Dimensionality reduction

Outline

- From distances to points :
 - MultiDimensional Scaling (MDS)
 - FastMap
- Dimensionality Reductions or data projections
- Random projections
- Principal Component Analysis (PCA)

Multi-Dimensional Scaling (MDS)

 So far we assumed that we know both data points X and distance matrix D between these points

 What if the original points X are not known but only distance matrix D is known?

 Can we reconstruct X or some approximation of X?

Problem

• Given distance matrix **D** between **n** points

 Find a k-dimensional representation of every x_i point i

So that d(x_i,x_i) is as close as possible to D(i,j)

Why do we want to do that?

How can we do that? (Algorithm)

High-level view of the MDS algorithm

- Randomly initialize the positions of n points in a k-dimensional space
- Compute pairwise distances D' for this placement
- Compare D' to D
- Move points to better adjust their pairwise distances (make D' closer to D)
- Repeat until D' is close to D

The MDS algorithm

- Input: nxn distance matrix D
- Random **n** points in the **k**-dimensional space (x₁,...,x_n)
- stop = false
- while not stop
 - totalerror = 0.0
 - For every **i**,**j** compute
 - D'(i,j)=d(x_i,x_j)
 - error = (D(i,j)-D'(i,j))/D(i,j)
 - totalerror +=error
 - For every dimension m: x_{im} = (x_{im}-x_{jm})/D'(i,j)*error
 - If totalerror small enough, stop = true

Questions about MDS

- Running time of the MDS algorithm
 - O(n²I), where I is the number of iterations of the algorithm
- MDS does not guarantee that metric property is maintained in d'

• Faster? Guarantee of metric property?

Problem (revisited)

• Given distance matrix **D** between **n** points

 Find a k-dimensional representation of every x_i point i

- So that:
 - d(x_i,x_j) is as close as possible to D(i,j)
 - d(x_i,x_j) is a metric
 - Algorithm works in time *linear* in **n**

FastMap

- Select two pivot points x_a and x_b that are far apart.
- Compute a pseudo-projection of the remaining points along the "line" x_ax_b
- "Project" the points to a subspace orthogonal to "line" x_ax_b and recurse.

Selecting the Pivot Points

The pivot points should lie along the principal axes, and hence should be far apart.

- Select any point x₀
- Let $\mathbf{x_1}$ be the furthest from $\mathbf{x_0}$
- Let x_2 be the furthest from x_1
- Return (x₁, x₂)

Pseudo-Projections

Given pivots (x_a, x_b), for any third point y, we use the **law of cosines** to determine the relation of y along x_ax_b

$$d_{by}^2 = d_{ay}^2 + d_{ab}^2 - 2c_y d_{ab}$$

The **pseudo-projection** for **y** is

$$C_{y} = \frac{d_{ay}^{2} + d_{ab}^{2} - d_{by}^{2}}{2d_{ab}}$$

This is first coordinate.

"Project to orthogonal plane"

The FastMap algorithm

- D: distance function, Y: nxk data points
- f=0 //global variable
- FastMap(k,D)
 - If k<=0 return</p>
 - (x_a,x_b) ← chooseDistantObjects(D)
 - If(D(x_a,x_b)==0), set Y[i,f]=0 for every i and return
 - $Y[i,f] = [D(a,i)^2+D(a,b)^2-D(b,i)^2]/(2D(a,b))$
 - D'(i,j) // new distance function on the projection
 - f++
 - FastMap(k-1,D')

FastMap algorithm

• Running time

Linear number of distance computations

The Curse of Dimensionality

- Data in only one dimension is relatively packed
- Adding a dimension "stretches" the points across that dimension, making them further apart
- Adding more dimensions will make the points further apart—high dimensional data is extremely sparse
- Distance measure becomes meaningless

(b) 6 Objects in One Unit Bin

(c) 4 Objects in One Unit Bin

The curse of dimensionality

 The efficiency of many algorithms depends on the number of dimensions d

- Distance/similarity computations are at least linear to the number of dimensions
- Index structures fail as the dimensionality of the data increases

Goals

• Reduce dimensionality of the data

• Maintain the meaningfulness of the data

Dimensionality reduction

- Dataset X consisting of n points in a ddimensional space
- Data point x_i ∈ R^d (d-dimensional real vector):

 $x_i = [x_{i1}, x_{i2}, ..., x_{id}]$

- Dimensionality reduction methods:
 - Feature selection: choose a subset of the features
 - Feature extraction: create new features by combining new ones

Dimensionality reduction

- Dimensionality reduction methods:
 - Feature selection: choose a subset of the features
 - Feature extraction: create new features by combining new ones
- Both methods map vector x_i eR^d, to vector y_i e R^k, (k<<d)

• $F: \mathbb{R}^d \rightarrow \mathbb{R}^k$

Linear dimensionality reduction

- Function F is a *linear* projection
- y_i = A x_i
- Y = A X

• Goal: Y is as *close* to X as possible

Closeness: Pairwise distances

 Johnson-Lindenstrauss lemma: Given ε>0, and an integer n, let k be a positive integer such that k≥k₀=O(ε⁻² logn). For every set X of n points in R^d there exists F: R^d→R^k such that for all x_i, x_j ∈X

 $(1-ε)||x_i - x_j||^2 ≤ ||F(x_i) - F(x_j)||^2 ≤ (1+ε)||x_i - x_j||^2$

What is the intuitive interpretation of this statement?

JL Lemma: Intuition

- Vectors x_i ∈ R^d, are projected onto a kdimensional space (k<<d): y_i = R x_i
- If ||x_i||=1 for all i, then,
 ||x_i-x_j||² is approximated by (d/k)||x_i-x_j||²
- Intuition:
 - The expected squared norm of a projection of a unit vector onto a random subspace through the origin is k/d
 - The probability that it deviates from expectation is very small

JL Lemma: More intuition

- x=(x₁,...,x_d), d independent Gaussian N(0,1) random variables; y = 1/|x|(x₁,...,x_d)
- z: projection of y into first k coordinates
 L = |z|², μ = E[L] = k/d
- $Pr(L \ge (1+\epsilon)\mu) \le 1/n^2$ and $Pr(L \le (1-\epsilon)\mu) \le 1/n^2$
- f(y) = sqrt(d/k)z
- What is the probability that for pair (y,y'): |f(y)f(y')|²/(|y-y'|) does not lie in range [(1-ε),(1+ε)]?
- What is the probability that some pair suffers?

Finding random projections

- Vectors x_i ∈ R^d, are projected onto a kdimensional space (k<<d)
- Random projections can be represented by linear transformation matrix R
- y_i = R x_i
- What is the matrix **R**?

Finding random projections

- Vectors x_i ∈ R^d, are projected onto a kdimensional space (k<<d)
- Random projections can be represented by linear transformation matrix R
- y_i = R x_i
- What is the matrix **R**?

Finding matrix **R**

- Elements R(i,j) can be Gaussian distributed
- Achlioptas* has shown that the Gaussian distribution can be replaced by

$$R(i, j) = \begin{cases} +1 \text{ with } \operatorname{prob} \frac{1}{6} \\ 0 \text{ with } \operatorname{prob} \frac{2}{3} \\ -1 \text{ with } \operatorname{prob} \frac{1}{6} \end{cases}$$

- All zero mean, unit variance distributions for R(i,j) would give a mapping that satisfies the JL lemma
- Why is Achlioptas result useful?