
N ATA L I R U C H A N S K Y

Completion (on tensors)

Motivating Example: Netflix

What data does Netflix have?
•  Users rate movies they have seen

Data represented in matrix form:
•  Harry rates The Hobbit 5/5 but Gravity 2/5

3 4 1 1 5

2 5 1 1 2

3 3 4 3 1

5 4 5 2 1

Users

Movies

3 4 1 1 5

2 5 1 1 2

3 3 4 3 1

5 4 5 2 1

Harry

Motivating Example: Netflix

What does Netflix want to do?
•  Recommend you movie you would like – make you happy

with the service

How can it do this?
•  Knowing which movies Harry would rate 5/5
•  Predict ratings it cannot see

3 4 1 ? 5

? 5 ? 1 2

3 3 4 3 1

5 ? ? ? ?

Harry

Netflix Challenge

Want to predict all ratings, but we know only 1% of
the entries!

U
se

rs

Movies

Matrix Completion

On Input:
Partially-observed matrix M

The Goal is to:
Find a low-error completion of the remaining entries

Notation

From a ground truth fully-known an matrix , we
say only some of the values are observed.

Call the set of observed locations:

Define the partially observed matrix as:

Ω = (i, j) that are observed in T{ }

M (i, j) =
T (i, j) if (i, j)∈Ω

0 otherwise
#
$
%

n×m T

Approaches to Matrix Completion

Need to make some assumption.
•  Currently the most popular is that T is low rank.

Find an estimate by solving the optimization
problem:

T

minimize rank(T)
subject to Mij = Tij (i, j)∈Ω

This problem is NP-hard.

Approaches to Matrix Completion

Need to make some additional assumption.
1.  Low rank
2.  Known rank

A proposed strategy called OptSpace takes an
SVD-based approach:

minimize T
*

subject to Mij = Tij (i, j)∈Ω

T
*
= σ k (T)

k=1

n

∑

Characteristics

Such optimization approaches

•  Output an estimate of the whole matrix on any

input – any size Ω.

•  Give no indication of of confidence

•  Rely on randomly sampled Ω, i.e. the known entries
are randomly dispersed

T

Completion Questions

If we want very small error between and …

1.  How many entries does need to have?
2.  When there are not enough entries, how can I

add them?

T

M

T

Lower Bound

Assuming that Ω is random, there does exist a bound
that say:

If there are at least entries then w.h.p the
completion will be accurate

This is the only way to answer the questions.

Simply sample randomly up to threshold, and hope
for the best…

r n log(n)

Structural Methods

Recent methods take a more algebraic approach by
analyzing the structure of locations of the observed

entries.

Ω,n,m, r Structural Matrix
Completion

Yes, there is a
unique

completion

No, there are
many possible

matrices
consistent with

the observations

Structural Methods Example

1 2
2 ?

!

"
#

$

%
&Consider the 2 x 2 matrix:

If I tell you that rank=1, can you fill the missing element?

Yes! The only possible value is 4. i.e.

What about if I tell you rank=2?

1 2
2 4

!

"
#

$

%
&

Structural Method

•  Explicitly state which entries can be recovered

•  Provide means to answer the questions other
methods could not
1.  How many entries does Ω need to have?
2.  When there are not enough entries, how can I add them?

Summary

Matrix Completion: Recover missing entries
•  Statistical approaches
•  Random Sampling
•  Optimization – always output a full estimate

•  Structural approaches
•  Indicate which entries can be recovered exactly
•  Only recover those entries

Tensor Completion. Let’s talk about tensors…

Tensor

Multi-dimensional matrix

1-dim 2-dim 3-dim

A(i) A(i,j) A(i,j,k)

Tensors: Example
U

se
rs

Movies

Netflix Matrix Netflix Tensor

Tensors: Example
U

se
rs

Movies

U
se

rs

Genres

Netflix Matrix Netflix Tensor

Tensor Applications

•  Traffic analysis (urban, internet)
•  Recommender systems
•  Biology
•  Vision/Images
•  Physics (immense application) e.g.

