Dimensionality reduction

Outline

- From distances to points :
- MultiDimensional Scaling (MDS)
- FastMap
- Dimensionality Reductions or data projections
- Random projections
- Principal Component Analysis (PCA)

Multi-Dimensional Scaling (MDS)

- So far we assumed that we know both data points X and distance matrix D between these points
- What if the original points X are not known but only distance matrix D is known?
- Can we reconstruct X or some approximation of X ?

Problem

- Given distance matrix D between n points
- Find a k-dimensional representation of every x_{i} point i
- So that $\mathrm{d}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)$ is as close as possible to $\mathrm{D}(\mathrm{i}, \mathrm{j})$

Why do we want to do that?

How can we do that? (Algorithm)

High-level view of the MDS algorithm

- Randomly initialize the positions of n points in a k-dimensional space
- Compute pairwise distances D' for this placement
- Compare D' to D
- Move points to better adjust their pairwise distances (make D' closer to D)
- Repeat until D^{\prime} is close to D

The MDS algorithm

- Input: $\mathrm{n} \times \mathrm{n}$ distance matrix D
- Random n points in the \mathbf{k}-dimensional space ($\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$)
- stop = false
- while not stop
- totalerror $=0.0$
- For every i,j compute
- $D^{\prime}(\mathrm{i}, \mathrm{j})=\mathrm{d}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)$
- error $=\left(D(i, j)-D^{\prime}(i, j)\right) / D(i, j)$
- totalerror +=error
- For every dimension $m: x_{i m}=\left(x_{i m}-x_{j m}\right) / D^{\prime}(i, j)^{*}$ error
- If totalerror small enough, stop = true

Questions about MDS

- Running time of the MDS algorithm
$-\mathbf{O}\left(\mathrm{n}^{2} \mathrm{I}\right)$, where I is the number of iterations of the algorithm
- MDS does not guarantee that metric property is maintained in d^{\prime}
- Faster? Guarantee of metric property?

Problem (revisited)

- Given distance matrix \mathbf{D} between n points
- Find a k-dimensional representation of every x_{i} point i
- So that:
$-\mathrm{d}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)$ is as close as possible to $\mathrm{D}(\mathrm{i}, \mathrm{j})$
$-d\left(x_{i}, x_{j}\right)$ is a metric
- Algorithm works in time linear in n

FastMap

- Select two pivot points \mathbf{x}_{a} and \mathbf{x}_{b} that are far apart.
- Compute a pseudo-projection of the remaining points along the "line" $\mathbf{x}_{\mathrm{a}} \mathbf{x}_{\mathrm{b}}$
- "Project" the points to a subspace orthogonal to "line" $\mathbf{x}_{\mathrm{a}} \mathrm{x}_{\mathrm{b}}$ and recurse.

Selecting the Pivot Points

The pivot points should lie along the principal axes, and hence should be far apart.

- Select any point \mathbf{x}_{0}
- Let \mathbf{x}_{1} be the furthest from \mathbf{x}_{0}
- Let \mathbf{x}_{2} be the furthest from \mathbf{x}_{1}
- Return ($\mathrm{x}_{1}, \mathrm{x}_{2}$)

Pseudo-Projections

Given pivots ($\mathbf{x}_{\mathrm{a}}, \mathbf{x}_{\mathrm{b}}$), for any third point y, we use the law of cosines to determine the relation of \mathbf{y} along $\mathbf{x}_{\mathrm{a}} \mathbf{x}_{\mathrm{b}}$

$$
d_{b y}^{2}=d_{a y}^{2}+d_{a b}^{2}-2 c_{y} d_{a b}
$$

The pseudo-projection for \mathbf{y} is

$$
c_{y}=\frac{d_{a y}^{2}+d_{a b}^{2}-d_{b y}^{2}}{2 d_{a b}}
$$

This is first coordinate.

"Project to orthogonal plane"

Given distances along $\mathbf{x}_{\mathrm{a}} \mathbf{x}_{\mathrm{b}}$ compute distances within the "orthogonal hyperplane"

$$
d^{\prime}\left(y^{\prime}, z^{\prime}\right)=\sqrt{d^{2}(y, z)-\left(c_{z}-c_{y}\right)^{2}}
$$

Recurse using d '(.,.), until \mathbf{k}^{ν}
 features chosen.

The FastMap algorithm

- D: distance function, Y: nxk data points
- f=0 //global variable
- FastMap(k,D)
- If $k<=0$ return
$-\left(\mathrm{x}_{\mathrm{a}}, \mathrm{x}_{\mathrm{b}}\right) \leftarrow$ chooseDistantObjects(D)
- If $\left(D\left(x_{a}, x_{b}\right)==0\right)$, set $Y[i, f]=0$ for every i and return
$-Y[i, f]=\left[D(a, i)^{2}+D(a, b)^{2}-D(b, i)^{2}\right] /(2 D(a, b))$
- $D^{\prime}(i, j) / /$ new distance function on the projection
- f++
- FastMap(k-1,D')

FastMap algorithm

- Running time
- Linear number of distance computations

The Curse of Dimensionality

- Data in only one dimension is relatively packed
- Adding a dimension "stretches" the points across that dimension, making them further apart

