
Clustering IV



Outline

• Impossibility theorem for clustering

• Density-based clustering and subspace clustering

• Bi-clustering or co-clustering



General form of impossibility 
results

• Define a set of simple axioms (properties) that 
a computational task should satisfy

• Prove that there does not exist an algorithm 
that can simultaneously satisfy all the axioms 
 impossibility



Computational task: clustering

• A clustering function operates on a set X of n
points.  X = {1,2,…,n}

• Distance function d: X x X R with d(i,j)≥0, 
d(i,j)=d(j,i), and d(i,j)=0 only if i=j

• Clustering function f: f(X,d) = Γ, where Γ is a 
partition of X



Axiom 1: Scale invariance

• For a>0, distance function ad has values 
(ad)(i,j)=ad(i,j)

• For any d and for any a>0 we have f(d) = f(ad)

• The clustering function should not be sensitive to the 
changes in the units of distance measurement –
should not have a built-in “length scale”



Axiom 2: Richness

• The range of f is equal to the set of partitions 
of X

• For any X and any partition Γ of X, there is a 
distance function on X such that f(X,d) = Γ.



Axiom 3: Consistency

• Let Γ be a partition of X

• d, d’ two distance functions on X

• d’ is a Γ-transformation of d, if

– For all i,jє X in the same cluster of Γ, we have 
d’(i,j)≤d(i,j)

– For all i,jє X in different clusters of Γ, we have 
d’(i,j)≥d(i,j)

• Consistency: if f(X,d)= Γ and d’ is a Γ-
transformation of d, then f(X,d’)= Γ.



Axiom 3: Consistency

• Intuition: Shrinking distances between points 
inside a cluster and expanding distances 
between points in different clusters does not 
change the result



Examples

• Single-link agglomerative clustering

• Repeatedly merge clusters whose closest points are 
at minimum distance 

• Continue until a stopping criterion is met

– k-cluster stopping criterion: continue until there are k 
clusters

– distance-r stopping criterion: continue until all distances 
between clusters are larger than r

– scale-a stopping criterion: let d* be the maximum pairwise
distance; continue until all distances are larger than ad*



Examples (cont.)

• Single-link agglomerative clustering with k-cluster 
stopping criterion does not satisfy richness axiom

• Single-link agglomerative clustering with distance-r 
stopping criterion does not satisfy scale-invariance 
property

• Single-link agglomerative clustering with scale-a
stopping criterion does not satisfy consistency 
property



Centroid-based clustering and 
consistency

• k-centroid clustering: 

– S subset of X for which ∑iєXminjєS{d(i,j)} is 
minimized

– Partition of X is defined by assigning each element 
of X to the centroid that is the closest to it

• Theorem: for every k≥2 and for n sufficiently 
large relative to k, the k-centroid clustering 
function does not satisfy the consistency 
property



k-centroid clustering and the 
consistency axiom

• Intuition of the proof

• Let k=2 and X be partitioned into parts Y and Z

• d(i,j) ≤ r for every i,j є Y

• d(i,j) ≤ ε, with ε<r  for every i,j є Z

• d(i,j) > r for every i є Y and j є Z

• Split part Y into subparts Y1 and Y2

• Shrink distances in Y1 appropriately

• What is the result of this shrinking?



Impossibility theorem

• For n≥2, there is no clustering function that 
satisfies all three axioms of scale-invariance, 
richness and consistency



Impossibility theorem (proof 
sketch)

• A partition Γ’ is a refinement of partition Γ, if each cluster C’є
Γ’ is included in some set Cє Γ

• There is a partial order between partitions: Γ’≤ Γ

• Antichain of partitions: a collection of partitions such that no 
one is a refinement of others

• Theorem: If a clustering function f satisfies scale-invariance 
and consistency, then, the range of f is an anti-chain



What does an impossibility result 
really mean

• Suggests a technical underpinning for the difficulty in 
unifying the initial, informal concept of clustering

• Highlights basic trade-offs that are inherent to the 
clustering problem

• Distinguishes how clustering methods resolve these 
tradeoffs (by looking at the methods not only at an 
operational level)



Outline

• Impossibility theorem for clustering

• Density-based clustering and subspace clustering 

• Bi-clustering or co-clustering



Density-Based Clustering Methods
• Clustering based on density (local cluster criterion), such as 

density-connected points

• Major features:
– Discover clusters of arbitrary shape
– Handle noise
– One scan
– Need density parameters as termination condition

• Several interesting studies:

– DBSCAN: Ester, et al. (KDD’96)

– OPTICS: Ankerst, et al (SIGMOD’99).