Image Source: http://arxiv.org/pdf/1306.2164v2.pdf

Tensors are hard

Tensors are hard

Example 1: Rank

•  Matrix Rank:
•  # independent row vectors
•  How many vectors are needed to represent the whole

matrix?
•  For m x n M, rank(M)≤max(m,n)

•  Tensor Rank
•  Definition 1:

Smallest r such that T is the sum of r rank-1 tensors B
•  Definition 2:

A tuple (r1, …, rn) where each ri is the rank of the unfolding

Tensor Unfloding

Example 2: SVD

•  Matrix SVD:
•  Decomposition into

•  Tensor SVD??

Tensor Completion

Given a partially observed tensor

Reconstruct the missing values

Existing Tensor Completion Approaches

•  Translate directly
minimize rank(T)
subject to Mij = Tij (i, j)∈Ω

Recall:

Tensor completion and low-n-rank tensor recovery via convex optimization 4

In general such a best approximation might not exist, but by introducing conditions
on the appearing rank-1 terms, uniqueness can be enforced [7].

This tensor rank is difficult to handle, as there is no straightforward algorithm
to determine rankCP of a specific given tensor; in fact, the problem is NP-hard [1, 8].
The n-rank on the other hand is easy to compute. Therefore, we only focus on the
n-rank in this work and consider the minimization problem:

minimize
X∈T

f (n-rank(X)) s. t. A (X) = b,

where f (n-rank(X)) = f
(
rankX(1), rankX(2), . . . , rankX(N)

)
. In order to keep

things simple, we will use the sum of the ranks of the different unfoldings in the
place of the function f , i.e., f(n-rank(X)) = ||n-rank(X)||1 =

∑N
i=1 rank (X(i)). This

is one choice, but is also possible to incorporate a weighting, e.g., f(n-rank(X)) =∑N
i=1 γi rank X(i). Thus, our minimization problem of interest becomes:

Problem setting 3.1 (Low-n-rank tensor recovery).

minimize
X∈T

N∑

i=1

rank
(
X(i)

)
s. t. A (X) = b (1)

The exact form of the linear constraints on the tensor X is governed by the linear
operator A which can take many possible forms in general. We would like to point
out one special case, the tensor completion case. In tensor completion, a subset of the
entries of the tensor X is given, and under the low-n-rank assumption, the unknown
entries are to be deduced. Denoting the set of revealed entries by Ω, the corresponding
operator A retrieves the values of these locations. The vector b will then contain the
given entries of the tensor X. Equivalently, we can compactly write the constraint as
XΩ = TΩ, where XΩ denotes the restriction of the tensor on the entries given by Ω,
and TΩ contains the values of those entries of X.

Problem setting 3.2 (Tensor completion).

minimize
X∈T

N∑

i=1

rank
(
X(i)

)
s. t. XΩ = TΩ (2)

The low-n-rank tensor recovery problem (1) (also its variant (2)) is a difficult
non-convex problem. Therefore we will relax it to the following convex problem:

Problem setting 3.3 (Low-n-rank tensor pursuit).

minimize
X∈T

N∑

i=1

||X(i)||∗ s. t. A(X) = b. (3)

Here, ||Z||∗ =
∑n

i=1 σi(Z) denotes the nuclear norm, the sum of the singular values of
a matrix Z. It is well known that the nuclear norm is the greatest convex minorant of
the rank function [2] and therefore we chose to replace each rank term by a nuclear-
norm term.

Problem (3) is equivalent to a semidefinite program. For this class of problems
there exist off-the-shelf solvers that apply interior-point methods and have very
good convergence guarantees. Unfortunately, the calculation of the search direction
uses second-order information and scales very badly in the problem dimensions.
Therefore, these solvers can only be used for very small-sized problems. As large-
size problems appear naturally in tensor problems, the present work will propose
first-order algorithms that are able to cope with these larger-sized problem instances.

Tensor completion and low-n-rank tensor recovery via convex optimization 4

In general such a best approximation might not exist, but by introducing conditions
on the appearing rank-1 terms, uniqueness can be enforced [7].