(b) 6 Objects in One Unit Bin
- Adding more dimensions will make the points further apart-high dimensional data is extremely sparse
- Distance measure becomes meaningless

(c) 4 Objects in One Unit Bin

The curse of dimensionality

- The efficiency of many algorithms depends on the number of dimensions d
- Distance/similarity computations are at least linear to the number of dimensions
- Index structures fail as the dimensionality of the data increases

Goals

- Reduce dimensionality of the data
- Maintain the meaningfulness of the data

Dimensionality reduction

- Dataset X consisting of n points in a ddimensional space
- Data point $x_{i} \in R^{d}$ (d-dimensional real vector): $x_{i}=\left[x_{i 1}, x_{i 2}, \ldots, x_{i d}\right]$
- Dimensionality reduction methods:
- Feature selection: choose a subset of the features
- Feature extraction: create new features by combining new ones

Dimensionality reduction

- Dimensionality reduction methods:
- Feature selection: choose a subset of the features
- Feature extraction: create new features by combining new ones
- Both methods map vector $X_{i} \in R^{d}$, to vector $y_{i} \epsilon$ $R^{k},(k \ll d)$
- $F: R^{d} \rightarrow R^{k}$

Linear dimensionality reduction

- Function F is a linear projection
- $y_{i}=A x_{i}$
- $Y=A X$
- Goal: Y is as close to X as possible

Closeness: Pairwise distances

- Johnson-Lindenstrauss lemma: Given $\varepsilon>0$, and an integer n, let k be a positive integer such that $k \geq k_{0}=0\left(\varepsilon^{-2} \operatorname{logn}\right)$. For every set X of n points in R^{d} there exists $F: R^{d} \rightarrow R^{k}$ such that for all $\mathrm{X}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}} \in \mathrm{X}$

$$
(1-\varepsilon)\left\|x_{i}-x_{j}\right\|^{2} \leq\left\|F\left(x_{i}\right)-F\left(x_{j}\right)\right\|\left\|^{2} \leq(1+\varepsilon)\right\| x_{i}-x_{j} \|^{2}
$$

What is the intuitive interpretation of this statement?

JL Lemma: Intuition

- Vectors $\mathrm{X}_{\mathrm{i}} \in \mathrm{R}^{\mathrm{d}}$, are projected onto a \mathbf{k} dimensional space ($k \ll d$): $y_{i}=R x_{i}$
- If $\left|\mid x_{i} \|=1\right.$ for all i, then, $\left\|\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{j}}\right\|^{2}$ is approximated by $(\mathrm{d} / \mathrm{k})\left\|\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{j}}\right\|^{2}$
- Intuition:
- The expected squared norm of a projection of a unit vector onto a random subspace through the origin is k / d
- The probability that it deviates from expectation is very small

JL Lemma: More intuition

- $\mathbf{x}=\left(\mathbf{x}_{1}, \ldots, x_{d}\right)$, \mathbf{d} independent Gaussian $N(0,1)$ random variables; $y=1 /|x|\left(x_{1}, \ldots, x_{d}\right)$
- z : projection of y into first k coordinates

$$
-L=|z|^{2}, \mu=E[L]=k / d
$$

- $\operatorname{Pr}(\mathrm{L} \geq(1+\varepsilon) \mu) \leq 1 / \mathrm{n}^{2}$ and $\operatorname{Pr}(\mathrm{L} \leq(1-\varepsilon) \mu) \leq 1 / n^{2}$
- $f(y)=s q r t(d / k) z$
- What is the probability that for pair $\left(y, y^{\prime}\right): \mid f(y)-$ $\left.f\left(y^{\prime}\right)\right|^{2} /\left(\left|y-y^{\prime}\right|\right)$ does not lie in range $[(1-\varepsilon),(1+\varepsilon)]$?
- What is the probability that some pair suffers?

Finding random projections

- Vectors $\mathbf{x}_{\mathbf{i}} \in \mathrm{R}^{\mathrm{d}}$, are projected onto a k dimensional space ($k \ll d$)
- Random projections can be represented by linear transformation matrix \mathbf{R}
- $y_{i}=R x_{i}$
- What is the matrix R ?

Finding random projections

- Vectors $\mathbf{x}_{\mathbf{i}} \in \mathrm{R}^{\mathrm{d}}$, are projected onto a k dimensional space ($k \ll d$)
- Random projections can be represented by linear transformation matrix \mathbf{R}
- $y_{i}=R x_{i}$
- What is the matrix R ?

Finding matrix \mathbf{R}

- Elements R(i,j) can be Gaussian distributed
- Achlioptas* has shown that the Gaussian distribution can be replaced by

$$
R(i, j)=\left\{\begin{array}{c}
+1 \text { with prob } \frac{1}{6} \\
\mathrm{o} \text { with prob } \frac{2}{3} \\
-1 \text { with prob } \frac{1}{6}
\end{array}\right.
$$

- All zero mean, unit variance distributions for $\mathbf{R}(\mathrm{i}, \mathrm{j})$ would give a mapping that satisfies the JL lemma
- Why is Achlioptas result useful?

