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Lecture outline

e Soft (model-based) clustering and EM algorithm

e Clustering aggregation [A. Gionis, H. Mannila, P.
Tsaparas: Clustering aggregation, ICDE 2004]

* Impossibility theorem for clustering [Jon Kleinberg,
An impossibility theorem for clustering, NIPS 2002]



Expectation-maximization
algorithm

* |terative procedure to compute the Maximum
Likelihood (ML) estimate — even in the
presence of missing or hidden data

 EM consists of two steps:

— Expectation step: the (missing) data are estimated
given the observed data and current estimates of model
parameters

— Maximization step: The likelihood function is
maximized under the assumption that the (missing) data
are known



EM algorithm for mixture of
Gaussians

e What is a mixture of K Gaussians?

()= 7,F(x]6,)
with

K
Zﬂ'k=1

k=1

and F(x|©) is the Gaussian distribution with
parameters O = {,2}



EM algorithm for mixture of
Gaussians

* |f all points xeX are mixtures of K Gaussians
then

p(X) = HP(X) HZﬂkF(X |©,)

i=1 k=1

* Goal: Find m,..., M, and O,,..., ©, such that
P(X) is maximized

* Or, In(P(X)) is maximized:

L(©) = anln{iﬂkF(xi |®k)}



Mixtures of Gaussians -- notes

* Every point x. is probabilistically assigned
(generated) to (by) the k-th Gaussian

* Probability that point x; is generated by the k-
th Gaussian is

T F(%|0,)

W, =

ik = K
anlr(xi|®j)
j=1



Mixtures of Gaussians -- notes

* Every Gaussian (cluster) C, has an effective
number of points assigned to it N,

Nk — ZWik
i=1

* With mean 1 <
Zwikxi

* And variance1 i
2 :—Zwik ‘(i — A }(i ‘(i _/Ukj



EM for Gaussian Mixtures

* Initialize the means p,, variances Z,
(0,=(n,,Z,)) and mixing coefficients m,, and
evaluate the initial value of the loglikelihood

* Expectation step: Evaluate weights
7, F(%|0,)

> 7 F(%10))

j=1

Wi, =



EM for Gaussian Mixtures

* Maximization step: Re-evaluate parameters

new _ _ZWn(X

k =1
new new new
Zwlk ‘( /Ll /I ‘( /Ll _
k =1
N
new k
TN

e Evaluate L(®"Y) and stop if converged
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Clustering aggregation

 Many different clusterings for the same dataset!

— Different objective functions
— Different algorithms

— Different number of clusters

* Which clustering is the best?

— Aggregation: we do not need to decide, but rather find a reconciliation
between different outputs



The clustering-aggregation problem

* |nput
— n objects X = {X;,%,,...,X,.}
— m clusterings of the objects C,,...,C_
* partition: a collection of disjoint sets that cover X

* Qutput

— a single partition C, that is as close as possible to all
iInput partitions

* How do we measure closeness of clusterings?
— disagreement distance



Disagreement distance

For object x and clustering C, C(x) is the index
of set in the partition that contains x

For two partitions C and P, and objects x,y in
X define

(1 if C(x)=C(y)and P(x)= P(y)
ln (6 Y) = R
CPAT if C(x)=C(y)AND P(x)=P(y)
0 otherwise

if I, 5(x,y) =1 we say that x,y create a
disagreement between partitions P and Q

D(P,Q) = ZIP,Q (X,¥)

(X,Y)

Uu |C |P
X; |1 1
X, |1 |2
X |2 |1
Xg |3 |3
Xs | 3




Metric property for disagreement

distance

For clustering C: D(C,C) =0

D(C,C’)=0 for every pair of clusterings C, C’
D(C,C’) = D(C’,C)

Triangle inequality?

It is sufficient to show that for each pair of points x,y
eX: 1, ,(C,C3)= 1, ,(Cy,C5) + 1, ,(C,,C5)

l, , takes values 0/1; triangle inequality can only be
violated when

-, .(C,,C)=1and |, (C,,C,) =0and |, (C,,C;)=0
— Is this possible?



Clustering aggregation

* Given partitions C,,...,C . find C such that

0©30(eC)
i=1

is minimized

U |C, |C, | C;

x, |1 |1 [1 [1
x, [1 |2 [2 |2
x; [2 |1 |1 |1
x, [2 |2 [2 |2
Xs |3 [3 |3 |3
X | 3 3 |3




Why clustering aggregation?

* Clustering categorical data

U City Profession Nationality
X; | New York Doctor U.S.

X5 | New York Teacher Canada

X5 | Boston Doctor U.S.

X, | Boston Teacher Canada

Xs | Los Angeles Lawer Mexican

X¢ | Los Angeles Mexican

* The two problems are equivalent



Why clustering aggregation?

* |dentify the correct number of clusters

— the optimization function does not require an
explicit number of clusters

e Detect outliers

— outliers are defined as points for which there is no
consensus



Why clustering aggregation?

* Improve the robustness of clustering
algorithms

— different algorithms have different weaknesses.
— combining them can produce a better result.



