
Dimensionality reduction



Outline

• From distances to points : 

– MultiDimensional Scaling (MDS)

– FastMap

• Dimensionality Reductions or data projections

• Random projections

• Principal Component Analysis (PCA)



Multi-Dimensional Scaling (MDS)

• So far we assumed that we know both data 
points X and distance matrix D between these 
points

• What if the original points X are not known 
but only distance matrix D is known?

• Can we reconstruct X or some approximation 
of X?



Problem

• Given distance matrix D between n points

• Find a k-dimensional representation of every 
xi point i

• So that d(xi,xj) is as close as possible to D(i,j)

Why do we want to do that?



How can we do that? (Algorithm)



High-level view of the MDS 
algorithm

• Randomly initialize the positions of n points in 
a k-dimensional space

• Compute pairwise distances D’ for this 
placement 

• Compare D’ to D

• Move points to better adjust their pairwise
distances (make D’ closer to D)

• Repeat until D’ is close to D



The MDS algorithm

• Input: nxn distance matrix D

• Random n points in the k-dimensional space (x1,…,xn)

• stop = false

• while not stop

– totalerror = 0.0

– For every i,j compute 

• D’(i,j)=d(xi,xj)

• error = (D(i,j)-D’(i,j))/D(i,j)

• totalerror +=error

• For every dimension m:  xim = (xim-xjm)/D’(i,j)*error

– If totalerror small enough, stop = true



Questions about MDS

• Running time of the MDS algorithm

– O(n2I), where I is the number of iterations of the 
algorithm

• MDS does not guarantee that metric property 
is maintained in d’

• Faster? Guarantee of metric property?



Problem (revisited)

• Given distance matrix D between n points

• Find a k-dimensional representation of every 
xi point i

• So that: 

– d(xi,xj) is as close as possible to D(i,j)

– d(xi,xj) is a metric 

– Algorithm works in time linear in n



FastMap

• Select two pivot points xa and xb

that are far apart.

• Compute a pseudo-projection of the 
remaining points along the “line” xaxb

• “Project” the points to a subspace 
orthogonal to “line” xaxb and recurse.



Selecting the Pivot Points

The pivot points should lie along 
the principal axes, and hence 
should be far apart.

– Select any point x0

– Let x1 be the furthest from x0

– Let x2 be the furthest from x1

– Return (x1, x2)
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Pseudo-Projections

Given pivots (xa , xb ), for any third 
point y, we use the law of 
cosines to determine the relation 
of y along xaxb

The pseudo-projection for y is

This is first coordinate.
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“Project to orthogonal plane”

Given distances along xaxb

compute distances within 

the “orthogonal hyperplane”

Recurse using d ’(.,.), until k 

features chosen.
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The FastMap algorithm

• D: distance function, Y: nxk data points

• f=0 //global variable

• FastMap(k,D)

– If k<=0 return

– (xa,xb) chooseDistantObjects(D)

– If(D(xa,xb)==0), set Y[i,f]=0 for every i and return

– Y[i,f] = [D(a,i)2+D(a,b)2-D(b,i)2]/(2D(a,b))

– D’(i,j) // new distance function on the projection

– f++

– FastMap(k-1,D’) 



FastMap algorithm

• Running time

– Linear number of distance computations



The Curse of Dimensionality

• Data in only one dimension is relatively packed

• Adding a dimension “stretches” the  points 

across that dimension, making them further 

apart

• Adding more dimensions will make the points 

further apart—high dimensional data is 

extremely sparse

• Distance measure becomes meaningless

(graphs from Parsons et al. KDD Explorations 2004)



The curse of dimensionality

• The efficiency of many algorithms depends on 
the number of dimensions d

– Distance/similarity computations are at least 
linear to the number of dimensions

– Index structures fail as the dimensionality of the 
data increases



Goals

• Reduce dimensionality of the data

• Maintain the meaningfulness of the data



Dimensionality reduction

• Dataset X consisting of n points in a d-
dimensional space

• Data point xiєRd (d-dimensional real vector): 

xi = [xi1, xi2,…, xid]

• Dimensionality reduction methods:

– Feature selection: choose a subset of the features

– Feature extraction: create new features by 
combining new ones



Dimensionality reduction

• Dimensionality reduction methods:

– Feature selection: choose a subset of the features

– Feature extraction: create new features by 
combining new ones

• Both methods map vector xiєRd, to vector yi є
Rk, (k<<d)

• F : Rd
Rk



Linear dimensionality reduction

• Function F is a linear projection

• yi = A xi

• Y = A X

• Goal: Y is as close to X as possible



Closeness: Pairwise distances

• Johnson-Lindenstrauss lemma: Given ε>0, 
and an integer n, let k be a positive integer 
such that k≥k0=O(ε-2 logn). For every set X of n
points in Rd there exists F: Rd

Rk such that for 
all xi, xj єX

(1-ε)||xi - xj||2≤ ||F(xi )- F(xj)||2≤ (1+ε)||xi - xj||2

What is the intuitive interpretation of this 
statement?



JL Lemma: Intuition

• Vectors xiєRd, are projected onto a k-
dimensional space (k<<d): yi = R xi

• If ||xi||=1 for all i, then, 

||xi-xj||2 is approximated by (d/k)||xi-xj||2

• Intuition:

– The expected squared norm of a projection of a 
unit vector onto a random subspace through the 
origin is k/d

– The probability that it deviates from expectation is 
very small



JL Lemma: More intuition

• x=(x1,…,xd), d independent Gaussian N(0,1) random 
variables; y = 1/|x|(x1,…,xd)

• z : projection of y into first k coordinates

– L = |z|2, μ = E[L] = k/d

• Pr(L ≥ (1+ε)μ)≤1/n2 and Pr(L ≤ (1-ε)μ)≤1/n2

• f(y) = sqrt(d/k)z

• What is the probability that for pair (y,y’): |f(y)-
f(y’)|2/(|y-y’|) does not lie in range [(1-ε),(1+ ε)]?

• What is the probability that some pair suffers?



Finding random projections

• Vectors xiєRd, are projected onto a k-
dimensional space (k<<d)

• Random projections can be represented by 
linear transformation matrix R

• yi = R xi

• What is the matrix R?



Finding random projections

• Vectors xiєRd, are projected onto a k-
dimensional space (k<<d)

• Random projections can be represented by 
linear transformation matrix R

• yi = R xi

• What is the matrix R?



Finding matrix R

• Elements R(i,j) can be Gaussian distributed 

• Achlioptas* has shown that the Gaussian distribution 
can be replaced by

• All zero mean, unit variance distributions for R(i,j)
would give a mapping that satisfies the JL lemma

• Why is Achlioptas result useful?

6

1
 prob with 1

3

2
 prob with 0

6

1
 prob with 1

),( jiR