This tensor rank is difficult to handle, as there is no straightforward algorithm
to determine rankCP of a specific given tensor; in fact, the problem is NP-hard [1, 8].
The n-rank on the other hand is easy to compute. Therefore, we only focus on the
n-rank in this work and consider the minimization problem:

minimize
X∈T

f (n-rank(X)) s. t. A (X) = b,

where f (n-rank(X)) = f
(
rankX(1), rankX(2), . . . , rankX(N)

)
. In order to keep

things simple, we will use the sum of the ranks of the different unfoldings in the
place of the function f , i.e., f(n-rank(X)) = ||n-rank(X)||1 =

∑N
i=1 rank (X(i)). This

is one choice, but is also possible to incorporate a weighting, e.g., f(n-rank(X)) =∑N
i=1 γi rank X(i). Thus, our minimization problem of interest becomes:

Problem setting 3.1 (Low-n-rank tensor recovery).

minimize
X∈T

N∑

i=1

rank
(
X(i)

)
s. t. A (X) = b (1)

The exact form of the linear constraints on the tensor X is governed by the linear
operator A which can take many possible forms in general. We would like to point
out one special case, the tensor completion case. In tensor completion, a subset of the
entries of the tensor X is given, and under the low-n-rank assumption, the unknown
entries are to be deduced. Denoting the set of revealed entries by Ω, the corresponding
operator A retrieves the values of these locations. The vector b will then contain the
given entries of the tensor X. Equivalently, we can compactly write the constraint as
XΩ = TΩ, where XΩ denotes the restriction of the tensor on the entries given by Ω,
and TΩ contains the values of those entries of X.

Problem setting 3.2 (Tensor completion).

minimize
X∈T

N∑

i=1

rank
(
X(i)

)
s. t. XΩ = TΩ (2)

The low-n-rank tensor recovery problem (1) (also its variant (2)) is a difficult
non-convex problem. Therefore we will relax it to the following convex problem:

Problem setting 3.3 (Low-n-rank tensor pursuit).

minimize
X∈T

N∑

i=1

||X(i)||∗ s. t. A(X) = b. (3)

Here, ||Z||∗ =
∑n

i=1 σi(Z) denotes the nuclear norm, the sum of the singular values of
a matrix Z. It is well known that the nuclear norm is the greatest convex minorant of
the rank function [2] and therefore we chose to replace each rank term by a nuclear-
norm term.

Problem (3) is equivalent to a semidefinite program. For this class of problems
there exist off-the-shelf solvers that apply interior-point methods and have very
good convergence guarantees. Unfortunately, the calculation of the search direction
uses second-order information and scales very badly in the problem dimensions.
Therefore, these solvers can only be used for very small-sized problems. As large-
size problems appear naturally in tensor problems, the present work will propose
first-order algorithms that are able to cope with these larger-sized problem instances.

Tensor completion and low-n-rank tensor recovery via convex optimization 4

In general such a best approximation might not exist, but by introducing conditions
on the appearing rank-1 terms, uniqueness can be enforced [7].

This tensor rank is difficult to handle, as there is no straightforward algorithm
to determine rankCP of a specific given tensor; in fact, the problem is NP-hard [1, 8].
The n-rank on the other hand is easy to compute. Therefore, we only focus on the
n-rank in this work and consider the minimization problem:

minimize
X∈T

f (n-rank(X)) s. t. A (X) = b,

where f (n-rank(X)) = f
(
rankX(1), rankX(2), . . . , rankX(N)

)
. In order to keep

things simple, we will use the sum of the ranks of the different unfoldings in the
place of the function f , i.e., f(n-rank(X)) = ||n-rank(X)||1 =

∑N
i=1 rank (X(i)). This

is one choice, but is also possible to incorporate a weighting, e.g., f(n-rank(X)) =∑N
i=1 γi rank X(i). Thus, our minimization problem of interest becomes:

Problem setting 3.1 (Low-n-rank tensor recovery).

minimize
X∈T

N∑

i=1

rank
(
X(i)

)
s. t. A (X) = b (1)

The exact form of the linear constraints on the tensor X is governed by the linear
operator A which can take many possible forms in general. We would like to point
out one special case, the tensor completion case. In tensor completion, a subset of the
entries of the tensor X is given, and under the low-n-rank assumption, the unknown
entries are to be deduced. Denoting the set of revealed entries by Ω, the corresponding
operator A retrieves the values of these locations. The vector b will then contain the
given entries of the tensor X. Equivalently, we can compactly write the constraint as
XΩ = TΩ, where XΩ denotes the restriction of the tensor on the entries given by Ω,
and TΩ contains the values of those entries of X.

