Completion (on tensors)

NATALI RUCHANSKY

Motivating Example: Netflix

What data does Netflix have?

• Users rate movies they have seen

Data represented in matrix form:

• Harry rates The Hobbit 5/5 but Gravity 2/5

Motivating Example: Netflix

What does Netflix want to do?

 Recommend you movie you would like – make you happy with the service

How can it do this?

- Knowing which movies Harry would rate 5/5
- Predict ratings it cannot see

Harry

э 5,	ngc	Ner			
3	4	1	?	5	
?	5	?	1	2	
3	3	4	3	1	
5	?	?	?	?	

Netflix Challenge

Want to predict **all** ratings, but we know only 1% of the entries!

Matrix Completion

On Input:

Partially-observed matrix M

The Goal is to:

Find a low-error completion of the remaining entries

Notation

From a ground truth fully-known an $n \times m$ matrix T, we say only some of the values are observed.

Call the set of **observed locations**: $\Omega = \{(i, j) \text{ that are observed in } T\}$

Define the partially observed matrix as:

$$M(i,j) = \begin{cases} T(i,j) \text{ if } (i,j) \in \Omega\\ 0 \text{ otherwise} \end{cases}$$

Approaches to Matrix Completion

Need to make some assumption.

• Currently the most popular is that **T** is low rank.

Find an estimate \tilde{T} by solving the optimization problem:

minimize $rank(\tilde{T})$ subject to $M_{ij} = \tilde{T}_{ij}$ $(i, j) \in \Omega$

This problem is **NP-hard**.

Approaches to Matrix Completion

Need to make some additional assumption.

- 1. Low rank
- 2. Known rank

A proposed strategy called **OptSpace** takes an **SVD**-based approach:

minimize $\|\tilde{T}\|_{*}$ subject to $M_{ij} = \tilde{T}_{ij}$ $(i, j) \in \Omega$ $\|\tilde{T}\|_{*} = \sum_{k=1}^{n} \sigma_{k}(\tilde{T})$

Characteristics

Such optimization approaches

- Output an estimate of the **whole** matrix \tilde{T} on any input any size Ω .
- Give no indication of of confidence
- \bullet Rely on randomly sampled Ω , i.e. the known entries are randomly dispersed

Completion Questions

If we want very small error between $ilde{T}$ and T ...

- 1. How many entries does M need to have?
- 2. When there are not enough entries, how can I add them?

Lower Bound

Assuming that Ω is **random**, there does exist a bound that say:

If there are at least $rn\log(n)$ entries then w.h.p the completion will be accurate

This is the only way to answer the questions.

Simply sample randomly up to threshold, and hope for the best...

Structural Methods

Recent methods take a more algebraic approach by analyzing the structure of **locations** of the observed entries.

Structural Methods Example

Consider the 2 x 2 matrix:

$$\left(\begin{array}{ccc} 1 & 2 \\ 2 & ? \end{array} \right)$$

If I tell you that rank=1, can you fill the missing element?

Yes! The only possible value is 4. i.e. $\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$

What about if I tell you rank=2?

Structural Method

- Explicitly state which entries can be recovered
- Provide means to answer the questions other methods could not
 - 1. How many entries does Ω need to have?
 - 2. When there are not enough entries, how can I add them?

Summary

Matrix Completion: Recover missing entries

- Statistical approaches
 - Random Sampling
 - Optimization always output a full estimate
- Structural approaches
 - Indicate which entries can be recovered exactly
 - Only recover those entries

Tensor Completion. Let's talk about tensors...

Tensor

Multi-dimensional matrix

Tensors: Example

Netflix Matrix

Netflix Tensor

Movies

Users

Tensors: Example

Netflix Matrix

Netflix Tensor

Movies

Users

Users

Genres

Tensor Applications

- Traffic analysis (urban, internet)
- Recommender systems
- Biology
- Vision/Images
- Physics (immense application) e.g.

Tensors are hard

Most Tensor Problems are NP-Hard

CHRISTOPHER J. HILLAR, Mathematical Sciences Research Institute LEK-HENG LIM, University of Chicago

We prove that multilinear (tensor) analogues of many efficiently computable problems in numerical linear algebra are NP-hard. Our list here includes: determining the feasibility of a system of bilinear equations, deciding whether a 3-tensor possesses a given eigenvalue, singular value, or spectral norm; approximating an eigenvalue, eigenvector, singular vector, or the spectral norm; and determining the rank or best rank-1 approximation of a 3-tensor. Furthermore, we show that restricting these problems to symmetric tensors does not alleviate their NP-hardness. We also explain how deciding nonnegative definiteness of a symmetric

