Clustering III

Lecture outline

- Soft (model-based) clustering and EM algorithm
- Clustering aggregation [A. Gionis, H. Mannila, P. Tsaparas: Clustering aggregation, ICDE 2004]
- Impossibility theorem for clustering [Jon Kleinberg, An impossibility theorem for clustering, NIPS 2002]

Expectation-maximization algorithm

- Iterative procedure to compute the *Maximum Likelihood (ML)* estimate even in the presence of missing or hidden data
- **EM** consists of two steps:
 - Expectation step: the (missing) data are estimated given the observed data and current estimates of model parameters
 - Maximization step: The likelihood function is maximized under the assumption that the (missing) data are known

EM algorithm for mixture of Gaussians

• What is a mixture of K Gaussians?

$$p(x) = \sum_{k=1}^{K} \pi_k F(x \mid \Theta_k)$$

with

$$\sum_{k=1}^{K} \pi_k = 1$$

and $F(x | \Theta)$ is the Gaussian distribution with parameters $\Theta = \{\mu, \Sigma\}$

EM algorithm for mixture of Gaussians

 If all points x∈X are mixtures of K Gaussians then

$$p(X) = \prod_{i=1}^{n} p(x_i) = \prod_{i=1}^{n} \sum_{k=1}^{K} \pi_k F(x_i | \Theta_k)$$

- Goal: Find π₁,..., π_k and Θ₁,..., Θ_k such that
 P(X) is maximized
- Or, In(P(X)) is maximized:

$$L(\Theta) = \sum_{i=1}^{n} \ln \left\{ \sum_{k=1}^{K} \pi_k F(x_i \mid \Theta_k) \right\}$$

Mixtures of Gaussians -- notes

 Every point x_i is *probabilistically* assigned (generated) to (by) the k-th Gaussian

 Probability that point x_i is generated by the kth Gaussian is

$$w_{ik} = \frac{\pi_k F(x_i \mid \Theta_k)}{\sum_{j=1}^{K} \pi_j F(x_i \mid \Theta_j)}$$

Mixtures of Gaussians -- notes

 Every Gaussian (cluster) C_k has an effective number of points assigned to it N_k

$$N_k = \sum_{i=1}^n w_{ik}$$

With mean

$$\mu_k = \frac{1}{N_k} \sum_{i=1}^n w_{ik} x_i$$

• And variance $\Sigma_{k} = \frac{1}{N_{k}} \sum_{i=1}^{n} w_{ik} \langle \mathbf{x}_{i} - \boldsymbol{\mu}_{k} \rangle \mathbf{x}_{i} \langle \mathbf{x}_{i} - \boldsymbol{\mu}_{k} \rangle^{T}$

EM for Gaussian Mixtures

• Initialize the means μ_k , variances Σ_k ($\Theta_k = (\mu_k, \Sigma_k)$) and mixing coefficients π_k , and evaluate the initial value of the loglikelihood

• Expectation step: Evaluate weights

$$w_{ik} = \frac{\pi_k F(x_i \mid \Theta_k)}{\sum_{j=1}^{K} \pi_j F(x_i \mid \Theta_j)}$$

EM for Gaussian Mixtures

• Maximization step: Re-evaluate parameters

Evaluate L(Onew) and stop if converged

Lecture outline

- Soft (model-based) clustering and EM algorithm
- Clustering aggregation [A. Gionis, H. Mannila, P. Tsaparas: Clustering aggregation, ICDE 2004]
- Impossibility theorem for clustering [Jon Kleinberg, An impossibility theorem for clustering, NIPS 2002]

Clustering aggregation

- Many different clusterings for the same dataset!
 - Different objective functions
 - Different algorithms
 - Different number of clusters
- Which clustering is the best?
 - Aggregation: we do not need to decide, but rather find a reconciliation between different outputs

The clustering-aggregation problem

- Input
 - $n \text{ objects } X = \{x_1, x_2, ..., x_n\}$
 - **m** clusterings of the objects C_1, \dots, C_m
 - partition: a collection of disjoint sets that cover X
- Output
 - a single partition C, that is as close as possible to all input partitions
- How do we measure *closeness of clusterings*?
 - disagreement distance