Problem setting 3.2 (Tensor completion).

minimize
X∈T

N∑

i=1

rank
(
X(i)

)
s. t. XΩ = TΩ (2)

The low-n-rank tensor recovery problem (1) (also its variant (2)) is a difficult
non-convex problem. Therefore we will relax it to the following convex problem:

Problem setting 3.3 (Low-n-rank tensor pursuit).

minimize
X∈T

N∑

i=1

||X(i)||∗ s. t. A(X) = b. (3)

Here, ||Z||∗ =
∑n

i=1 σi(Z) denotes the nuclear norm, the sum of the singular values of
a matrix Z. It is well known that the nuclear norm is the greatest convex minorant of
the rank function [2] and therefore we chose to replace each rank term by a nuclear-
norm term.

Problem (3) is equivalent to a semidefinite program. For this class of problems
there exist off-the-shelf solvers that apply interior-point methods and have very
good convergence guarantees. Unfortunately, the calculation of the search direction
uses second-order information and scales very badly in the problem dimensions.
Therefore, these solvers can only be used for very small-sized problems. As large-
size problems appear naturally in tensor problems, the present work will propose
first-order algorithms that are able to cope with these larger-sized problem instances.

Tensor completion and low-n-rank tensor recovery via convex optimization 4

In general such a best approximation might not exist, but by introducing conditions
on the appearing rank-1 terms, uniqueness can be enforced [7].

This tensor rank is difficult to handle, as there is no straightforward algorithm
to determine rankCP of a specific given tensor; in fact, the problem is NP-hard [1, 8].
The n-rank on the other hand is easy to compute. Therefore, we only focus on the
n-rank in this work and consider the minimization problem:

minimize
X∈T

f (n-rank(X)) s. t. A (X) = b,

where f (n-rank(X)) = f
(
rankX(1), rankX(2), . . . , rankX(N)

)
. In order to keep

things simple, we will use the sum of the ranks of the different unfoldings in the
place of the function f , i.e., f(n-rank(X)) = ||n-rank(X)||1 =

∑N
i=1 rank (X(i)). This

is one choice, but is also possible to incorporate a weighting, e.g., f(n-rank(X)) =∑N
i=1 γi rank X(i). Thus, our minimization problem of interest becomes:

Problem setting 3.1 (Low-n-rank tensor recovery).

minimize
X∈T

N∑

i=1

rank
(
X(i)

)
s. t. A (X) = b (1)

The exact form of the linear constraints on the tensor X is governed by the linear
operator A which can take many possible forms in general. We would like to point
out one special case, the tensor completion case. In tensor completion, a subset of the
entries of the tensor X is given, and under the low-n-rank assumption, the unknown
entries are to be deduced. Denoting the set of revealed entries by Ω, the corresponding
operator A retrieves the values of these locations. The vector b will then contain the
given entries of the tensor X. Equivalently, we can compactly write the constraint as
XΩ = TΩ, where XΩ denotes the restriction of the tensor on the entries given by Ω,
and TΩ contains the values of those entries of X.

Problem setting 3.2 (Tensor completion).

minimize
X∈T

N∑

i=1

rank
(
X(i)

)
s. t. XΩ = TΩ (2)

The low-n-rank tensor recovery problem (1) (also its variant (2)) is a difficult
non-convex problem. Therefore we will relax it to the following convex problem:

Problem setting 3.3 (Low-n-rank tensor pursuit).

minimize
X∈T

N∑

i=1

||X(i)||∗ s. t. A(X) = b. (3)

Here, ||Z||∗ =
∑n

i=1 σi(Z) denotes the nuclear norm, the sum of the singular values of
a matrix Z. It is well known that the nuclear norm is the greatest convex minorant of
the rank function [2] and therefore we chose to replace each rank term by a nuclear-
norm term.

Problem (3) is equivalent to a semidefinite program. For this class of problems
there exist off-the-shelf solvers that apply interior-point methods and have very
good convergence guarantees. Unfortunately, the calculation of the search direction
uses second-order information and scales very badly in the problem dimensions.
Therefore, these solvers can only be used for very small-sized problems. As large-
size problems appear naturally in tensor problems, the present work will propose
first-order algorithms that are able to cope with these larger-sized problem instances.

Tensor Completion Question

•  Can the ideas from structural matrix completion be
applied to tensors?

•  What kinds of bounds exist for the amount of
information needed?

•  Are there special cases that make tensors easier?

•  How does rigidity translate to tensors?