– DENCLUE: Hinneburg & D. Keim  (KDD’98)

– CLIQUE: Agrawal, et al. (SIGMOD’98)



Classification of points in density-
based clustering

• Core points: Interior points of a density-based 
cluster. A point p is a core point if for distance Eps :

– |NEps(p)={q | dist(p,q) <= e }| ≥ MinPts

• Border points: Not a core point but within the 
neighborhood of a core point (it can be in the 
neighborhoods of many core points)

• Noise points: Not a core or a border point



Core, border and noise points

Eps
Eps Eps



DBSCAN: The Algorithm

– Label all points as core, border, or noise points

– Eliminate noise points 

– Put an edge between all core points that are 

within Eps of each other

– Make each group of connected core points into a 

separate cluster

– Assign each border point to one of the cluster of 

its associated core points



Time and space complexity of 
DBSCAN

• For a dataset X consisting of n points, the time 
complexity of DBSCAN is O(n x time to find points in 
the Eps-neighborhood)

• Worst case O(n2)

• In low-dimensional spaces O(nlogn); efficient data 
structures (e.g., kd-trees) allow for efficient retrieval 
of all points within a given distance of a specified 
point



Strengths and weaknesses of 
DBSCAN

• Resistant to noise

• Finds clusters of arbitrary shapes and sizes

• Difficulty in identifying clusters with varying densities

• Problems in high-dimensional spaces; notion of density 
unclear

• Can be computationally expensive when the computation of 
nearest neighbors is expensive



Generic density-based clustering 
on a grid

• Define a set of grid cells

• Assign objects to appropriate cells and 
compute the density of each cell

• Eliminate cells that have density below a given 
threshold τ

• Form clusters from “contiguous” (adjacent) 
groups of dense cells



Questions

• How do we define the grid?

• How do we measure the density of a grid cell?

• How do we deal with multidimensional data?



Clustering High-Dimensional Data

• Clustering high-dimensional data

– Many applications: text documents, DNA micro-array data

– Major challenges: 

• Many irrelevant dimensions may mask clusters

• Distance measure becomes meaningless—due to equi-distance

• Clusters may exist only in some subspaces

• Methods

– Feature transformation: only effective if most dimensions are relevant

• PCA & SVD useful only when features are highly correlated/redundant

– Feature selection: wrapper or filter approaches

• useful to find a subspace where the data have nice clusters

– Subspace-clustering: find clusters in all the possible subspaces

• CLIQUE



The Curse of Dimensionality

• Data in only one dimension is relatively packed

• Adding a dimension “stretches” the  points 

across that dimension, making them further 

apart

• Adding more dimensions will make the points 

further apart—high dimensional data is 

extremely sparse

• Distance measure becomes meaningless

(graphs from Parsons et al. KDD Explorations 2004)



Why Subspace Clustering?
(Parsons et al. SIGKDD Explorations 2004)

• Clusters may exist only in some subspaces

• Subspace-clustering: find clusters in some of the subspaces



CLIQUE (Clustering In QUEst)

• Agrawal, Gehrke, Gunopulos, Raghavan (SIGMOD’98)

• Automatically identifying subspaces of a high dimensional data 

space that allow better clustering than original space 

• CLIQUE can be considered as both density-based and grid-based

– It partitions each dimension into the same number of equal length interval

– It partitions an m-dimensional data space into non-overlapping rectangular 

units

– A unit is dense if the fraction of total data points contained in the unit 

exceeds an input threshold τ

– A cluster is a maximal set of connected dense units within a subspace



The CLIQUE algorithm
• Find all dense areas in the 1-dimensional spaces (single 

attributes)

• k  2

• repeat

– Generate all candidate dense k-dimensional cells from dense (k-1)-
dimensional cells

– Eliminate cells that have fewer than τ points

– k k+1

• until there are no candidate dense k-dimensional cells

• Find clusters by taking the union of all adjacent, high-density 
cells

• Summarize each cluster using a small set of inequalities that 
describe the attribute ranges of the cells in the cluster



CLIQUE: Monotonicity property

• “If a set of points forms a density-based cluster in k-
dimensions (attributes), then the same set of points is 
also part of a density-based cluster in all possible 
subsets of those dimensions”



Strengths and weakness of 
CLIQUE

• automatically finds subspaces of the highest dimensionality
such that high density clusters exist in those subspaces

• insensitive to the order of records in input and does not 
presume some canonical data distribution