Tensors are hard

Problem	Complexity		
Bivariate Matrix Functions over \mathbb{R}, \mathbb{C}	Undecidable (Proposition 12.2)		
Bilinear System over \mathbb{R}, \mathbb{C}	NP-hard (Theorems 2.6, 3.7, 3.8)		
Eigenvalue over \mathbb{R}	NP-hard (Theorem 1.3)		
Approximating Eigenvector over $\mathbb R$	NP-hard (Theorem 1.5)		
Symmetric Eigenvalue over $\mathbb R$	NP-hard (Theorem 9.3)		
Approximating Symmetric Eigenvalue over $\mathbb R$	NP-hard (Theorem 9.6)		
Singular Value over \mathbb{R}, \mathbb{C}	NP-hard (Theorem 1.7)		
Symmetric Singular Value over $\mathbb R$	NP-hard (Theorem 10.2)		
Approximating Singular Vector over \mathbb{R}, \mathbb{C}	NP-hard (Theorem 6.3)		
Spectral Norm over \mathbb{R}	NP-hard (Theorem 1.10)		
Symmetric Spectral Norm over $\mathbb R$	NP-hard (Theorem 10.2)		
Approximating Spectral Norm over $\mathbb R$	NP-hard (Theorem 1.11)		
Nonnegative Definiteness	NP-hard (Theorem 11.2)		
Best Rank-1 Approximation	NP-hard (Theorem 1.13)		
Best Symmetric Rank-1 Approximation	NP-hard (Theorem 10.2)		
Rank over \mathbb{R} or \mathbb{C}	NP-hard (Theorem 8.2)		
Enumerating Eigenvectors over $\mathbb R$	#P-hard (Corollary 1.16)		
Combinatorial Hyperdeterminant	NP-, #P-, VNP-hard (Theorems 4.1, 4.2, Corollary 4.3)		
Geometric Hyperdeterminant	Conjectures 1.9, 13.1		
Symmetric Rank	Conjecture 13.2		
Bilinear Programming	Conjecture 13.4		
Bilinear Least Squares	Conjecture 13.5		

Table I. Tractability of Tensor Problems

Example 1: Rank

- Matrix Rank:
 - # independent row vectors
 - How many vectors are needed to represent the whole matrix?
 - For $m \ge n M$, $rank(M) \le max(m,n)$
- Tensor Rank
 - Definition 1:

Smallest r such that T is the sum of r rank-1 tensors B

• Definition 2:

A tuple $(r_1, ..., r_n)$ where each r_i is the rank of the unfolding

Tensor Unfloding

Example 2: SVD

- Matrix SVD:
 - Decomposition into $\ \mathbf{M} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^*$

Tensor SVD??

Tensor Completion

Given a partially observed tensor

Reconstruct the missing values

Existing Tensor Completion Approaches

Translate directly

<u>Recall:</u>

minimize $rank(\tilde{T})$

 $\underset{\mathbf{X}\in\mathcal{T}}{\mathbf{minimize}} \quad f\left(\mathrm{n-rank}(\mathbf{X})\right) \quad \mathbf{s. t.} \quad \mathcal{A}\left(\mathbf{X}\right) = b, \qquad \text{ subject to } \quad M_{ij} = \tilde{T}_{ij} \quad (i,j) \in \Omega$

Problem setting 3.1 (Low-n-rank tensor recovery).

$$\begin{array}{ll} \underset{\mathbf{X}\in\mathcal{T}}{\operatorname{minimize}} & \sum_{i=1}^{N} \operatorname{rank}\left(X_{(i)}\right) & \text{s.t.} & \mathcal{A}\left(\mathbf{X}\right) = b \\ \end{array}$$

Problem setting 3.2 (Tensor completion).

$$\underset{\mathbf{X}\in\mathcal{T}}{\mathbf{minimize}} \quad \sum_{i=1}^{N} \operatorname{rank} \left(X_{(i)} \right) \quad \mathbf{s.t.} \quad \mathbf{X}_{\Omega} = \mathbf{T}_{\Omega}$$

Problem setting 3.3 (Low-n-rank tensor pursuit).

$$\underset{\mathbf{X}\in\mathcal{T}}{\mathbf{minimize}} \quad \sum_{i=1}^{N} ||X_{(i)}||_{*} \quad \text{s.t.} \quad \mathcal{A}(\mathbf{X}) = b$$

Tensor Completion Question

- Can the ideas from structural matrix completion be applied to tensors?
- What kinds of bounds exist for the amount of information needed?
- Are there special cases that make tensors easier?
- How does rigidity translate to tensors?