Disagreement distance

- For object x and clustering C, C(x) is the index of set in the partition that contains x
- For two partitions C and P, and objects x,y in X define

$$I_{C,P}(x,y) = \begin{cases} 1 & \text{if } C(x) = C(y) \text{ and } P(x) \neq P(y) \\ & OR \\ & \text{if } C(x) \neq C(y) \text{ AND } P(x) = P(y) \\ 0 & \text{otherwise} \end{cases}$$

U	С	Ρ
X ₁	1	1
x ₂	1	2
X ₃	2	1
X ₄	3	3
x ₅	3	4

if I_{P,Q}(x,y) = 1 we say that x,y create a disagreement between partitions P and Q

$$\mathsf{D}(\mathsf{P},\mathsf{Q}) = \sum_{(\mathsf{x},\mathsf{y})} \mathbf{I}_{\mathsf{P},\mathsf{Q}}(\mathsf{x},\mathsf{y})$$

Metric property for disagreement distance

- For clustering C: D(C,C) = 0
- D(C,C')≥0 for every pair of clusterings C, C'
- D(C,C') = D(C',C)
- Triangle inequality?
- It is sufficient to show that for each pair of points x,y
 ∈X: I_{x,y}(C₁,C₃)≤ I_{x,y}(C₁,C₂) + I_{x,y}(C₂,C₃)
- I_{x,y} takes values 0/1; triangle inequality can only be violated when

 $-I_{x,y}(C_1,C_3)=1$ and $I_{x,y}(C_1,C_2)=0$ and $I_{x,y}(C_2,C_3)=0$ - Is this possible?

Clustering aggregation

• Given partitions C₁,...,C_m find C such that

$$D(C) = \sum_{i=1}^{m} D(C, C_i)$$

the aggregation cost

is minimized

U	C ₁	C ₂	C ₃	С
X_1	1	1	1	1
x ₂	1	2	2	2
X ₃	2	1	1	1
X ₄	2	2	2	2
X ₅	3	3	3	3
x ₆	3	4	3	3

• Clustering categorical data

U	City	Profession	Nationality
x ₁	New York	Doctor	U.S.
x ₂	New York	Teacher	Canada
X ₃	Boston	Doctor	U.S.
X ₄	Boston	Teacher	Canada
X ₅	Los Angeles	Lawer	Mexican
х ₆	Los Angeles	Actor	Mexican

• The two problems are equivalent

- Identify the correct number of clusters
 - the optimization function does not require an explicit number of clusters

- Detect outliers
 - outliers are defined as points for which there is no consensus

- Improve the robustness of clustering algorithms
 - different algorithms have different weaknesses.
 - combining them can produce a better result.

- Privacy preserving clustering
 - different companies have data for the same users.
 They can compute an aggregate clustering without sharing the actual data.

Complexity of Clustering Aggregation

- The clustering aggregation problem is NP-hard
 - the median partition problem [Barthelemy and LeClerc 1995].
- Look for heuristics and approximate solutions.

A simple 2-approximation algorithm

• The disagreement distance D(C,P) is a metric

- The algorithm BEST: Select among the input clusterings the clustering C* that minimizes D(C*).
 - a 2-approximate solution. Why?

A 3-approximation algorithm

- The **BALLS** algorithm:
 - Select a point x and look at the set of points B within distance ½ of x
 - If the average distance of x to B is less than ¼ then create the cluster B∪{p}
 - Otherwise, create a singleton cluster {p}
 - Repeat until all points are exhausted
- Theorem: The **BALLS** algorithm has worst-case approximation factor **3**

Other algorithms

- AGGLO:
 - Start with all points in singleton clusters
 - Merge the two clusters with the smallest average inter-cluster edge weight
 - Repeat until the average weight is more than $\frac{1}{2}$
- LOCAL:
 - Start with a random partition of the points
 - Remove a point from a cluster and try to merge it to another cluster, or create a singleton to improve the cost of aggregation.
 - Repeat until no further improvements are possible

