to break large clusters

• All clusters tend to have the same diameter – small  

clusters are merged with larger ones



Distance between two clusters

• Group average distance between clusters Ci

and Cj is the average distance between any 
object in Ci and any object in Cj
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Average-link clustering: example

• Proximity of two clusters is the average of pairwise
proximity between points in the two clusters.

I1 I2 I3 I4 I5

I1 1.00 0.90 0.10 0.65 0.20

I2 0.90 1.00 0.70 0.60 0.50

I3 0.10 0.70 1.00 0.40 0.30

I4 0.65 0.60 0.40 1.00 0.80

I5 0.20 0.50 0.30 0.80 1.00 1 2 3 4 5



Average-link clustering: example

Nested Clusters Dendrogram
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Average-link clustering: discussion

• Compromise between Single and Complete 
Link

• Strengths

– Less susceptible to noise and outliers

• Limitations

– Biased towards globular clusters



Distance between two clusters

• Centroid distance between clusters Ci and Cj is 
the distance between the centroid ri of Ci and 
the centroid rj of Cj

),(, jijicentroids rrdCCD



Distance between two clusters

• Ward’s distance between clusters Ci and Cj is the difference
between the total within cluster sum of squares for the 
two clusters separately, and the within cluster sum of 
squares resulting from merging the two clusters in cluster 
Cij

• ri: centroid of Ci

• rj: centroid of Cj

• rij: centroid of Cij
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Ward’s distance for clusters

• Similar to group average and centroid distance

• Less susceptible to noise and outliers

• Biased towards globular clusters

• Hierarchical analogue of k-means

– Can be used to initialize k-means



Hierarchical Clustering: Comparison

Group Average

Ward’s Method
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Hierarchical Clustering:  Time and Space 
requirements

• For a dataset X consisting of n points

• O(n2) space; it requires storing the distance 
matrix 

• O(n3) time in most of the cases
– There are n steps and at each step the size n2 distance 

matrix must be updated and searched
– Complexity can be reduced to O(n2 log(n) ) time for 

some approaches by using appropriate data 
structures



Divisive hierarchical clustering

• Start with a single cluster composed of all data points

• Split this into components

• Continue recursively

• Monothetic divisive methods split clusters using one variable/dimension at 
a time

• Polythetic divisive methods make splits on the basis of all variables 
together

• Any intercluster distance measure can be used

• Computationally intensive, less widely used than agglomerative methods



Model-based clustering

• Assume data generated from k probability 
distributions

• Goal: find the distribution parameters

• Algorithm: Expectation Maximization (EM)

• Output: Distribution parameters and a soft
assignment of points to clusters



Model-based clustering

• Assume k probability distributions with 
parameters: (θ1,…, θk)

• Given data X, compute (θ1,…, θk) such that 
Pr(X|θ1,…, θk) [likelihood] or ln(Pr(X|θ1,…, θk))
[loglikelihood] is maximized.

• Every point xєX need not be generated by a 
single distribution but it can be generated by 
multiple distributions with some probability [soft 
clustering]



EM Algorithm

• Initialize k distribution parameters (θ1,…, θk); Each  distribution 
parameter corresponds to a cluster center

• Iterate between two steps

– Expectation step: (probabilistically) assign points to 
clusters

– Maximation step: estimate model parameters that 
maximize the likelihood for the given assignment of 
points



EM Algorithm

• Initialize k cluster centers

• Iterate between two steps

– Expectation step: assign points to clusters

– Maximation step: estimate model parameters
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