• scales linearly with the size of input and has good scalability as 
the number of dimensions in the data increases

• Its not clear how to define the boundaries of cells in the 
different dimensions



Outline

• Impossibility theorem for clustering

• Density-based clustering and subspace clustering

• Bi-clustering or co-clustering



A

Clustering

3 0 6 8 9 7

2 3 4 12 8 10

1 2 3 10 9 8

0 8 4 8 7 9

2 4 3 11 9 10

16 10 13 6 7 5

10 8 9 2 3 7

• m points in Rn

• Group them to k clusters
• Represent them by a matrix ARm×n

– A point corresponds to a row of A
• Cluster: Partition the rows to k groups
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Co-Clustering
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• Co-Clustering: Cluster rows and columns of A 

simultaneously:

k = 2

ℓ = 2
Co-cluster



Motivation: Sponsored Search

Main revenue for search engines

• Advertisers bid on keywords
• A user makes a query
• Show ads of advertisers that are relevant and have high bids
• User clicks or not an ad

Ads



Motivation: Sponsored Search

• For every

(advertiser, keyword) pair

we have:

– Bid amount

– Impressions

– # clicks

• Mine information at query time 

– Maximize # clicks / revenue



Ski boots

Co-Clusters in Sponsored Search
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Bids of skis.com for 
“ski boots”

Markets = co-clusters

All these keywords are relevant
to a set of advertisers



Co-Clustering in Sponsored Search

Applications:

• Keyword suggestion
– Recommend to advertisers other relevant keywords

• Broad matching / market expansion
– Include more advertisers to a query

• Isolate submarkets
– Important for economists
– Apply different advertising approaches

• Build taxonomies of advertisers / keywords



ATTCGT

Co-Clusters in Gene Expression Data
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All these genes are activated
for some set of conditions
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Clustering of the rows
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• m points in Rn

• Group them to k clusters
• Represent them by a matrix ARm×n

– A point corresponds to a row of A
• Clustering: Partitioning of the rows into k groups

m

nRn



Clustering of the columns
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• n points in Rm

• Group them to k clusters
• Represent them by a matrix ARm×n

– A point corresponds to a column of A
• Clustering: Partitioning of the columns into k
groups
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Cost of clustering
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Original data points A Data representation A’

• In A’ every point in A (row or column) is replaced by the 
corresponding representative (row or column)
• The quality of the clustering is measured by computing distances 
between the data in the cells of A and A’. 

• k-means clustering: cost = ∑i=1…n ∑j=1…m (A(i,j)-A’(i,j))2

• k-median clustering: cost = ∑i=1…n ∑j=1…m |A(i,j)-A’(i,j)|



Co-Clustering
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• Co-Clustering: Cluster rows and columns of ARm×n simultaneously
• k row clusters, ℓ column clusters
• Every cell in A is represented by a cell in A’

•All cells in the same co-cluster  are represented by the same value in the cells of 

A’
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Co-Clustering Objective Function
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• In A’ every point in A (row or column) is replaced by the 
corresponding representative (row or column)
• The quality of the clustering is measured by computing distances 
between the data in the cells of A and A’. 

• k-means Co-clustering: cost = ∑i=1…n ∑j=1…m (A(i,j)-A’(i,j))2

• k-median Co-clustering: cost = ∑i=1…n ∑j=1…m |A(i,j)-A’(i,j)|



Some Background

• A.k.a.: biclustering, block clustering, …

• Many objective functions in co-clustering

– This is one of the easier

– Others factor out row-column average (priors)

– Others based on information theoretic ideas (e.g. KL divergence)

• A lot of existing work, but mostly heuristic

– k-means style, alternate between rows/columns

– Spectral techniques



Algorithm

1. Cluster rows of A

2. Cluster columns of A

3. Combine



Properties of the algorithm

Theorem 1. Algorithm with optimal row/column clusterings is 3-
approximation to co-clustering optimum.

Theorem 2. For L2 distance function, the algorithm with optimal 
row/column clusterings is a 2-approximation.



Algorithm--details

• Clustering of the n rows of A assigns every 
row to a cluster with cluster name {1,…,k}

– R(i)= ri with 1≤ ri ≤k

• Clustering of the m columns of A assigns every 
column to a cluster with cluster name {1,…,ℓ}

– C(j)=cj with 1≤ cj ≤ℓ

• A’(i,j) = {ri,cj}

• (i,j) is in the same co-cluster as (i’,j’) if
A’(i,j)=A’(i’,j’)