Clustering Robustness

Lecture outline

- Soft (model-based) clustering and EM algorithm
- Clustering aggregation [A. Gionis, H. Mannila, P. Tsaparas: Clustering aggregation, ICDE 2004]
- Impossibility theorem for clustering [Jon Kleinberg, An impossibility theorem for clustering, NIPS 2002]

General form of impossibility results

 Define a set of simple axioms (properties) that a computational task should satisfy

 Prove that *there does not exist an algorithm* that can simultaneously satisfy all the axioms
 → impossibility

Computational task: clustering

 A *clustering function* operates on a set X of n points. X = {1,2,...,n}

 Distance function d: X × X → R with d(i,j)≥0, d(i,j)=d(j,i), and d(i,j)=0 only if i=j

Clustering function f: f(X,d) = Γ, where Γ is a partition of X

Axiom 1: Scale invariance

- For a>0, distance function ad has values (ad)(i,j)=ad(i,j)
- For any d and for any a>0 we have f(d) = f(ad)
- The clustering function should not be sensitive to the changes in the units of distance measurement – should not have a built-in "length scale"

Axiom 2: Richness

The *range* of **f** is equal to *the set of partitions* of X

For any X and any partition Γ of X, there is a distance function on X such that f(X,d) = Γ.

Axiom 3: Consistency

- **d**, **d'** two distance functions on **X**
- d' is a Γ-transformation of d, if
 - For all i,j∈ X in the same cluster of Γ, we have d'(i,j)≤d(i,j)
 - For all i,j∈ X in different clusters of Γ, we have d'(i,j)≥d(i,j)
- Consistency: if f(X,d)= Γ and d' is a Γtransformation of d, then f(X,d')= Γ.

Axiom 3: Consistency

 Intuition: Shrinking distances between points inside a cluster and expanding distances between points in different clusters does not change the result

Examples

- Single-link agglomerative clustering
- Repeatedly merge clusters whose closest points are at minimum distance
- Continue until a stopping criterion is met
 - k-cluster stopping criterion: continue until there are k clusters
 - distance-r stopping criterion: continue until all distances between clusters are larger than r
 - scale-*a* stopping criterion: let d* be the maximum pairwise distance; continue until all distances are larger than ad*

Examples (cont.)

- Single-link agglomerative clustering with *k*-cluster stopping criterion does not satisfy richness axiom
- Single-link agglomerative clustering with distance-r stopping criterion does not satisfy scale-invariance property
- Single-link agglomerative clustering with scale-a stopping criterion does not satisfy consistency property

Centroid-based clustering and consistency

- k-centroid clustering:
 - S subset of X for which ∑_{i∈X}min_{j∈S}{d(i,j)} is minimized
 - Partition of X is defined by assigning each element
 of X to the centroid that is the *closest* to it
- Theorem: for every k≥2 and for n sufficiently large relative to k, the k-centroid clustering function does not satisfy the consistency property

k-centroid clustering and the consistency axiom

- Intuition of the proof
- Let k=2 and X be partitioned into parts Y and Z
- **d(i,j)** ≤ **r** for every **i,j** ∈ **Y**
- $d(i,j) \le \varepsilon$, with $\varepsilon < r$ for every $i,j \in Z$
- d(i,j) > r for every i ∈ Y and j ∈ Z
- Split part Y into subparts Y₁ and Y₂
- Shrink distances in Y₁ appropriately
- What is the result of this shrinking?

Impossibility theorem

 For n≥2, there is no clustering function that satisfies all three axioms of scale-invariance, richness and consistency

Impossibility theorem (proof sketch)

- A partition Γ' is a refinement of partition Γ, if each cluster C'ε
 Γ' is included in some set Cε Γ
- There is a partial order between partitions: $\Gamma' \leq \Gamma$
- Antichain of partitions: a collection of partitions such that no one is a refinement of others
- Theorem: If a clustering function f satisfies scale-invariance and consistency, then, the range of f is an anti-chain

What does an impossibility result really mean

- Suggests a technical underpinning for the difficulty in unifying the initial, informal concept of clustering
- Highlights basic trade-offs that are inherent to the clustering problem
- Distinguishes how clustering methods resolve these tradeoffs (by looking at the methods not only at an operational level)