Completion (on tensors)
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Motivating Example: Netflix

What data does Netfflix have?
« Users rate movies they have seen

Data represented in matrix form:
« Harry rates The Hobbit 5/5 but Gravity 2/5
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Motivating Example: Netflix

What does Netflix want to do@¢

« Recommend you movie you would like — make you happy
with the service

How can it do this?
« Knowing which movies Harry would rate 5/5 04@‘
« Predict ratings it cannot see \8\00@
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Users

Netflix Challenge

Movie
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Want to predict all ratings, but we know only 1% of

the enftries!
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Matrix Completion

On Input:
Partially-observed matrix M
The Goal is to:
Find a low-error completion of the remaining enftries




Notation

From a ground truth fully-known an nxm mo’mx T, we
say only some of the values are observed. =« =

Call the set of observed locations:
={(i, ) that are observed in 7'}

Define the partially observed matrix as:

O otherwise




Approaches to Matrix Completion

Need to make some assumption.
» Currently the most popular is that T is low rank.

Find an estimate T by solving the optimization
problem:

minimize  rank(T)

subjectto M. =T
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This problem is NP-hard.



Approaches to Matrix Completion

Need to make some additional assumpftion.
I. Low rank
7. Known rank

A proposed strategy called OptSpace takes an
SVD-based approach:

~

T

minimize . H j:,

subjectto M, =T, (i,])EL2
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Characteristics

Such opftimization approaches

» Output an estimate of the whole mafrix T on any
input —any size Q.

« Give no indication of of confidence

« Rely on randomly sampled @, i.e. the known enftries
are randomly dispersed



Completion Questions

If we want very small error between T and T ...

|. How many entries does M need to havee

2. When there are not enough entries, how can |
add themce



L ower Bound

Assuming that @ is random, there does exist a bound
that say:

If there are at least r nlog(n) entries then w.h.p the
completion will be accurate

This is the only way to answer the questions.

Simply sample randomly up fo threshold, and hope
for the best...



Structural Methods

Recent methods take a more algebraic approach by
analyzing the structure of locations of the observed

enftries.

Yes, there is a

unique
4 ) completion
O 1. m.r—> Structural Matrix
Y Completion
No, there are
N / many possible

maftrices
consistent with
the observations



Structural Methods Example

Consider the 2 x 2 matrix: ( 1 2 )
2 7

If | tell you that rank=1, can you fill the missing elemente

Yes! The only possible value is 4. i.e. ( 1 2 )
2 4

What about if | tell you rank=2¢



Structural Method

» Explicitly state which enftries can be recovered

» Provide means to answer the questions other
methods could not
1. How many enfries does @ need to have?
2. When there are not enough entries, how can | add them?



Summary

Matrix Completion: Recover missing entries

- Stafistical approaches
* Random Sampling
« Optimization — always output a full estimate

 Structural approaches
 Indicate which entries can be recovered exactly
* Only recover those entries

Tensor Completion. Let’s talk about tensors...



Tensor

Multi-dimensional matrix

1-dim 2-dim 3-dim




Users

Tensors: Example

Neftflix Matrix

Movies

Nefflix Tensor




Users

Tensors: Example

Netflix Matrix

Movies

Users

Netflix Tensor

Genres




Tensor Applications

* Traffic analysis (urban, infernet)
Recommender systems
Biology

Vision/Images

Physics (immense application) e.g.
(a)

person
DNA §
; E
tensor quantum state
—* — |¥)
Image Source: http://arxiv.org/pdf/1306.2164v2.pdf



Tensors are hard

Most Tensor Problems are NP-Hard

CHRISTOPHER J. HILLAR, Mathematical Sciences Research Institute
LEK-HENG LIM, University of Chicago

We prove that multilinear (tensor) analogues of many efficiently computable problems in numerical linear
algebra are NP-hard. Our list here includes: determining the feasibility of a system of bilinear equations,
deciding whether a 3-tensor possesses a given eigenvalue, singular value, or spectral norm; approximating
an eigenvalue, eigenvector, singular vector, or the spectral norm; and determining the rank or best rank-1

approximation of a 3-tensor. Furthermore, we show that restricting these problems to symmetric tensors
dnes nnt alleviate their NP-hardnezsa We alan exnlain how deridine nannegative definiteness nf a symmetrie



Tensors are hard

Table |. Tractability of Tensor Problems

Problem

Complexity

Bivariate Matrix Functions over R, C

Undecidable (Proposition 12.2)

Bilinear System over R, C

NP-hard (Theorems 2.6, 3.7, 3.8)

Eigenvalue over R NP-hard (Theorem 1.3)
Approximating Eigenvector over R NP-hard (Theorem 1.5)
Symmetric Eigenvalue over R NP-hard (Theorem 9.3)
Approximating Symmetric Eigenvalue over R | NP-hard (Theorem 9.6)
Singular Value over R, C NP-hard (Theorem 1.7)
Symmetric Singular Value over R NP-hard (Theorem 10.2)

Approximating Singular Vector over R, C

NP-hard (Theorem 6.3)

Spectral Norm over R

NP-hard (Theorem 1.10)

Symmetric Spectral Norm over R

NP-hard (Theorem 10.2)

Approximating Spectral Norm over R

NP-hard (Theorem 1.11)

Nonnegative Definiteness

NP-hard (Theorem 11.2)

Best Rank-1 Approximation

NP-hard (Theorem 1.13)

Best Symmetric Rank-1 Approximation

NP-hard (Theorem 10.2)

Rank over R or C

NP-hard (Theorem 8.2)

Enumerating Eigenvectors over R

#P-hard (Corollary 1.16)

Combinatorial Hyperdeterminant

NP-, #P-, VNP-hard (Theorems 4.1 , 4.2, Corollary 4.3)

Geometric Hyperdeterminant

Conjectures 1.9, 13.1

Symmetric Rank

Conjecture 13.2

Bilinear Programming

Conjecture 13.4

Bilinear Least Squares

Conjecture 13.5




Example 1: Rank

* Maftrix Rank:

« # independent row vectors

« How many vectors are needed to represent the whole
matrixs

 Form xn M, rank(M)<max(m,n)

» Tensor Rank
« Definition 1:
Smallest r such that T is the sum of r rank-1 tensors B
« Definition 2:
A tuple (r,, ..., r,) where each r;is the rank of the unfolding



Tensor Unfloding
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Example 2: SVD

* Matrix SVD:
- Decompositioninto M = UXV"

» Tensor SVD¢e¢



Tensor Completion

Given a partially observed tensor

Reconstruct the missing values




Existing Tensor Completion Approaches

- Translate directly kecall

minimize  rank(T)

mir}lciergl_ize f (n-rank(X)) s.t. A(X) =0, subjectto M, =T, (i,j))EQ

Problem setting 3.1 (Low-n-rank tensor recovery).

N
inimi k (X . t. X)=0>
minimize 2.E_:ll"aun (X)) s A (X)

Problem setting 3.2 (Tensor completion).
N

mirjlcierprize Zzzl rank (X(i)) s.t. Xqg=Tq

Problem setting 3.3 (Low-n-rank tensor pursuit).

N
inimi X« s.t. X) =b.
minimize ; [ X@)ll« s A(X)



Tensor Completion Question

- Can the ideas from structural matrix completion be
applied to tensorse

- What kinds of bounds exist for the amount of
iInformation needed?

« Are there special cases that make tensors easiere

- How does rigidity franslate to tensorse