Why clustering aggregation?

* Privacy preserving clustering

— different companies have data for the same users.
They can compute an aggregate clustering
without sharing the actual data.



Complexity of Clustering Aggregation

* The clustering aggregation problem is NP-hard
— the median partition problem [Barthelemy and LeClerc 1995].

* Look for heuristics and approximate solutions.



A simple 2-approximation algorithm

* The disagreement distance D(C,P) is a metric

 The algorithm BEST: Select among the input

clusterings the clustering C that minimizes
D(C).

— a 2-approximate solution. Why?



A 3-approximation algorithm

* The BALLS algorithm:

— Select a point x and look at the set of points B
within distance % of x

— If the average distance of x to B is less than % then
create the cluster BU{p}

— Otherwise, create a singleton cluster {p}
— Repeat until all points are exhausted

* Theorem: The BALLS algorithm has worst-case
approximation factor 3



Other algorithms

* AGGLO:

— Start with all points in singleton clusters

— Merge the two clusters with the smallest average inter-cluster edge
weight

— Repeat until the average weight is more than

* LOCAL:

— Start with a random partition of the points

— Remove a point from a cluster and try to merge it to another cluster,
or create a singleton to improve the cost of aggregation.

— Repeat until no further improvements are possible



Clustering Robustness

Average linkage

Complete linkage

Single linkage
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General form of impossibility
results

* Define a set of simple axioms (properties) that
a computational task should satisfy

* Prove that there does not exist an algorithm
that can simultaneously satisfy all the axioms
- impossibility



Computational task: clustering

* A clustering function operates on a set X of n
points. X={1,2,...,n}

* Distance function d: X x X =2 R with d(i,j)=0,
d(i,j)=d(j,i), and d(i,j)=0 only if i=j

e Clustering function f: f(X,d) =T, where lis a
partition of X



Axiom 1: Scale invariance

 For a>0, distance function ad has values
(ad)(i,j)=ad(i,j)

 Foranyd and for any a>0 we have f(d) = f(ad)

The clustering function should not be sensitive to the
changes in the units of distance measurement —
should not have a built-in “length scale”




Axiom 2: Richness

 The range of f is equal to the set of partitions
of X

* For any X and any partition I of X, there is a
distance function on X such that f(X,d) =T.



Axiom 3: Consistency

Let I be a partition of X
d, d’ two distance functions on X

d’ is a l-transformation of d, if

— For all i,je X in the same cluster of T, we have
d’(i,j)<d(i,j)

— For all i,je X in different clusters of I, we have
d’(i,j)2d(i,j)

Consistency: if f(X,d)=Tand d’" is a I'-

transformation of d, then f(X,d’)=T.



Axiom 3: Consistency

* Intuition: Shrinking distances between points
inside a cluster and expanding distances
between points in different clusters does not
change the result



Examples

* Single-link agglomerative clustering

 Repeatedly merge clusters whose closest points are
at minimum distance

* Continue until a stopping criterion is met

— k-cluster stopping criterion: continue until there are k
clusters

— distance-r stopping criterion: continue until all distances
between clusters are larger thanr

— scale-a stopping criterion: let d* be the maximum pairwise
distance; continue until all distances are larger than ad*



Examples (cont.)

* Single-link agglomerative clustering with k-cluster
stopping criterion does not satisfy richness axiom

e Single-link agglomerative clustering with distance-r
stopping criterion does not satisfy scale-invariance
property

* Single-link agglomerative clustering with scale-a
stopping criterion does not satisfy consistency
property



Centroid-based clustering and
consistency

* k-centroid clustering:
— S subset of X for which ;. min; ({d(i,j)} is
minimized
— Partition of X is defined by assigning each element
of X to the centroid that is the closest to it

 Theorem: for every k=2 and for n sufficiently
large relative to k, the k-centroid clustering

function does not satisfy the consistency
property



k-centroid clustering and the
consistency axiom

Intuition of the proof

Let k=2 and X be partitioned into parts Y and Z
d(i,j) < rforeveryi,jeY

d(i,j) < €, with e<r foreveryi,jeZ

d(i,j) >rforeveryieYandjeZ

Split part Y into subparts Y, and Y,
Shrink distances in Y, appropriately
What is the result of this shrinking?



Impossibility theorem

* For n22, there is no clustering function that
satisfies all three axioms of scale-invariance,
richness and consistency



Impossibility theorem (proof
sketch)

A partition I is a refinement of partition I, if each cluster C'e
["is included in some set Ce T

There is a partial order between partitions: "< T

Antichain of partitions: a collection of partitions such that no
one is a refinement of others

Theorem: If a clustering function f satisfies scale-invariance
and consistency, then, the range of f is an anti-chain



What does an impossibility result
really mean

e Suggests a technical underpinning for the difficulty in
unifying the initial, informal concept of clustering

* Highlights basic trade-offs that are inherent to the
clustering problem

* Distinguishes how clustering methods resolve these
tradeoffs (by looking at the methods not only at an
operational level)



